Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 336
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunol Rev ; 321(1): 33-51, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688390

RESUMEN

Neuropathic pain is a common and debilitating modality of chronic pain induced by a lesion or disease of the somatosensory nervous system. Albeit the elucidation of numerous pathophysiological mechanisms and the development of potential treatment compounds, safe and reliable therapies of neuropathic pain remain poor. Multiple stress/cell death pathways have been shown to be implicated in neuroinflammation during neuropathic pain. Here, we summarize the current knowledge of stress/cell death pathways and present an overview of the roles and molecular mechanisms of stress/cell death pathways in neuroinflammation during neuropathic pain, covering intrinsic and extrinsic apoptosis, autophagy, mitophagy, ferroptosis, pyroptosis, necroptosis, and phagoptosis. Small molecule compounds that modulate stress/cell death pathways in alleviating neuropathic pain are discussed mainly based on preclinical neuropathic pain models. These findings will contribute to in-depth understanding of the pathological processes during neuropathic pain as well as bridge the gap between basic and translational research to uncover new neuroprotective interventions.


Asunto(s)
Neuralgia , Enfermedades Neuroinflamatorias , Humanos , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Apoptosis , Piroptosis , Autofagia
2.
J Cell Sci ; 136(11)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37278219

RESUMEN

Neurons are highly polarized, post-mitotic cells that are characterized by unique morphological diversity and complexity. As highly differentiated cells that need to survive throughout organismal lifespan, neurons face exceptional energy challenges in time and space. Therefore, neurons are heavily dependent on a healthy mitochondrial network for their proper function and maintenance under both physiological and stress conditions. Multiple quality control systems have evolved to fine-tune mitochondrial number and quality, thus preserving neuronal energy homeostasis. Here, we review the contribution of mitophagy, a selective form of autophagy that targets dysfunctional or superfluous mitochondria for degradation, in maintaining nervous system homeostasis. In addition, we discuss recent evidence implicating defective or dysregulated mitophagy in the pathogenesis of neurodegenerative diseases.


Asunto(s)
Mitofagia , Enfermedades Neurodegenerativas , Humanos , Mitofagia/fisiología , Autofagia/fisiología , Neuronas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Homeostasis
3.
Eur J Neurosci ; 60(4): 4437-4452, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887188

RESUMEN

Mouse neuronal CAD 5 cell line effectively propagates various strains of prions. Previously, we have shown that it can also be differentiated into the cells morphologically resembling neurons. Here, we demonstrate that CAD 5 cells chronically infected with prions undergo differentiation under the same conditions. To make our model more realistic, we triggered the differentiation in the 3D culture created by gentle rocking of CAD 5 cell suspension. Spheroids formed within 1 week and were fully developed in less than 3 weeks of culture. The mature spheroids had a median size of ~300 µm and could be cultured for up to 12 weeks. Increased expression of differentiation markers GAP 43, tyrosine hydroxylase, ß-III-tubulin and SNAP 25 supported the differentiated status of the spheroid cells. The majority of them were found in the G0/G1 phase of the cell cycle, which is typical for differentiated cells. Moreover, half of the PrPC on the cell membrane was N-terminally truncated, similarly as in differentiated CAD 5 adherent cells. Finally, we demonstrated that spheroids could be created from prion-infected CAD 5 cells. The presence of prions was verified by immunohistochemistry, western blot and seed amplification assay. We also confirmed that the spheroids can be infected with the prions de novo. Our 3D culture model of differentiated CAD 5 cells is low cost, easy to produce and cultivable for weeks. We foresee its possible use in the testing of anti-prion compounds and future studies of prion formation dynamics.


Asunto(s)
Diferenciación Celular , Enfermedades por Prión , Esferoides Celulares , Esferoides Celulares/metabolismo , Ratones , Animales , Diferenciación Celular/fisiología , Enfermedades por Prión/metabolismo , Enfermedades por Prión/patología , Línea Celular , Técnicas de Cultivo de Célula/métodos , Neuronas/metabolismo , Técnicas de Cultivo Tridimensional de Células/métodos , Priones/metabolismo
4.
Brain ; 146(8): 3347-3363, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-36869767

RESUMEN

Recurrent proximal 16p11.2 deletion (16p11.2del) is a risk factor for diverse neurodevelopmental disorders with incomplete penetrance and variable expressivity. Although investigation with human induced pluripotent stem cell models has confirmed disruption of neuronal development in 16p11.2del neuronal cells, which genes are responsible for abnormal cellular phenotypes and what determines the penetrance of neurodevelopmental abnormalities are unknown. We performed haplotype phasing of the 16p11.2 region in a 16p11.2del neurodevelopmental disorders cohort and generated human induced pluripotent stem cells for two 16p11.2del families with distinct residual haplotypes and variable neurodevelopmental disorder phenotypes. Using transcriptomic profiles and cellular phenotypes of the human induced pluripotent stem cell-differentiated cortex neuronal cells, we revealed MAPK3 to be a contributor to dysfunction in multiple pathways related to early neuronal development, with altered soma and electrophysiological properties in mature neuronal cells. Notably, MAPK3 expression in 16p11.2del neuronal cells varied on the basis of a 132 kb 58 single nucleotide polymorphism (SNP) residual haplotype, with the version composed entirely of minor alleles associated with reduced MAPK3 expression. Ten SNPs on the residual haplotype were mapped to enhancers of MAPK3. We functionally validated six of these SNPs by luciferase assay, implicating them in the residual haplotype-specific differences in MAPK3 expression via cis-regulation. Finally, the analysis of three different cohorts of 16p11.2del subjects showed that this minor residual haplotype is associated with neurodevelopmental disorder phenotypes in 16p11.2del carriers.


Asunto(s)
Deleción Cromosómica , Células Madre Pluripotentes Inducidas , Humanos , Haplotipos , Fenotipo , Diferenciación Celular
5.
J Appl Toxicol ; 44(8): 1246-1256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38666302

RESUMEN

Voacangine, a naturally occurring alkaloid, has been testified to display beneficial effects on a variety of human diseases, but its role in ischemic stroke is unclear. The impacts of voacangine on oxygen-glucose deprivation/reoxygenation (OGD/R)-tempted hippocampal neuronal cells are investigated. The bioinformatics analysis found that voacangine is a bioactive ingredient that may have good effects on ischemic stroke. KEGG pathways analysis found that voacangine may regulate ischemic stroke through modulating the PI3K-Akt-FoxO signaling pathway. Voacangine could mitigate OGD/R-tempted cytotoxicity in HT22 cells. Voacangine mitigated OGD/R-tempted oxidative stress in HT22 cells by diminishing reactive oxygen species level and enhancing superoxide dismutase level. Voacangine mitigated OGD/R-tempted ferroptosis in HT22 cells. Voacangine promoted activation of the PI3K-Akt-FoxO signaling in OGD/R-induced HT22 cells. Inactivation of the PI3K-Akt-FoxO signaling pathway reversed the protective effects of voacangine against OGD/R-tempted oxidative stress, cytotoxicity, and ferroptosis in HT22 cells. In conclusion, voacangine protects hippocampal neuronal cells against OGD/R-caused oxidative stress and ferroptosis by activating the PI3K-Akt-FoxO signaling.


Asunto(s)
Ferroptosis , Glucosa , Hipocampo , Neuronas , Estrés Oxidativo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Estrés Oxidativo/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Glucosa/metabolismo , Glucosa/toxicidad , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones , Oxígeno/metabolismo , Fármacos Neuroprotectores/farmacología , Línea Celular , Especies Reactivas de Oxígeno/metabolismo
6.
Mar Drugs ; 22(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38393033

RESUMEN

The MTS cell viability test was used to screen a mini library of natural and synthetic 1,4-naphthoquinone derivatives (1,4-NQs) from marine sources. This screening identified two highly effective compounds, U-443 and U-573, which showed potential in protecting Neuro-2a neuroblastoma cells from the toxic effects of rotenone in an in vitro model of neurotoxicity. The selected 1,4-NQs demonstrated the capability to reduce oxidative stress by decreasing the levels of reactive oxygen species (ROS) and nitric oxide (NO) in Neuro-2a neuroblastoma cells and RAW 264.7 macrophage cells and displayed significant antioxidant properties in mouse brain homogenate. Normal mitochondrial function was restored and the mitochondrial membrane potential was also regained by 1,4-NQs after exposure to neurotoxins. Furthermore, at low concentrations, these compounds were found to significantly reduce levels of proinflammatory cytokines TNF and IL-1ß and notably inhibit the activity of cyclooxygenase-2 (COX-2) in RAW 264.7 macrophages. The results of docking studies showed that the 1,4-NQs were bound to the active site of COX-2, analogically to a known inhibitor of this enzyme, SC-558. Both substances significantly improved the behavioral changes in female CD1 mice with rotenone-induced early stage of Parkinson's disease (PD) in vivo. It is proposed that the 1,4-NQs, U-443 and U-573, can protect neurons and microglia through their potent anti-ROS and anti-inflammatory activities.


Asunto(s)
Naftoquinonas , Neuroblastoma , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Femenino , Ratones , Animales , Rotenona/toxicidad , Ciclooxigenasa 2 , Naftoquinonas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Fármacos Neuroprotectores/farmacología
7.
J Neurochem ; 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787052

RESUMEN

Phosphorylation of tau at sites associated with Alzheimer's disease (AD) likely plays a role in the disease progression. Mitochondrial impairment, correlating with increased presence of phosphorylated tau, has been identified as a contributing factor to neurodegenerative processes in AD. However, how tau phosphorylated at specific sites impacts mitochondrial function has not been fully defined. We examined how AD-relevant phosphomimetics of tau impact selected aspects of mitochondrial biology. To mimic phosphorylation at AD-associated sites, the serine/threonine (Ser/Thr) sites in wild-type green fluorescent protein (GFP)-tagged tau (T4) were converted to glutamic acid (E) to make pseudo-phosphorylated GFP-tagged Ser-396/404 (2EC) and GFP-tagged Thr-231/Ser-235 (2EM) constructs. These constructs were expressed in immortalized mouse hippocampal neuronal cell lines, and their impact on specific mitochondrial functions and responses to stressors were measured. Phosphomimetic tau altered mitochondrial distribution. Specifically, mitochondria accumulated in the soma of cells expressing either 2EC or 2EM and neurite-like extensions in 2EC cells were shorter. Additionally, adenosine triphosphate levels were reduced in both 2EC- and 2EM-expressing cells, and reactive oxygen species (ROS) production increased in 2EC cells during oxidation of succinate when compared to T4-expressing cells. Thapsigargin reduced mitochondrial membrane potential and increased ROS production in both 2EC and 2EM cells relative to T4 cells, with no significant difference in the effects of rotenone. These results show that tau phosphorylation at specific AD-relevant epitopes negatively affects mitochondria, with the extent of dysfunction and stress response varying according to the sites of phosphorylation. Altogether, these findings show that phosphorylated tau increases mitochondrial susceptibility to stressors and extend our understanding of potential mechanisms whereby phosphorylated tau promotes mitochondria dysfunction in tauopathies, including AD.

8.
Curr Issues Mol Biol ; 45(2): 1655-1680, 2023 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-36826052

RESUMEN

Experimental models of a clinical, pathophysiological context are used to understand molecular mechanisms and develop novel therapies. Previous studies revealed better outcomes for spinal cord injury chronic ethanol-consuming patients. This study evaluated cellular and molecular changes in a model mimicking spinal cord injury (hypoxic stress induced by treatment with deferoxamine or cobalt chloride) in chronic ethanol-consuming patients (ethanol-exposed neural cultures (SK-N-SH)) in order to explain the clinical paradigm of better outcomes for spinal cord injury chronic ethanol-consuming patients. The results show that long-term ethanol exposure has a cytotoxic effect, inducing apoptosis. At 24 h after the induction of hypoxic stress (by deferoxamine or cobalt chloride treatments), reduced ROS in long-term ethanol-exposed SK-N-SH cells was observed, which might be due to an adaptation to stressful conditions. In addition, the HIF-1α protein level was increased after hypoxic treatment of long-term ethanol-exposed cells, inducing fluctuations in its target metabolic enzymes proportionally with treatment intensity. The wound healing assay demonstrated that the cells recovered after stress conditions, showing that the ethanol-exposed cells that passed the acute step had the same proliferation profile as the cells unexposed to ethanol. Deferoxamine-treated cells displayed higher proliferative activity than the control cells in the proliferation-migration assay, emphasizing the neuroprotective effect. Cells have overcome the critical point of the alcohol-induced traumatic impact and adapted to ethanol (a chronic phenomenon), sustaining the regeneration process. However, further experiments are needed to ensure recovery efficiency is more effective in chronic ethanol exposure.

9.
Small ; 19(52): e2304271, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37649209

RESUMEN

Stem-cell-based therapeutics have shown immense potential in treating various diseases that are currently incurable. In particular, partial recovery of Parkinson's disease, which occurs due to massive loss or abnormal functionality of dopaminergic (DAnergic) neurons, through the engraftment of stem-cell-derived neurons ex vivo is reported. However, precise assessment of the functionality and maturity of DAnergic neurons is still challenging for their enhanced clinical efficacy. Here, a novel conductive cell cultivation platform, a graphene oxide (GO)-incorporated metallic polymer nanopillar array (GOMPON), that can electrochemically detect dopamine (DA) exocytosis from living DAnergic neurons, is reported. In the cell-free configuration, the linear range is 0.5-100 µm, with a limit of detection of 33.4 nm. Owing to its excellent biocompatibility, a model DAnergic neuron (SH-SY5Y cell) can be cultivated and differentiated on the platform while their DA release can be quantitatively measured in a real-time and nondestructive manner. Finally, it is showed that the functionality of the DAnergic neurons derived from stem cells can be precisely assessed via electrochemical detection of their DA exocytosis. The developed GOMPON is highly promising for a wide range of applications, including real-time monitoring of stem cell differentiation into neuronal lineages, evaluating differentiation protocols, and finding practical stem cell therapies.


Asunto(s)
Grafito , Neuroblastoma , Humanos , Polímeros , Dopamina , Pirroles , Oro , Neuronas , Técnicas Electroquímicas
10.
J Synchrotron Radiat ; 30(Pt 4): 780-787, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37338043

RESUMEN

The routes by which foreign objects enter cells is well studied; however, their fate following uptake has not been explored extensively. Following exposure to synchrotron-sourced (SS) terahertz (THz) radiation, reversible membrane permeability has been demonstrated in eukaryotic cells by the uptake of nanospheres; nonetheless, cellular localization of the nanospheres remained unclear. This study utilized silica core-shell gold nanospheres (AuSi NS) of diameter 50 ± 5 nm to investigate the fate of nanospheres inside pheochromocytoma (PC 12) cells following SS THz exposure. Fluorescence microscopy was used to confirm nanosphere internalization following 10 min of SS THz exposure in the range 0.5-20 THz. Transmission electron microscopy followed by scanning transmission electron microscopy energy-dispersive spectroscopic (STEM-EDS) analysis was used to confirm the presence of AuSi NS in the cytoplasm or membrane, as single NS or in clusters (22% and 52%, respectively), with the remainder (26%) sequestered in vacuoles. Cellular uptake of NS in response to SS THz radiation could have suitable applications in a vast number of biomedical applications, regenerative medicine, vaccines, cancer therapy, gene and drug delivery.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Nanosferas , Feocromocitoma , Humanos , Radiación Terahertz , Nanosferas/química , Sincrotrones
11.
Trends Immunol ; 41(9): 794-804, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32800704

RESUMEN

An interaction network exists among cells within the brain, maintaining brain homeostasis and ensuring its functional plasticity. In addition to neurons, participating cells include astrocytes, oligodendrocytes, and microglia. Peripheral immune cells, such as monocytes and lymphocytes, have also been found to play an important role in supporting the brain in health and assisting in its repair. Here, we describe the multiple immune-specific modes of cellular dialogue among cells within the mammalian brain and their crosstalk with the periphery in both health and disease. We further suggest that interventions directed at boosting the peripheral immune response can restore the balance between the brain and the immune system and can rewire their communication to modify chronic neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Inmunoterapia , Enfermedad de Alzheimer/terapia , Animales , Astrocitos/inmunología , Encéfalo/citología , Encéfalo/inmunología , Comunicación Celular/inmunología , Humanos , Microglía/inmunología , Oligodendroglía/inmunología
12.
Cell Mol Neurobiol ; 43(3): 1385-1399, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35933637

RESUMEN

Human cytomegalovirus (HCMV) causes congenital neurological lifelong disabilities. To date, the neuropathogenesis of brain injury related to congenital HCMV (cCMV) infection is poorly understood. This study evaluates the characteristics and pathogenetic mechanisms of encephalic damage in cCMV infection. Ten HCMV-infected human fetuses at 21 weeks of gestation were examined. Specifically, tissues from different brain areas were analyzed by: (i) immunohistochemistry (IHC) to detect HCMV-infected cell distribution, (ii) hematoxylin-eosin staining to evaluate histological damage and (iii) real-time PCR to quantify tissue viral load (HCMV-DNA). The differentiation stage of HCMV-infected neural/neuronal cells was assessed by double IHC to detect simultaneously HCMV-antigens and neural/neuronal markers: nestin (a marker of neural stem/progenitor cells), doublecortin (DCX, marker of cells committed to the neuronal lineage) and neuronal nuclei (NeuN, identifying mature neurons). HCMV-positive cells and viral DNA were found in the brain of 8/10 (80%) fetuses. For these cases, brain damage was classified as mild (n = 4, 50%), moderate (n = 3, 37.5%) and severe (n = 1, 12.5%) based on presence and frequency of pathological findings (necrosis, microglial nodules, microglial activation, astrocytosis, and vascular changes). The highest median HCMV-DNA level was found in the hippocampus (212 copies/5 ng of human DNA [hDNA], range: 10-7,505) as well as the highest mean HCMV-infected cell value (2.9 cells, range: 0-23), followed by that detected in subventricular zone (1.7 cells, range: 0-19). These findings suggested a preferential viral tropism for both neural stem/progenitor cells and neuronal committed cells, residing in these regions, confirmed by the expression of DCX and nestin in 94% and 63.3% of HCMV-positive cells, respectively. NeuN was not found among HCMV-positive cells and was nearly absent in the brain with severe damage, suggesting HCMV does not infect mature neurons and immature neural/neuronal cells do not differentiate into neurons. This could lead to known structural and functional brain defects from cCMV infection.


Asunto(s)
Lesiones Encefálicas , Infecciones por Citomegalovirus , Humanos , Nestina/metabolismo , Tropismo Viral , Infecciones por Citomegalovirus/metabolismo , Infecciones por Citomegalovirus/patología , Citomegalovirus/genética , Citomegalovirus/metabolismo , Encéfalo/metabolismo
13.
J Inherit Metab Dis ; 46(1): 143-152, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220782

RESUMEN

Fabry disease (FD) is an X-linked inherited lysosomal metabolism disorder in which globotriaosylceramide (Gb3) accumulates in various organs resulting from a deficiency in alpha-galactosidase A. The clinical features of FD include progressive impairments of the renal, cardiac, and peripheral nervous systems. In addition, patients with FD often develop neuropsychiatric symptoms, such as depression and dementia, which are believed to be induced by the cellular injury of cerebrovascular and partially neuronal cells due to Gb3 accumulation. Although the analysis of autopsy brain tissue from patients with FD showed no accumulation of Gb3, abnormal deposits of Gb3 were found in the neurons of several brain areas, including the hippocampus. Therefore, in this study, we generated induced pluripotent stem cells (iPSCs) from patients with FD and differentiated them into neuronal cells to investigate pathological and biological changes in the neurons of FD. Neural stem cells (NSCs) and neurons were successfully differentiated from the iPSCs we generated; however, cellular damage and morphological changes were not found in these cells. Immunostaining revealed no Gb3 accumulation in NSCs and neurons. Transmission electron microscopy did not reveal any zebra body-like structures or inclusion bodies, which are characteristic of FD. These results indicated that neuronal cells derived from FD-iPSCs exhibited normal morphology and no Gb3 accumulation. It is likely that more in vivo environment-like cultures are needed for iPSC-derived neurons to reproduce disease-specific features.


Asunto(s)
Enfermedad de Fabry , Células Madre Pluripotentes Inducidas , Masculino , Humanos , Enfermedad de Fabry/genética , Células Madre Pluripotentes Inducidas/patología , alfa-Galactosidasa/genética , alfa-Galactosidasa/metabolismo , Fenotipo , Neuronas/metabolismo , Trihexosilceramidas/metabolismo
14.
Acta Pharmacol Sin ; 44(9): 1856-1866, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37193755

RESUMEN

Psychological stress increases the susceptibility to herpes simplex virus type 1 (HSV-1) infection. There is no effective intervention due to the unknown pathogenesis mechanisms. In this study we explored the molecular mechanisms underlying stress-induced HSV-1 susceptibility and the antiviral effect of a natural compound rosmarinic acid (RA) in vivo and in vitro. Mice were administered RA (11.7, 23.4 mg·kg-1·d-1, i.g.) or acyclovir (ACV, 206 mg·kg-1·d-1, i.g.) for 23 days. The mice were subjected to restraint stress for 7 days followed by intranasal infection with HSV-1 on D7. At the end of RA or ACV treatment, mouse plasma samples and brain tissues were collected for analysis. We showed that both RA and ACV treatment significantly decreased stress-augmented mortality and alleviated eye swelling and neurological symptoms in HSV-1-infected mice. In SH-SY5Y cells and PC12 cells exposed to the stress hormone corticosterone (CORT) plus HSV-1, RA (100 µM) significantly increased the cell viability, and inhibited CORT-induced elevation in the expression of viral proteins and genes. We demonstrated that CORT (50 µM) triggered lipoxygenase 15 (ALOX15)-mediated redox imbalance in the neuronal cells, increasing the level of 4-HNE-conjugated STING, which impaired STING translocation from the endoplasmic reticulum to Golgi; the abnormality of STING-mediated innate immunity led to HSV-1 susceptibility. We revealed that RA was an inhibitor of lipid peroxidation by directly targeting ALOX15, thus RA could rescue stress-weakened neuronal innate immune response, thereby reducing HSV-1 susceptibility in vivo and in vitro. This study illustrates the critical role of lipid peroxidation in stress-induced HSV-1 susceptibility and reveals the potential for developing RA as an effective intervention in anti-HSV-1 therapy.


Asunto(s)
Herpes Simple , Herpesvirus Humano 1 , Neuroblastoma , Humanos , Animales , Ratones , Herpesvirus Humano 1/genética , Peroxidación de Lípido , Aciclovir/farmacología , Aciclovir/uso terapéutico , Herpes Simple/tratamiento farmacológico
15.
Environ Toxicol ; 38(4): 743-753, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36527706

RESUMEN

Cadmium is a widespread environmental contaminant and its neurotoxicity has raised serious concerns. Mitochondrial dysfunction is a key event in Cd-induced nervous system disease; however, the exact molecular mechanism involved has not been fully elucidated. Increasing evidences have shown that Sirtuin 1 (SIRT1) is the key target protein impaired in Cd-induced mitochondrial dysfunction. In this study, the role of SIRT1 in Cd-induced mitochondrial dysfunction and cell death and the underlying mechanisms were evaluated in vitro using PC12 cells and primary rat cerebral cortical neurons. The results showed that Cd exposure caused cell death by inhibiting SIRT1 expression, thus inducing oxidative stress and mitochondrial dysfunction in vitro. However, inhibition of oxidative stress by the antioxidant puerarin alleviated Cd-induced mitochondrial dysfunction. Furthermore, activation of SIRT1 using the agonist Srt1720 significantly abolished Cd-induced oxidative stress and mitochondrial dysfunction and ultimately alleviated Cd-induced neuronal cell death. Collectively, our data indicate that Cd induced mitochondrial dysfunction via SIRT1 suppression-mediated oxidative stress, leading to the death of PC12 cells and primary rat cerebral cortical neurons. These findings suggest a novel mechanism for Cd-induced neurotoxicity.


Asunto(s)
Cadmio , Sirtuina 1 , Ratas , Animales , Cadmio/toxicidad , Sirtuina 1/metabolismo , Estrés Oxidativo , Neuronas/metabolismo , Mitocondrias/metabolismo
16.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36901896

RESUMEN

Mild thiamine deficiency aggravates Zn accumulation in cholinergic neurons. It leads to the augmentation of Zn toxicity by its interaction with the enzymes of energy metabolism. Within this study, we tested the effect of Zn on microglial cells cultivated in a thiamine-deficient medium, containing 0.003 mmol/L of thiamine vs. 0.009 mmol/L in a control medium. In such conditions, a subtoxic 0.10 mmol/L Zn concentration caused non-significant alterations in the survival and energy metabolism of N9 microglial cells. Both activities of the tricarboxylic acid cycle and the acetyl-CoA level were not decreased in these culture conditions. Amprolium augmented thiamine pyrophosphate deficits in N9 cells. This led to an increase in the intracellular accumulation of free Zn and partially aggravated its toxicity. There was differential sensitivity of neuronal and glial cells to thiamine-deficiency-Zn-evoked toxicity. The co-culture of neuronal SN56 with microglial N9 cells reduced the thiamine-deficiency-Zn-evoked inhibition of acetyl-CoA metabolism and restored the viability of the former. The differential sensitivity of SN56 and N9 cells to borderline thiamine deficiency combined with marginal Zn excess may result from the strong inhibition of pyruvate dehydrogenase in neuronal cells and no inhibition of this enzyme in the glial ones. Therefore, ThDP supplementation can make any brain cell more resistant to Zn excess.


Asunto(s)
Microglía , Deficiencia de Tiamina , Humanos , Microglía/metabolismo , Acetilcoenzima A/metabolismo , Deficiencia de Tiamina/metabolismo , Neuronas Colinérgicas/metabolismo , Tiamina Pirofosfato/metabolismo , Colinérgicos/metabolismo , Zinc/metabolismo
17.
Molecules ; 28(15)2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37570795

RESUMEN

This study aims to investigate the protective effects and mechanisms of pectolinarin against oxidative stress-induced cell damage in SH-SY5Y cells. Neurodegenerative diseases-such as Alzheimer's disease-are potentially associated with oxidative stress, which causes excessive production of reactive oxygen species (ROS) that damage DNA and proteins in neuronal cells. The results of this study demonstrate that pectolinarin can scavenge hydroxyl and nitric oxide radicals in a concentration-dependent manner. Moreover, pectolinarin significantly increased cell viability while reducing ROS production and LDH release in the hydrogen peroxide (H2O2)-induced control group. Additionally, Pectolinarin recovered protein expression from H2O2-altered levels back to close-to-normal SH-SY5Y cell levels for components of the oxidative stress, inflammation, and apoptosis pathways-such as nuclear factor erythroid 2-related factor 2 (Nrf2), kelch-like ECH-associated protein (Keap1), anti-heme oxygenase 1 (HO-1), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1ß (IL-1ß), B-cell lympho-ma-2 (Bcl-2) protein, and Bcl-2-associated X protein (Bax). These findings suggest that pectolinarin has the potential to be used as a plant material for functional foods to be applied in the treatment of neurodegenerative diseases, such as Alzheimer's disease, by mitigating oxidative stress-induced damage to neuronal cells.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Humanos , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Línea Celular Tumoral , Transducción de Señal , Apoptosis , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Supervivencia Celular
18.
Am J Physiol Gastrointest Liver Physiol ; 322(3): G368-G382, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35084215

RESUMEN

Enteric neuronal cells play a vital role in gut motility in humans and experimental rodent models. Patients with diabetes are more vulnerable to gastrointestinal dysfunction due to enteric neuronal degeneration. In this study, we examined the mechanistic role and regulation of nuclear factor-erythroid 2-related factor 2 (Nrf2) in hyperglycemia-induced enteric neuronal cell apoptosis in vitro by using adult mouse primary enteric neuronal crest cells (pENCs). Our data show that hyperglycemia (HG) or inhibition of Nrf2 induces apoptosis by elevating proinflammatory cytokines, reactive oxygen species (ROS) and suppresses neuronal nitric oxide synthase (nNOS-α) via PI3K/Nrf2-mediated signaling. Conversely, treating pENCs with cinnamaldehyde (CNM), a naturally occurring Nrf2 activator, prevented HG-induced apoptosis. These novel data reveal a negative feedback mechanism for GSK-3 activation. To further demonstrate that loss of Nrf2 leads to inflammation, oxidative stress, and reduces nNOS-mediated gastric function, we have used streptozotocin (STZ)-induced diabetic and Nrf2 null female mice. In vivo activation of Nrf2 with CNM (50 mg/kg, 3 days a week, ip) attenuated impaired nitrergic relaxation and delayed gastric emptying (GE) in conventional type 1 diabetic but not in Nrf2 null female mice. Supplementation of CNM normalized diabetes-induced altered gastric antrum protein expression of 1) p-AKT/p-p38MAPK/p-GSK-3ß, 2) BH4 (cofactor of nNOS) biosynthesis enzyme GCH-1, 3) nNOSα, 4) TLR4, NF-κB, and 5) inflammatory cytokines (TNF-α, IL-1ß, IL-6). We conclude that activation of Nrf2 prevents hyperglycemia-induced apoptosis in pENCs and restores nitrergic-mediated gastric motility and GE in STZ-induced diabetes female mice.NEW & NOTEWORTHY Primary neuronal cell crust (pENCs) in the intestine habitats nNOS and Nrf2, which was suppressed in diabetic gastroparesis. Activation of Nrf2 restored nNOS by suppressing inflammatory markers in pENCs cells. Inhibition of Nrf2 reveals a negative feedback mechanism for the activation of GSK-3. Activation of Nrf2 alleviates STZ-induced delayed gastric emptying and nitrergic relaxation in female mice. Activation of Nrf2 restored impaired gastric BH4 biosynthesis enzyme GCH-1, nNOSα expression thus regulating nitric oxide levels.


Asunto(s)
Diabetes Mellitus Experimental , Gastroparesia , Animales , Citocinas , Diabetes Mellitus Experimental/complicaciones , Femenino , Glucógeno Sintasa Quinasa 3 , Glucógeno Sintasa Quinasa 3 beta , Ratones , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Antro Pilórico
19.
Cell Mol Neurobiol ; 42(7): 2337-2353, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34059943

RESUMEN

The Cath.a-differentiated (CAD) cell line is a central nervous system-derived catecholaminergic cell line originating from tyrosine hydroxylase (TH)-producing neurons located around the locus coeruleus area of the mouse brain. CAD cells have been used as an in vitro model for cellular and molecular studies due to their ability to differentiate under serum-free media conditions. However, the lack of serum-derived survival factors, limits the longevity for differentiated CAD cells to be maintained in healthy conditions; thereby, limiting their use in long-term culture studies. Here, we present a novel differentiation method that utilizes dexamethasone (Dex), a synthetic glucocorticoid receptor agonist. Specifically, we discovered that the addition of 100 µM of Dex into the 1% fetal bovine serum (FBS)-supplemented media effectively induced neuronal differentiation of CAD cells, as characterized by neurite formation and elongation. Dex-differentiated CAD cells exited the cell cycle, stopped proliferating, extended the neurites, and expressed neuronal markers. These effects were dependent on the glucocorticoid receptors (GR) as they were abolished by GR knockdown. Importantly, Dex-differentiated CAD cells showed longer survival duration than serum-free differentiated CAD cells. In addition, RNA-sequencing and qPCR data demonstrate that several genes involved in proliferation, neuronal differentiation, and survival pathways were differentially expressed in the Dex-differentiated cells. This is the first study to reveal Dex as a novel differentiation methodology used to generate postmitotic neuronal CAD cells, which may be utilized as an in vitro neuronal model for cellular and molecular neurobiology research.


Asunto(s)
Sistema Nervioso Central , Neuritas , Animales , Diferenciación Celular , Dexametasona , Ratones , Neuronas , Receptores de Glucocorticoides
20.
Neurochem Res ; 47(4): 1110-1122, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35165799

RESUMEN

1-(7-Chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4- carboxamide (QTC-4-MeOBnE) is a new multi-target directed ligand (MTDL) rationally designed to have affinity with ß-secretase (BACE), Glycogen Synthase Kinase 3ß (GSK3ß) and acetylcholinesterase, which are considered promising targets on the development of disease-modifying therapies against Alzheimer's Disease (AD). Previously, QTC-4-MeOBnE treatment showed beneficial effects in preclinical AD-like models by influencing in vivo neurogenesis, oxidative and inflammatory pathways. However, the biological effect and mechanism of action exerted by QTC-4-MeOBnE in AD cellular models have not been elucidated yet. Hereby we investigate the acute effect of QTC-4-MeOBnE on neuronal cells overexpressing Amyloid Protein Precursor (APP) or human tau protein, the two main features of the AD pathophysiology. When compared to the control group, QTC-4-MeOBnE treatment prevented amyloid beta (Aß) formation through the downregulation of APP and BACE levels in APPswe-expressing cells. Furthermore, in N2a cells overexpressing human tau, QTC-4-MeOBnE reduced the levels of phosphorylated forms of tau via the modulation of the GSK3ß pathway. Taken together, our findings provide new insights into the mechanism of action exerted by QTC-4-MeOBnE in AD cellular models, and further support its potential as an interesting therapeutic strategy against AD.


Asunto(s)
Enfermedad de Alzheimer , Proteínas tau , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Humanos , Fosforilación , Quinolinas , Triazoles/uso terapéutico , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA