Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 187(16): 4272-4288.e20, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39013469

RESUMEN

Vesicle trafficking is a fundamental process that allows for the sorting and transport of specific proteins (i.e., "cargoes") to different compartments of eukaryotic cells. Cargo recognition primarily occurs through coats and the associated proteins at the donor membrane. However, it remains unclear whether cargoes can also be selected at other stages of vesicle trafficking to further enhance the fidelity of the process. The WDR11-FAM91A1 complex functions downstream of the clathrin-associated AP-1 complex to facilitate protein transport from endosomes to the TGN. Here, we report the cryo-EM structure of human WDR11-FAM91A1 complex. WDR11 directly and specifically recognizes a subset of acidic clusters, which we term super acidic clusters (SACs). WDR11 complex assembly and its binding to SAC-containing proteins are indispensable for the trafficking of SAC-containing proteins and proper neuronal development in zebrafish. Our studies thus uncover that cargo proteins could be recognized in a sequence-specific manner downstream of a protein coat.


Asunto(s)
Microscopía por Crioelectrón , Transporte de Proteínas , Pez Cebra , Humanos , Animales , Endosomas/metabolismo , Células HEK293 , Células HeLa , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/química , Unión Proteica
2.
Cell ; 174(3): 622-635.e13, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29909983

RESUMEN

Transcription factors regulate the molecular, morphological, and physiological characteristics of neurons and generate their impressive cell-type diversity. To gain insight into the general principles that govern how transcription factors regulate cell-type diversity, we used large-scale single-cell RNA sequencing to characterize the extensive cellular diversity in the Drosophila optic lobes. We sequenced 55,000 single cells and assigned them to 52 clusters. We validated and annotated many clusters using RNA sequencing of FACS-sorted single-cell types and cluster-specific genes. To identify transcription factors responsible for inducing specific terminal differentiation features, we generated a "random forest" model, and we showed that the transcription factors Apterous and Traffic-jam are required in many but not all cholinergic and glutamatergic neurons, respectively. In fact, the same terminal characters often can be regulated by different transcription factors in different cell types, arguing for extensive phenotypic convergence. Our data provide a deep understanding of the developmental and functional specification of a complex brain structure.


Asunto(s)
Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Neurogénesis/fisiología , Animales , Diferenciación Celular , Neuronas Colinérgicas/fisiología , Análisis por Conglomerados , Simulación por Computador , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Homeodominio , Proteínas con Homeodominio LIM/metabolismo , Factores de Transcripción Maf de Gran Tamaño/metabolismo , Neuroglía/fisiología , Neuronas/fisiología , Neurotransmisores/genética , Neurotransmisores/fisiología , Lóbulo Óptico de Animales no Mamíferos/fisiología , Fenotipo , Proteínas Proto-Oncogénicas/metabolismo , Análisis de Secuencia de ARN/métodos , Análisis de la Célula Individual/métodos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
3.
Annu Rev Cell Dev Biol ; 35: 501-521, 2019 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-31590586

RESUMEN

The dual leucine zipper-bearing kinase (DLK) and leucine zipper-bearing kinase (LZK) are evolutionarily conserved MAPKKKs of the mixed-lineage kinase family. Acting upstream of stress-responsive JNK and p38 MAP kinases, DLK and LZK have emerged as central players in neuronal responses to a variety of acute and traumatic injuries. Recent studies also implicate their function in astrocytes, microglia, and other nonneuronal cells, reflecting their expanding roles in the multicellular response to injury and in disease. Of particular note is the potential link of these kinases to neurodegenerative diseases and cancer. It is thus critical to understand the physiological contexts under which these kinases are activated, as well as the signal transduction mechanisms that mediate specific functional outcomes. In this review we first provide a historical overview of the biochemical and functional dissection of these kinases. We then discuss recent findings on regulating their activity to enhance cellular protection following injury and in disease, focusing on but not limited to the nervous system.


Asunto(s)
Leucina Zippers/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Neuronas/metabolismo , Estrés Fisiológico/genética , Animales , Axones/metabolismo , Humanos , Quinasas Quinasa Quinasa PAM/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/virología , Neuroglía/metabolismo , Neuronas/virología , Regeneración/genética , Regeneración/fisiología , Células Madre/metabolismo , Estrés Fisiológico/fisiología , Heridas y Lesiones/genética , Heridas y Lesiones/metabolismo
4.
Annu Rev Cell Dev Biol ; 30: 417-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25150010

RESUMEN

Precise connectivity in neuronal circuits is a prerequisite for proper brain function. The dauntingly complex environment encountered by axons and dendrites, even after navigation to their target area, prompts the question of how specificity of synaptic connections arises during development. We review developmental strategies and molecular mechanisms that are used by neurons to ensure their precise matching of pre- and postsynaptic elements. The emerging theme is that each circuit uses a combination of simple mechanisms to achieve its refined, often complex connectivity pattern. At increasing levels of resolution, from lamina choice to subcellular targeting, similar signaling concepts are reemployed to narrow the choice of potential matches. Temporal control over synapse development and synapse elimination further ensures the specificity of connections in the nervous system.


Asunto(s)
Sinapsis/fisiología , Animales , Caenorhabditis elegans/citología , Caenorhabditis elegans/fisiología , Adhesión Celular , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Ojo/metabolismo , Conos de Crecimiento/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Células Fotorreceptoras de Invertebrados/fisiología , Células Fotorreceptoras de Invertebrados/ultraestructura , Retina/citología , Transmisión Sináptica , Factores de Tiempo
5.
Development ; 150(18)2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37756604

RESUMEN

KIF5C is a kinesin-1 heavy chain that has been associated with neurodevelopmental disorders. Although the roles of kinesin-1 in axon transport are well known, little is known about how it regulates axon targeting. We report that UNC-116/KIF5C functions with the NEKL-3/NEK6/7 kinase to promote axon targeting in Caenorhabditis elegans. Loss of UNC-116 causes the axon to overshoot its target and UNC-116 gain-of-function causes premature axon termination. We find that loss of the UNC-16/JIP3 kinesin-1 cargo adaptor disrupts axon termination, but loss of kinesin-1 light chain function does not affect axon termination. Genetic analysis indicates that UNC-16 functions with the NEKL-3 kinase to promote axon termination. Consistent with this observation, imaging experiments indicate that loss of UNC-16 and UNC-116 disrupt localization of NEKL-3 in the axon. Moreover, genetic interactions suggest that NEKL-3 promotes axon termination by functioning with RPM-1, a ubiquitin ligase that regulates microtubule stability in the growth cone. These observations support a model where UNC-116 functions with UNC-16 to promote localization of NEKL-3 in the axon. NEKL-3, in turn, functions with the RPM-1 ubiquitin ligase to promote axon termination.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/genética , Cinesinas/genética , Axones/fisiología , Caenorhabditis elegans , Ligasas , Ubiquitinas , Factores de Intercambio de Guanina Nucleótido/genética
6.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38739758

RESUMEN

The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.


Asunto(s)
Biomarcadores , Encéfalo , Redes Reguladoras de Genes , Células Madre Embrionarias Humanas , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Encéfalo/metabolismo , Encéfalo/embriología , Encéfalo/citología , Biomarcadores/metabolismo , Neuronas/metabolismo , Neuronas/citología , Diferenciación Celular/genética , RNA-Seq , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula
7.
Proc Natl Acad Sci U S A ; 120(45): e2309910120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37903274

RESUMEN

Pontocerebellar hypoplasia (PCH) is a group of rare neurodevelopmental disorders with limited diagnostic and therapeutic options. Mutations in WDR11, a subunit of the FAM91A1 complex, have been found in patients with PCH-like symptoms; however, definitive evidence that the mutations are causal is still lacking. Here, we show that depletion of FAM91A1 results in developmental defects in zebrafish similar to that of TBC1D23, an established PCH gene. FAM91A1 and TBC1D23 directly interact with each other and cooperate to regulate endosome-to-Golgi trafficking of KIAA0319L, a protein known to regulate axonal growth. Crystal structure of the FAM91A1-TBC1D23 complex reveals that TBC1D23 binds to a conserved surface on FAM91A1 by assuming a Z-shaped conformation. More importantly, the interaction between FAM91A1 and TBC1D23 can be used to predict the risk of certain TBC1D23-associated mutations to PCH. Collectively, our study provides a molecular basis for the interaction between TBC1D23 and FAM91A1 and suggests that disrupted endosomal trafficking underlies multiple PCH subtypes.


Asunto(s)
Enfermedades Cerebelosas , Pez Cebra , Animales , Humanos , Enfermedades Cerebelosas/genética , Variación Genética , Aparato de Golgi , Pez Cebra/genética
8.
Stem Cells ; 42(2): 128-145, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38152966

RESUMEN

Neurogenesis begins with neural stem cells undergoing symmetric proliferative divisions to expand and then switching to asymmetric differentiative divisions to generate neurons in the developing brain. Chromatin regulation plays a critical role in this switch. Histone lysine-specific demethylase LSD1 demethylates H3K4me1/2 and H3K9me1/2 but the mechanisms of its global regulatory functions in human neuronal development remain unclear. We performed genome-wide ChIP-seq of LSD1 occupancy, RNA-seq, and Histone ChIP-seq upon LSD1 inhibition to identify its repressive role in human neural stem cells. Novel downstream effectors of LSD1 were identified, including the Notch signaling pathway genes and human-neural progenitor-enriched extracellular matrix (ECM) pathway/cell adhesion genes, which were upregulated upon LSD1 inhibition. LSD1 inhibition led to decreased neurogenesis, and overexpression of downstream effectors mimicked this effect. Histone ChIP-seq analysis revealed that active and enhancer markers H3K4me2, H3K4me1, and H3K9me1 were upregulated upon LSD1 inhibition, while the repressive H3K9me2 mark remained mostly unchanged. Our work identifies the human-neural progenitor-enriched ECM pathway/cell adhesion genes and Notch signaling pathway genes as novel downstream effectors of LSD1, regulating neuronal differentiation in human neural stem cells.


Asunto(s)
Histonas , Células-Madre Neurales , Humanos , Adhesión Celular/genética , Histona Demetilasas/genética , Histona Demetilasas/metabolismo , Histonas/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética
9.
Glia ; 72(9): 1544-1554, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38837837

RESUMEN

The nervous and the immune systems undergo a continuous cross talk, starting from early development and continuing throughout adulthood and aging. Defects in this cross talk contribute to neurodevelopmental and neurodegenerative diseases. Microglia are the resident immune cells in the brain that are primarily involved in this bidirectional communication. Among the microglial genes, trem2 is a key player, controlling the functional state of microglia and being at the forefront of many processes that require interaction between microglia and other brain components, such as neurons and oligodendrocytes. The present review focuses on the early developmental window, describing the early brain processes in which TREM2 is primarily involved, including the modulation of synapse formation and elimination, the control of neuronal bioenergetic states as well as the contribution to myelination processes and neuronal circuit formation. By causing imbalances during these early maturation phases, dysfunctional TREM2 may have a striking impact on the adult brain, making it a more sensitive target for insults occurring during adulthood and aging.


Asunto(s)
Encéfalo , Glicoproteínas de Membrana , Microglía , Enfermedades Neurodegenerativas , Receptores Inmunológicos , Receptores Inmunológicos/metabolismo , Receptores Inmunológicos/genética , Microglía/metabolismo , Humanos , Glicoproteínas de Membrana/metabolismo , Animales , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Encéfalo/metabolismo , Encéfalo/crecimiento & desarrollo
10.
J Transl Med ; 22(1): 238, 2024 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438847

RESUMEN

Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.


Asunto(s)
Enfermedades Mitocondriales , Células-Madre Neurales , Enfermedades Neurodegenerativas , Adulto , Humanos , Mitocondrias , ADN Mitocondrial/genética , Fosforilación Oxidativa , Hipoxia
11.
Mov Disord ; 39(3): 498-509, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38148610

RESUMEN

BACKGROUND: Kinase D-interacting substrate of 220 kDa (KIDINS220) is a multifunctional scaffolding protein essential for neuronal development. It has been implicated in neurological diseases with either autosomal dominant (AD) or autosomal recessive (AR) inheritance patterns. The molecular mechanisms underlying the AR/AD dual nature of KIDINS220 remain elusive, posing challenges to genetic interpretation and clinical interventions. Moreover, increased KIDINS220 exhibited neurotoxicity, but its role in neurodevelopment remains unclear. OBJECTIVE: The aim was to investigate the genotype-phenotype correlations of KIDINS220 and elucidate its pathophysiological role in neuronal development. METHODS: Whole-exome sequencing was performed in a four-generation family with cerebral palsy. CRISPR/Cas9 was used to generate KIDINS220 mutant cell lines. In utero electroporation was employed to investigate the effect of KIDINS220 variants on neurogenesis in vivo. RESULTS: We identified in KIDINS220 a pathogenic nonsense variant (c.4177C > T, p.Q1393*) that associated with AD cerebral palsy. We demonstrated that the nonsense variants located in the terminal exon of KIDINS220 are gain-of-function (GoF) variants, which enable the mRNA to escape nonsense-mediated decay and produce a truncated yet functional KIDINS220 protein. The truncated protein exhibited significant resistance to calpain and consequently accumulated within cells, resulting in the hyperactivation of Rac1 and defects in neuronal development. CONCLUSIONS: Our findings demonstrate that the location of variants within KIDINS220 plays a crucial role in determining inheritance patterns and corresponding clinical outcomes. The proposed interaction between Rac1 and KIDINS220 provides new insights into the pathogenesis of cerebral palsy, implying potential therapeutic perspectives. © 2023 International Parkinson and Movement Disorder Society.


Asunto(s)
Parálisis Cerebral , Neuronas , Humanos , Neuronas/metabolismo , Transducción de Señal , Parálisis Cerebral/genética , Mutación con Ganancia de Función , Neurogénesis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/genética
12.
Biol Cybern ; 118(1-2): 39-81, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38583095

RESUMEN

Stochastic models of synaptic plasticity must confront the corrosive influence of fluctuations in synaptic strength on patterns of synaptic connectivity. To solve this problem, we have proposed that synapses act as filters, integrating plasticity induction signals and expressing changes in synaptic strength only upon reaching filter threshold. Our earlier analytical study calculated the lifetimes of quasi-stable patterns of synaptic connectivity with synaptic filtering. We showed that the plasticity step size in a stochastic model of spike-timing-dependent plasticity (STDP) acts as a temperature-like parameter, exhibiting a critical value below which neuronal structure formation occurs. The filter threshold scales this temperature-like parameter downwards, cooling the dynamics and enhancing stability. A key step in this calculation was a resetting approximation, essentially reducing the dynamics to one-dimensional processes. Here, we revisit our earlier study to examine this resetting approximation, with the aim of understanding in detail why it works so well by comparing it, and a simpler approximation, to the system's full dynamics consisting of various embedded two-dimensional processes without resetting. Comparing the full system to the simpler approximation, to our original resetting approximation, and to a one-afferent system, we show that their equilibrium distributions of synaptic strengths and critical plasticity step sizes are all qualitatively similar, and increasingly quantitatively similar as the filter threshold increases. This increasing similarity is due to the decorrelation in changes in synaptic strength between different afferents caused by our STDP model, and the amplification of this decorrelation with larger synaptic filters.


Asunto(s)
Modelos Neurológicos , Plasticidad Neuronal , Procesos Estocásticos , Sinapsis , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Animales , Neuronas/fisiología , Humanos , Potenciales de Acción/fisiología
13.
Cell Mol Life Sci ; 80(4): 98, 2023 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-36932186

RESUMEN

The development and survival of adult-born neurons are believed to be driven by sensory signaling. Here, in vivo analyses of motility, morphology and Ca2+ signaling, as well as transcriptome analyses of adult-born juxtaglomerular cells with reduced endogenous excitability (via cell-specific overexpression of either Kv1.2 or Kir2.1 K+ channels), revealed a pronounced impairment of migration, morphogenesis, survival, and functional integration of these cells into the mouse olfactory bulb, accompanied by a reduction in cytosolic Ca2+ fluctuations, phosphorylation of CREB and pCREB-mediated gene expression. Moreover, K+ channel overexpression strongly downregulated genes involved in neuronal migration, differentiation, and morphogenesis and upregulated apoptosis-related genes, thus locking adult-born cells in an immature and vulnerable state. Surprisingly, cells deprived of sensory-driven activity developed normally. Together, the data reveal signaling pathways connecting the endogenous intermittent neuronal activity/Ca2+ fluctuations as well as enhanced Kv1.2/Kir2.1 K+ channel function to migration, maturation, and survival of adult-born neurons.


Asunto(s)
Neuronas , Bulbo Olfatorio , Ratones , Animales , Bulbo Olfatorio/metabolismo , Neuronas/metabolismo , Neurogénesis/genética , Diferenciación Celular , Movimiento Celular
14.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33443153

RESUMEN

The differentiation of cells depends on a precise control of their internal organization, which is the result of a complex dynamic interplay between the cytoskeleton, molecular motors, signaling molecules, and membranes. For example, in the developing neuron, the protein ADAP1 (ADP-ribosylation factor GTPase-activating protein [ArfGAP] with dual pleckstrin homology [PH] domains 1) has been suggested to control dendrite branching by regulating the small GTPase ARF6. Together with the motor protein KIF13B, ADAP1 is also thought to mediate delivery of the second messenger phosphatidylinositol (3,4,5)-trisphosphate (PIP3) to the axon tip, thus contributing to PIP3 polarity. However, what defines the function of ADAP1 and how its different roles are coordinated are still not clear. Here, we studied ADAP1's functions using in vitro reconstitutions. We found that KIF13B transports ADAP1 along microtubules, but that PIP3 as well as PI(3,4)P2 act as stop signals for this transport instead of being transported. We also demonstrate that these phosphoinositides activate ADAP1's enzymatic activity to catalyze GTP hydrolysis by ARF6. Together, our results support a model for the cellular function of ADAP1, where KIF13B transports ADAP1 until it encounters high PIP3/PI(3,4)P2 concentrations in the plasma membrane. Here, ADAP1 disassociates from the motor to inactivate ARF6, promoting dendrite branching.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositoles/metabolismo , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/fisiología , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Axones/metabolismo , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Fosfatos de Fosfatidilinositol/metabolismo , Transducción de Señal
15.
BMC Biol ; 21(1): 240, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907898

RESUMEN

BACKGROUND: PFTK1/Eip63E is a member of the cyclin-dependent kinases (CDKs) family and plays an important role in normal cell cycle progression. Eip63E expresses primarily in postnatal and adult nervous system in Drosophila melanogaster but its role in CNS development remains unknown. We sought to understand the function of Eip63E in the CNS by studying the fly ventral nerve cord during development. RESULTS: Our results demonstrate that Eip63E regulates axogenesis in neurons and its deficiency leads to neuronal defects. Functional interaction studies performed using the same system identify an interaction between Eip63E and the small GTPase Rho1. Furthermore, deficiency of Eip63E homolog in mice, PFTK1, in a newly generated PFTK1 knockout mice results in increased axonal outgrowth confirming that the developmental defects observed in the fly model are due to defects in axogenesis. Importantly, RhoA phosphorylation and activity are affected by PFTK1 in primary neuronal cultures. We report that GDP-bound inactive RhoA is a substrate of PFTK1 and PFTK1 phosphorylation is required for RhoA activity. CONCLUSIONS: In conclusion, our work establishes an unreported neuronal role of PFTK1 in axon development mediated by phosphorylation and activation of GDP-bound RhoA. The results presented add to our understanding of the role of Cdks in the maintenance of RhoA-mediated axon growth and its impact on CNS development and axonal regeneration.


Asunto(s)
Quinasas Ciclina-Dependientes , Drosophila melanogaster , Animales , Ratones , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuronas/metabolismo , Fosforilación , Proteína de Unión al GTP rhoA/metabolismo
16.
J Neurosci ; 42(13): 2631-2646, 2022 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-35135854

RESUMEN

Mutations in the Aminoadipate-Semialdehyde Synthase (AASS) gene encoding α-aminoadipic semialdehyde synthase lead to hyperlysinemia-I, a benign metabolic variant without clinical significance, and hyperlysinemia-II with developmental delay and intellectual disability. Although both forms of hyperlysinemia display biochemical phenotypes of questionable clinical significance, an association between neurologic disorder and a pronounced biochemical abnormality remains a challenging clinical question. Here, we report that Aass mutant male and female mice carrying the R65Q mutation in α-ketoglutarate reductase (LKR) domain have an elevated cerebral lysine level and a normal brain development, whereas the Aass mutant mice carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain exhibit elevations of both cerebral lysine and saccharopine levels and a smaller brain with defective neuronal development. Mechanistically, the accumulated saccharopine, but not lysine, leads to impaired neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). While extracellular supplementation of GPI restores defective neuronal development caused by G498E mutation in SDH of Aass. Altogether, our findings not only unravel the requirement for saccharopine degradation in neuronal development, but also provide the mechanistic insights for understanding the neurometabolic disorder of hyperlysinemia-II.SIGNIFICANCE STATEMENT The association between neurologic disorder and a pronounced biochemical abnormality in hyperlysinemia remains a challenging clinical question. Here, we report that mice carrying the R65Q mutation in lysine α-ketoglutarate reductase (LKR) domain of aminoadipate-semialdehyde synthase (AASS) have an elevated cerebral lysine levels and a normal brain development, whereas those carrying the G489E mutation in saccharopine dehydrogenase (SDH) domain of AASS exhibit an elevation of both cerebral lysine and saccharopine and a small brain with defective neuronal development. Furthermore, saccharopine impairs neuronal development by inhibiting the neurotrophic effect of glucose-6-phosphate isomerase (GPI). These findings demonstrate saccharopine degradation is essential for neuronal development.


Asunto(s)
Hiperlisinemias , Lisina , Animales , Femenino , Glucosa-6-Fosfato Isomerasa , Hiperlisinemias/genética , Hiperlisinemias/metabolismo , Lisina/análogos & derivados , Masculino , Ratones , Sacaropina Deshidrogenasas/genética , Sacaropina Deshidrogenasas/metabolismo
17.
J Biol Chem ; 298(9): 102293, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35868558

RESUMEN

MicroRNA-124a (miR-124a) is one of the most abundantly expressed microRNAs in the central nervous system and is encoded in mammals by the three genomic loci miR-124a-1/2/3; however, its in vivo roles in neuronal development and function remain ambiguous. In the present study, we investigated the effect of miR-124a loss on neuronal differentiation in mice and in embryonic stem (ES) cells. Since miR-124a-3 exhibits only background expression levels in the brain and we were unable to obtain miR-124a-1/2/3 triple knockout (TKO) mice by mating, we generated and analyzed miR-124a-1/2 double knockout (DKO) mice. We found that these DKO mice exhibit perinatal lethality. RNA-seq analysis demonstrated that the expression levels of proneural and neuronal marker genes were almost unchanged between the control and miR-124a-1/2 DKO brains; however, genes related to neuronal synaptic formation and function were enriched among downregulated genes in the miR-124a-1/2 DKO brain. In addition, we found the transcription regulator Tardbp/TDP-43, loss of which leads to defects in neuronal maturation and function, was inactivated in the miR-124a-1/2 DKO brain. Furthermore, Tardbp knockdown suppressed neurite extension in cultured neuronal cells. We also generated miR-124a-1/2/3 TKO ES cells using CRISPR-Cas9 as an alternative to TKO mice. Phase-contrast microscopic, immunocytochemical, and gene expression analyses showed that miR-124a-1/2/3 TKO ES cell lines were able to differentiate into neurons. Collectively, these results suggest that miR-124a plays a role in neuronal maturation rather than neurogenesis in vivo and advance our understanding of the functional roles of microRNAs in central nervous system development.


Asunto(s)
Proteínas de Unión al ADN , MicroARNs , Neurogénesis , Neuronas , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ratones , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo
18.
Neurobiol Dis ; 176: 105949, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36496200

RESUMEN

The serotonin 5-HT6 receptor (5-HT6R) is a promising target to improve cognitive symptoms of psychiatric diseases of neurodevelopmental origin, such as autism spectrum disorders and schizophrenia. However, its expression and localization at different stages of brain development remain largely unknown, due to the lack of specific antibodies to detect endogenous 5-HT6R. Here, we used transgenic mice expressing a GFP-tagged 5-HT6R under the control of its endogenous promoter (Knock-in) as well as embryonic stem cells expressing the GFP-tagged receptor to extensively characterize its expression at cellular and subcellular levels during development. We show that the receptor is already expressed at E13.5 in the cortex, the striatum, the ventricular zone, and to a lesser extent the subventricular zone. In adulthood, it is preferentially found in projection neurons of the hippocampus and cerebral cortex, in striatal medium-sized spiny neurons, as well as in a large proportion of astrocytes, while it is expressed in a minor population of interneurons. Whereas the receptor is almost exclusively detected in the primary cilia of neurons at embryonic and adult stages and in differentiated stem cells, it is located in the somatodendritic compartment of neurons from some brain regions at the neonatal stage and in the soma of undifferentiated stem cells. Finally, knocking-out the receptor induces a shortening of the primary cilium, suggesting that it plays a role in its function. This study provides the first global picture of 5-HT6R expression pattern in the mouse brain at different developmental stages. It reveals dynamic changes in receptor localization in neurons at the neonatal stage, which might underlie its key role in neuronal differentiation and psychiatric disorders of neurodevelopmental origin.


Asunto(s)
Neuronas , Serotonina , Ratones , Animales , Serotonina/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos
19.
Development ; 147(15)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32675280

RESUMEN

Post-translational histone modifications regulate chromatin compaction and gene expression to control many aspects of development. Mutations in genes encoding regulators of H3K4 methylation are causally associated with neurodevelopmental disorders characterized by intellectual disability and deficits in motor functions. However, it remains unclear how H3K4 methylation influences nervous system development and contributes to the aetiology of disease. Here, we show that the catalytic activity of set-2, the Caenorhabditis elegans homologue of the H3K4 methyltransferase KMT2F/G (SETD1A/B) genes, controls embryonic transcription of neuronal genes and is required for establishing proper axon guidance, and for neuronal functions related to locomotion and learning. Moreover, we uncover a striking correlation between components of the H3K4 regulatory machinery mutated in neurodevelopmental disorders and the process of axon guidance in C. elegans Thus, our study supports an epigenetic-based model for the aetiology of neurodevelopmental disorders, based on an aberrant axon guidance process originating from deregulated H3K4 methylation.


Asunto(s)
Orientación del Axón , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Histonas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Neurogénesis , Proteínas Nucleares/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Histonas/genética , Metilación , Trastornos del Neurodesarrollo/genética , Proteínas Nucleares/genética
20.
Development ; 147(23)2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33293292

RESUMEN

Neuronal replacement therapies rely on the in vitro differentiation of specific cell types from embryonic or induced pluripotent stem cells, or on the direct reprogramming of differentiated adult cells via the expression of transcription factors or signaling molecules. The factors used to induce differentiation or reprogramming are often identified by informed guesses based on differential gene expression or known roles for these factors during development. Moreover, differentiation protocols usually result in partly differentiated cells or the production of a mix of cell types. In this Hypothesis article, we suggest that, to overcome these inefficiencies and improve neuronal differentiation protocols, we need to take into account the developmental history of the desired cell types. Specifically, we present a strategy that uses single-cell sequencing techniques combined with machine learning as a principled method to select a sequence of programming factors that are important not only in adult neurons but also during differentiation.


Asunto(s)
Diferenciación Celular/genética , Aprendizaje Automático , Neuronas/citología , Análisis de la Célula Individual/métodos , Animales , Reprogramación Celular/genética , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA