Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Res ; 250: 118505, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38387497

RESUMEN

In arid regions, montane lakes are valuable water sources and play important ecological roles. However, recent human-induced inputs of organic pollutants are threatening lake ecology in such regions and becoming a matter of great concern. To investigate pollutant histories and sources, we measured polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in a dated sediment core that spans the last ∼350 years, from montane Lake Issyk-Kul (Kyrgyzstan, Central Asia). Results showed that organic pollutants were delivered to Lake Issyk-Kul in four stages and that their concentrations increased from Stage I (∼1670-1800 CE) to Stage IV (∼2000-2010 CE). Furthermore, we tracked the sources of sedimented PAHs using their ratios combined with n-alkanes data. Ratios of PAHs Ant/(Ant + Phe), Flt/(Flt + Pyr) and Bap/BghiP indicated that inputs during Stage II (∼1800-1970 CE) and Stage III (∼1970-2000 CE) came mainly from high-temperature combustion of coal and vehicle emissions. PAHs in Stage I and Stage IV, however, were mainly derived from low-temperature combustion and petrogenic sources. Diagnostic PAH ratios, combined with the natural n-alkane ratio (NAR<0) and unresolved complex mixtures (UCM), showed that the sources of PAHs in Stage I were mainly from erosion of bedrock and partly influenced by forest wildfires, different from the source during Stage IV, which was mainly from refined petroleum caused by accidental spills. Our assessment of the contamination history of the lake indicates that toxicity risk to the waterbody from sediment PAHs is low, but recent discharges arising from traffic deserve attention.


Asunto(s)
Monitoreo del Ambiente , Sedimentos Geológicos , Lagos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Lagos/química , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Contaminantes Químicos del Agua/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Kirguistán , Alcanos/análisis
2.
J Environ Manage ; 364: 121471, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38878581

RESUMEN

Seasonal water and sediment samples were collected from the Xiaoqing River estuary and the neighboring sea to study the spatial and temporal distributions, sources and ecological risks of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. The results showed significant spatial and temporal differences in the concentrations of PAHs and n-alkanes under the influence of precipitation, temperature, and human activities. The concentrations of PAHs in water were lower in the wet season than in the dry season, and those in sediments were higher in the wet season than in the dry season. The concentrations of n-alkanes were higher in the rainy season than in the dry season for both water and sediments. The spatial distributions of PAHs and n-alkanes were estuarine > offshore. The concentration ranges of ∑PAHs in water and sediments were 230.66-599.86 ng/L and 84.51-5548.62 ng/g, respectively, in the wet season and 192.46-8649.55 ng/L and 23.39-1208.92 ng/g, respectively, in the dry season. The proportion of three-ring PAHs in water (57.03% and 78.27% in the wet and dry seasons, respectively) was high, followed by two-ring PAHs (27.31% and 13.59% in the wet and dry seasons, respectively). The proportion of four-ring PAHs was higher in sediments (24.79% and 32.20% in the wet and dry seasons, respectively). The ecological risk of PAHs assessed using the toxicity equivalent quotient and risk quotient was at moderate to moderately high risk levels. The high concentration of n-alkane fraction C16 (611.65-75594.58 ng/L) in the water is indicative of petroleum or other fossil fuel inputs. The main peaks of n-alkanes in river sediments were C27, C29 and C31, indicating higher inputs of plant sources. The sediments in the estuary showed dominance of both short-chain C16 and long-chain C25-C31, indicating a combined input of higher plants and petroleum. The diagnostic ratios of PAHs and n-alkanes indicated that their sources were mainly oil/coal/biomass combustion and petroleum spills attributed to frequent vehicular, vessel and mariculture activities. Given the potential ecological risks of PAHs and n-alkanes in water and sediments, future studies should focus on their bioaccumulation and biotoxicity.


Asunto(s)
Alcanos , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos , Ríos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Ríos/química , Sedimentos Geológicos/química , Sedimentos Geológicos/análisis , Alcanos/análisis , Contaminantes Químicos del Agua/análisis , Estaciones del Año
3.
Indian J Microbiol ; 64(2): 635-649, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39010987

RESUMEN

The current paper deals with new metabolites of different groups produced by Azotobacter chroococcum XU1. The strain's metabolic diversity is strongly altered by different factors, and some secondary metabolites are being reported for the first time for this species. As an abiotic/biotic stress response, the strain produced a broad spectrum of indole ring-containing compounds, n-alkanes (eicosane, heneicosane, docosane, tetracosane, and hexacosane), alkanes (7-hexyl eicosane and 2-methyloctacosane), saturated fatty acids (hexanoic and octanoic acids), esters (hexadecanoic acid methyl and pentadecanoic acid-14-methyl-methyl esters), and amides (9-Octadecenamide, (Z)- and 13-Docosenamide, (Z)-). Furthermore, to mitigate the abiotic stress the strain actively produced exopolysaccharide (EPS) to biosorb the Na+ ions. Apart from these metabolites, A. chroococcum XU1 synthesized lactones, namely 1,5-d-gluconolactone and d, l-mevalonic acid lactone in response to carbon source modification. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-024-01212-x.

4.
Chem Biodivers ; 20(5): e202300043, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37066849

RESUMEN

n-Alkane and long-chain alcohol (LCOH) profiles of needle cuticular waxes of nine provenances of three Pinus species (P. taeda. P. pinaster and P. pinea) were determined and their chemotaxonomic importance was studied. n-Alkanes concentrations were very low in all Pinus spp. A lack of ability of these compounds to differentiate Pinus spp. and their provenances was observed. LCOH concentrations were much higher, being nonacosan-10-ol (10-C29 -OH) the most abundant one in all Pinus spp. Total LCOH concentrations varied (P<0.001) between Pinus spp. with P. taeda presenting the highest (P<0.05) value and P. pinea the lowest one. Differences in LCOH profiles were large (P<0.001) and allowed separation of Pinus spp. in the Principal Component Analysis (PCA). Although a noticeable separation of individuals was not observed. cluster analysis on LCOH concentrations allowed a clear distinction between species, indicating their potential to be used as chemotaxonomic markers to differentiate provenances of different Pinus spp.


Asunto(s)
Alcanos , Pinus , Alcanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Ceras , Etanol
5.
Molecules ; 28(3)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36770949

RESUMEN

Betaine is a new surfactant with good application prospects in high-temperature and high-salinity reservoirs. The interfacial properties of two kinds of betaine mixtures with a good synergistic effect were evaluated in this paper. On this basis, the effects of temperature-resistant, salt-resistant polymers with different contents of 2-acrylamide-2-methylpropanesulfonic acid (AMPS) on dynamic interfacial tensions (IFTs) against n-alkanes and crude oil were studied. The experimental results show that the IFTs between betaine ASB and n-alkanes can be reduced to ultra-low values by compounding with anionic surfactant petroleum sulfonate (PS) and extended anionic surfactant alkoxyethylene carboxylate (AEC), respectively. ASB@AEC is very oil-soluble with nmin value ≥14, and ASB@PS is relatively water-soluble with nmin value of 10. The water solubility of both ASB@PS and ASB@AEC is enhanced by the addition of water-soluble polymers. The HLB of the ASB@AEC solution becomes better against crude oil after the addition of polymers, and the IFT decreases to an ultra-low value as a result. On the contrary, the antagonistic effect in reducing the IFT can be observed for ASB@PS in the same case. In a word, polymers affect the IFTs of surfactant solutions by regulating the HLB.

6.
Molecules ; 28(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067426

RESUMEN

The existing combustion kinetic modeling method which aims at developing phenomenological combustion mechanisms characterized by multiple reactions confronts several challenges, including the conflicts between computing resources and mechanism scales during numerical simulation, etc. In order to address these issues, the minimized reaction network method for complex combustion system modeling based on the principle of simultaneous chemical equilibrium is proposed, which is aimed to develop combustion mechanisms with minimal reaction steps under a limited number of species. The concept of mechanism resolution is proposed in this method, and the reaction network with minimal reaction steps under a given mechanism resolution is constructed so that the scale of mechanisms is compressed greatly. Meanwhile, distinguishing from other mechanisms, the reversible form of elementary reactions is adopted and the classical two-parameter (A, Ea) Arrhenius equation fits the rate constants. Typical n-alkanes including n-butane, n-heptane, n-octane, n-decane, n-dodecane and n-hexadecane were taken as examples to indicate the development process of mechanisms and systematic kinetic validations were carried out. Results show that this method leads to very compact mechanisms with satisfactory accuracy, and it eliminates the process of mechanism reduction and is beneficial for mechanism optimization. This method and the derived kinetic mechanisms are hoped to contribute to combustion engineering applications.

7.
Molecules ; 28(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298869

RESUMEN

The potential of endogenous n-alkane profiling for the assessment of extra virgin olive oils (EVOO) adulteration (blends with cheaper vegetable oils) has been studied by relatively few authors. Analytical methods used for this purpose often involve tedious and solvent-intensive sample preparation prior to analytical determination, making them unattractive. A rapid and solvent-sparing offline solid phase extraction (SPE) gas chromatography (GC) flame ionization detection (FID) method for the determination of endogenous n-alkanes in vegetable oils was, therefore, optimized and validated. The optimized method demonstrated good performance characteristics in terms of linearity (R2 > 0.999), recovery (on average 94%), and repeatability (residual standard deviation, RSD < 11.9%). The results were comparable to those obtained with online high-performance liquid chromatography (HPLC)-GC- FID ( RSD < 5.1%). As an example of an application to prove the potentiality of endogenous n-alkanes in revealing frauds, the data set obtained from 16 EVOO, 9 avocado oils (AVO), and 13 sunflower oils (SFO), purchased from the market, was subjected to statistical analysis and principal component analysis. Two powerful indices, namely (n-C29 + n-C31)/(n-C25 + n-C26) and n-C29/n-C25, were found to reveal the addition of 2% SFO in EVOO and 5% AVO in EVOO, respectively. Further studies are needed to confirm the validity of these promising indices.


Asunto(s)
Alcanos , Aceites de Plantas , Aceite de Oliva/química , Aceites de Plantas/química , Ionización de Llama/métodos , Cromatografía de Gases/métodos , Aceite de Girasol , Solventes/análisis , Extracción en Fase Sólida/métodos
8.
Arch Anim Nutr ; 77(2): 93-109, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37226976

RESUMEN

The use of enrichment and bedding materials in pig husbandry intends to comply with the animals' behavioural needs to perform natural exploratory behaviour, which is strongly connected to foraging behaviour. It can thus be assumed that pigs will ingest a certain material quantity possibly posing a risk to animal health and food safety as previous studies identified contaminants in enrichment and bedding materials. However, risk assessment requires knowledge about the effective amount of ingested material. Voluntary material intake of pigs with free access to peat and disinfectant powder was estimated by measuring the tissue levels of toxic metals originating from the respective materials in 28 pigs (seven groups, n = 4) via inductively coupled plasma mass spectrometry and comparing the results to tissue levels of pigs fed with known amounts of metals. Additionally, as markers of consumption, n-alkanes and acid insoluble ash naturally occurring in the materials and titanium dioxide, added as an external marker to disinfectant powder, were analysed in pigs' faeces. Tissue levels of toxic metals as well as marker analyses in pigs' faeces could prove material consumption. Results revealed mean voluntary intake levels of peat and disinfectant powder by pigs up to 7% and 2% of the daily ration. Hence, a transfer of contained toxic metals into the food chain might occur. Although current maximum levels for toxic elements in animal tissues were not exceeded due to dietary inclusion of peat or disinfectant powder, dietary exposure through food of animal origin should be reduced to a possible minimum. This applies specifically for elements, where no health-based guidance values for humans could have been derived (e.g. arsenic). Thus, labelling guidelines for enrichment and bedding materials can be a perspective to limit the entry of toxic metals and trace elements into the environment.


Asunto(s)
Suelo , Oligoelementos , Humanos , Animales , Porcinos , Polvos , Dieta/veterinaria , Alimentación Animal/análisis
9.
Environ Geochem Health ; 45(10): 6985-7010, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37578559

RESUMEN

The article deals with the integrated and comprehensive study of the coal-bearing horizons from the South Karanpura Basin to delineate the biostratigraphy, palaeovegetation, palaeodepositional settings, and palaeoclimate in and around the investigated area during the deposition of Permian sediments. Highly diversified megafloral assemblages consist 13 genera and 72 species of order Glossopteridales, Cordaitales and Equisetales are documented among which 37 taxa are newly reported from Barakar and Raniganj formations of the area. Palynoassemblages-I and -II are recovered, which demonstrate the biostratigraphic age as Kungurian and Wordian-Capitanian, respectively. Overall the vegetation represents a luxuriant forest subjugated by arborescent deciduous trees bearing Glossopteris foliage with some conifers, cordaites, filicales, and peltaspermales. The biomarker study of the basin illustrates the unimodal distribution of n-alkanes in the sample set ranges from C14 to C29 which suggests major input from a single source of organic matter. The involvement of microbial activity and algal input is suggested for the basin. A relatively moderate-to-high water level condition can be inferred from elevated n-C25. The high CIA, PIA values and A-CN-K plot suggest intense weathering conditions in the source area. The source rocks are characterized by mature clayey type with abundant clay mineral, i.e., kaolinite. The current study portrays that the Permian climate was cooler in initial phase, which later on became warm temperate with high humidity. The palaeofloral entities and geochemical parameters suggest absolute diversification of Permian flora, the existence of continental freshwater setting in the vicinity and oxic to anoxic environment with fluctuating ground water conditions during the deposition of sediments.


Asunto(s)
Carbón Mineral , Agua Subterránea , Plantas , Tiempo (Meteorología) , Agua
10.
Environ Monit Assess ; 195(6): 717, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37222847

RESUMEN

The environmental and health risks of n-alkanes and benzene, toluene, ethylbenzene, and xylene (BTEX) in Eze-Iyi River at Isuikwuato oil spill site were evaluated. The water samples (60) were collected from upstream and downstream during the dry and rainy seasons. Concentrations of n-alkanes and BTEX were determined using a gas chromatograph coupled with a flame ionization detector. The percentage recovery of 87.3% and 92.0% was obtained for n-alkanes and BTEX in the water sample. The environmental risk analysis for n-alkanes and BTEX showed 80% of the water samples had a ratio greater than 1 indicating environmental risk in the area. Hydrocarbon source identification using biomarkers indicates that the n-alkane (nC16) dominant during the dry and rainy seasons was from anthropogenic/biogenic source, while nC14 and nC17 were from microbial and marine algae biogenic sources, respectively. The benzene levels in 100% (downstream) and 80% (upstream) of samples in the dry season and 40% (upstream) and 100% (downstream) of samples in the rainy season were above the WHO permissible limit of 0.01 mg/L for drinking water. The health risk index of n-alkanes during the dry season for children (upstream) was greater than 1 signifying adverse health risk. Therefore, consumption of water from the river should be discouraged and routine monitoring by regulatory authorities maintained to checkmate the build-up of BTEX and n-alkanes.


Asunto(s)
Contaminación por Petróleo , Xilenos , Niño , Humanos , Tolueno , Benceno , Alcanos , Nigeria , Monitoreo del Ambiente , Agua
11.
Bull Environ Contam Toxicol ; 111(5): 56, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874406

RESUMEN

This study analyzed total organic carbon (TOC), petroleum products (PP), suspended materials (SM), volatile aromatic hydrocarbons (toluene, o-xylene, etc.) and n-alkanes in the snow cover of Bol'shekhekhtsirsky, Zeysky state natural reserves and Khabarovsk, on 4, 5 and 9 stations in the south of the Russian Far East in March 2020. In Bol'shekhekhtsirsky reserve, the concentrations of TOC, PP, and SM in snow samples were in the range of 1.5-2.4, 0.06-0.11, and 11.4-1.9 mg/L, 1.4-1.9, 0.02-0.05, and 11-23 mg/L in Zeysky reserve, while in Khabarovsk were 1.7-23.7, 0.12-1.26, and 25-294 mg/L, respectively. In addition, the benzene, toluene, and o-xylene concentrations of snow samples ranges from not detected (ND) to 2.4, ND-3.1, and 1.1-2.7 µg/L in Khabarovsk, ND-1.3, ND-2.1, and ND-2.7 µg/L, respectively in Bol'shekhekhtsirsky reserve. Carbon preference index values of n-alkanes were consistent with anthropogenic sources for stations 7, 8 and 2 in Khabarovsk (Heat Power Plants 1, 2 and city roads). The snow of the Zeysky Reserve is not contaminated with organic pollutants, and can be used as a conditional background for the south of the Russian Far East.


Asunto(s)
Petróleo , Nieve , Hidrocarburos , Alcanos , Tolueno , Federación de Rusia , Asia Oriental , Carbono
12.
J Environ Sci (China) ; 129: 79-89, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36804244

RESUMEN

Sediment core is the recorder of polycyclic aromatic hydrocarbon (PAH) pollutions and the associated sedimentary organic matter (SOM), acting as crucial supports for pollution control and environmental management. Here, the sedimentary records of PAHs and SOM in the past century in Lake Taihu, China, were reconstructed from a 50-cm sediment core. On the one hand, the presence of PAHs ranged from 8.99 to 199.2 ng/g. Vertically, PAHs declined with the depth increased, and the sedimentation history of PAHs was divided into two stages with a discontinuity at 20 cm depth. In composition, PAHs in the sediment core were dominated by three-ring PAHs (44.6% ± 9.1%, mean ± standard deviation), and were followed by four-ring (27.0% ± 3.3%), and five-ring (12.1% ± 4.0%) PAHs. In toxicity assessment, the sedimentary records of benzo[a]pyrene-based toxic equivalency were well described by an exponential model with R-square of 0.95, and the environmental background toxic value was identified as 1.62 ng/g. On the other hand, different components of SOM were successfully identified by n-alkane markers (p < 0.01) and the variations of SOM were well explained (84.6%). A discontinuity of SOM was recognized at 22 cm depth. Association study showed that the sedimentary PAHs were associated with both anthropogenic and biogenic SOM (p < 0.05) with explained variances for most individual PAHs of 60%. It indicated the vertical distributions of PAHs were driven by sedimentary SOM. Therefore, environmental processes such as biogenic factors should attract more attentions as well as PAH emissions to reduce the impacts of PAHs.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Lagos , Monitoreo del Ambiente , Sedimentos Geológicos , China
13.
Environ Sci Technol ; 56(20): 14262-14271, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36206450

RESUMEN

Intermediate volatility organic compounds (IVOCs) are important precursors of secondary organic aerosols, and their sources remain poorly defined. N-alkanes represent a considerable portion of IVOCs in atmosphere, which can be well identified and quantified out of the complex IVOC pool. To investigate the potential source diversity of intermediate volatility n-alkanes (IVnAs, nC12-nC20), we apportioned the sources of IVnAs in the atmosphere of four North China cities, based on their compound-specific δ13C-δD isotope compositions and Bayesian model analysis. The concentration level of IVnAs reached 1195 ± 594 ng/m3. The δ13C values of IVnAs ranged -32.3 to -27.6‰ and δD values -161 to -90‰. The δD values showed a general increasing trend toward higher carbon number alkanes, albeit a zigzag odd-even prevalence. Bayesian MixSIAR model using δ13C and δD compositions revealed that the source patterns of individual IVnAs were inconsistent; the relative contributions of liquid fossil combustion were higher for lighter IVnAs (e.g., nC12-nC13), while those of coal combustion were higher for heavier IVnAs (e.g., nC17-nC20). This result agrees with principal component analysis of the dual isotope data. Overall, coal combustion, liquid fossil fuel combustion, and biomass burning contributed about 47.8 ± 0.1, 35.7 ± 4.0, and 16.3 ± 4.2% to the total IVnAs, respectively, highlighting the importance of coal combustion as an IVnA source in North China. Our study demonstrates that the dual-isotope approach is a powerful tool for source apportionment of atmospheric IVOCs.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Alcanos/análisis , Teorema de Bayes , Carbono , China , Carbón Mineral , Monitoreo del Ambiente , Combustibles Fósiles , Isótopos
14.
Environ Res ; 205: 112469, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863686

RESUMEN

The concentration of n-alkanes (C17-C35) and sterols in marine particulate matter were investigated to trace the origin of organic carbon in Kongsfjorden in early spring (April). The spatial distributions of environmental factors (seawater temperature, salinity, density, turbidity, chlorophyll a (chl. a) and particulate organic carbon (POC) concentrations) and the cell density of phytoplankton differed between the inner and outer fjord regions. In addition, brassicasterol, diatom biomarker, showed a high concentration in the outer fjord and positive correlations with the chl. a and POC concentrations in the water column. In contrast, some sterols originating from terrestrial organic matter (OM), such as stigmasterol and campesterol, showed relatively higher concentrations in the inner fjord than in the outer fjord. Based on the distance-based redundancy analysis (db-RDA) result, the distributions of organic compounds are predominantly controlled by the water density and the POC and chl. a concentrations, and these distributions allowed us to divide the inner and outer fjord regions. However, the hierarchical clustering of principal components (HCPC) results obtained based on principal component analysis (PCA) using lipid biomarkers (C17-C35 alkanes and sterols) and environmental factors indicated that the clusters were distinguished by surface (0 m) and subsurface (>4 m) seawater samples rather than by any regional division. Notably, the concentration of relatively short-chain alkanes (average chain length (ACL): 24.6 ± 3.7) without a carbon preference for odd numbers (carbon preference index (CPI): 0.97 ± 0.11) in the sea surface layer was significantly higher than that of subsurface seawater (ACL: 31.1 ± 0.5 and CPI: 1.06 ± 0.03) in the early spring. This suggests the potential of these compounds as indicators for tidewater glacier-derived OM and freshwater input by snow melt into the fjord system. Hence, these results demonstrate that the distributions of lipid biomarkers in the water column possibly provide important information for a comprehensive understanding of the origin and transport of OM in an Arctic fjord.


Asunto(s)
Alcanos , Estuarios , Alcanos/análisis , Biomarcadores , Clorofila A/análisis , Monitoreo del Ambiente , Esteroles/análisis
15.
Environ Res ; 214(Pt 3): 114063, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35973462

RESUMEN

Central Asia (CA) has attracted global attention because of either water scarcity or ecosystem degradation. The Amu Darya Delta (ADD), one of the most important oases in CA, is endowed with valuable wetlands and biological resources that provide good ecosystem services to inhabitants. However, the region has experienced climate warming and large-scale anthropogenic changes since the last century. To assess the influences of anthropogenic interventions on the soil environment in this area, surface soil samples collected from the ADD were analysed for aliphatic hydrocarbon fractions and five heavy metals (HMs; including Cd, Zn, Cu, Ni and V). The results indicated that the n-alkanes extracted from surface soils were composed of homologous series from C14 to C35. Relatively high abundances of short-chain n-alkanes (n-C33) occurred in most surface soils, which might be a sign of a hot and arid climatic environment. Notably, almost all samples presented a clear even carbon dominance of short-chain n-alkanes, especially for cluster 1, which possibly represented the influence of hydrocarbon contamination and highly saline carbonate environments in addition to bacterial degradation. The biomarker indices and HM enrichment index indicated greater effects of crude oil pollution on cluster 1 (specifically samples 2, 4, 5, 6, 13, 16 and 34) and anthropogenic activities such as traffic emissions and agricultural drainage on cluster 3 samples. The results of this study provide evidence that the n-alkane composition and abundance in surface soils respond sensitively to anthropogenic interventions, arid climate and petroleum hydrocarbon pollution.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Alcanos/análisis , China , Ecosistema , Monitoreo del Ambiente/métodos , Hidrocarburos/análisis , Imidazoles , Metales Pesados/análisis , Ríos , Suelo , Contaminantes del Suelo/análisis , Sulfonamidas , Tiofenos , Uzbekistán
16.
Int J Phytoremediation ; 24(5): 483-492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34340621

RESUMEN

Remediation of crude oil-impacted areas is a major pervasive concern in various environmental conditions. The major aim of this study was to investigate the collaboration of vetiver grass (Vetiveria zizanioides L.) and petroleum hydrocarbon-degrading bacteria to clean up contaminated soils. Vetiver grass and five native bacterial isolates were used in one consortium to remediate contaminated soil by crude oil at various concentrations (2.0, 4.0, 6.0 8.0, 10, and 12.0% woil/wsoil). The presence of isolated bacteria caused a significant (p < 0.05) increment of root-shoot ratio of vetiver in contaminated soils in comparison to non-contaminated soil. The combination of vetiver and bacterial consortium revealed efficient dissipation of more than 30% of low-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and more than 50% of high-molecular-weight PAHs in all crude oil concentrations. The removal of n-alkanes in the simultaneous presence of the bacteria and plant was more than 70.0% at 10.0% of oil concentration, whereas the removals in control were 20.7, 13.7 and 9.2%, respectively. The hydrocarbons dissipation efficiency of applied treatments decreased at 12.0% of contamination. It is concluded that a combination of vetiver grass and the isolated bacteria could be a feasible strategy for remediation of crude oil-polluted soils. Novelty statementDetermination of the responses of vetiver grass under different crude oil concentrations is one of the novelties of the present study, which is helpful for demonstrating plant tolerance on polluted environments. Also, it adds information about the potential of this grass to clean up crude oil-polluted soils solely as well as in the presence of promising selected bacterial strains.


Asunto(s)
Chrysopogon , Petróleo , Contaminantes del Suelo , Bacterias , Biodegradación Ambiental , Suelo , Contaminantes del Suelo/análisis
17.
J Comput Chem ; 42(22): 1540-1551, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34018199

RESUMEN

Since the beginning of oil exploration, whole ecosystems have been affected by accidents and bad practices involving petroleum compounds. In this sense, bioremediation stands out as the cheapest and most eco-friendly alternatives to reverse the damage done in oil-impacted areas. However, more efforts must be made to engineer enzymes that could be used in the bioremediation process. Interestingly, a recent work described that α-amylase, one of the most evolutionary conserved enzymes, was able to promiscuously degrade n-alkanes, a class of molecules abundant in the petroleum admixture. Considering that α-amylase is expressed in almost all known organisms, and employed in numerous biotechnological processes, using it can be a great leap toward more efficient applications of enzyme or microorganism-consortia bioremediation approaches. In this work, we employed a strict computational approach to design new α-amylase mutants with potentially enhanced catalytic efficiency toward n-alkanes. Using in silico techniques, such as molecular docking, molecular dynamics, metadynamics, and residue-residue interaction networks, we generated mutants potentially more efficient for degrading n-alkanes, L183Y, and N314A. Our results indicate that the new mutants have an increased binding rate for tetradecane, the longest n-alkane previously tested, which can reside in the catalytic center for more extended periods. Additionally, molecular dynamics and network analysis showed that the new mutations have no negative impact on protein structure than the WT. Our results aid in solidifying this enzyme as one more tool in the petroleum bioremediation toolbox.


Asunto(s)
Alcanos/metabolismo , Simulación del Acoplamiento Molecular , alfa-Amilasas/metabolismo , Alcanos/química , Bacillus subtilis/enzimología , Biocatálisis , Biodegradación Ambiental , alfa-Amilasas/química , alfa-Amilasas/genética
18.
Antonie Van Leeuwenhoek ; 114(4): 411-424, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33587226

RESUMEN

A novel bacterial strain was isolated from industrially contaminated waste water. In the presence of crude oil, this strain was shown to reduce the rate of total petroleum hydrocarbons (TPH) up to 97.10% in 24 h. This bacterium was subsequently identified by 16S rRNA gene sequence analysis and affiliated to the Serratia genus by the RDP classifier. Its genome was sequenced and annotated, and genes coding for catechol 1,2 dioxygenase and naphthalene 1,2-dioxygenase system involved in aromatic hydrocarbon catabolism, and LadA-type monooxygenases involved in alkane degradation, were identified. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of crude oil after biological treatment showed that Serratia sp. Tan611 strain was able to degrade n-alkanes (from C13 to C25). This bacterium was also shown to produce a biosurfactant, the emulsification index (E24) reaching 43.47% and 65.22%, against vegetable and crude oil, respectively. Finally, the formation of a biofilm was increased in the presence of crude oil. These observations make Serratia sp. Tan611 a good candidate for hydrocarbon bioremediation.


Asunto(s)
Petróleo , Serratia , Argelia , Biodegradación Ambiental , Biopelículas , Hidrocarburos , ARN Ribosómico 16S/genética , Serratia/genética
19.
J Sep Sci ; 44(19): 3594-3599, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34365729

RESUMEN

Stable carbon and hydrogen isotope ratios of individual n-alkanes and acyclic isoprenoids are important tools in petroleum geochemistry. However, the analysis requires baseline separation and peak profiles using gas chromatography-isotope ratio mass spectrometry to obtain accurate compound-specific isotope data. Time-consuming isolation or purification is typically conducted to separate the compounds to avoid co-elution with other compounds or matrices in crude oils. We developed a simple gas chromatography separation method to simultaneously measure the compound-specific carbon or hydrogen isotope compositions of n-alkanes and acyclic isoprenoids. It was achieved by direct injection of the whole crude condensate and light oil or the saturated fractions of different types of crude oils using a 60 m DB-17ms column. This method simplifies the pre-treatment of compound-specific isotope analysis, saves manpower and time, and reduces the use of organic solvents to be more environmentally friendly.

20.
Molecules ; 26(7)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805066

RESUMEN

This paper reports on a series of heating experiments that focus on n-alkanes extracted from leaf, bark, and xylem tissues of the Celtis australis plant. These lipid biomarkers were analysed for their compound-specific hydrogen isotopic composition (δ2Hwax) under limited oxygen conditions at 150, 250, 350, and 450 °C. Our results reveal isotopic variations in wax lipids of different plant organs during short-term low-temperature combustion. We conclude that, in the absence of a detailed characterisation of the depositional environment in advance of sampling, δ2Hwax values in archaeological or otherwise highly anthropogenic environments should be interpreted cautiously. In addition, we observed that variation in δ2Hwax of leaves is minimal at temperatures ≤ 350 °C, highlighting the potential for δ2Hwax in thermally altered combustion substrates to yield palaeoclimate information, which could allow researchers to investigate links between archaeological and climatic records at a high spatial and temporal resolution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA