RESUMEN
TrkB (neuronal receptor tyrosine kinase-2, NTRK2) is the receptor for brain-derived neurotrophic factor (BDNF) and is a critical regulator of activity-dependent neuronal plasticity. The past few years have witnessed an increasing understanding of the structure and function of TrkB, including its transmembrane domain (TMD). TrkB interacts with membrane cholesterol, which bidirectionally regulates TrkB signaling. Additionally, TrkB has recently been recognized as a binding target of antidepressant drugs. A variety of different antidepressants, including typical and rapid-acting antidepressants, as well as psychedelic compounds, act as allosteric potentiators of BDNF signaling through TrkB. This suggests that TrkB is the common target of different antidepressant compounds. Although more research is needed, current knowledge suggests that TrkB is a promising target for further drug development.
Asunto(s)
Glicoproteínas de Membrana , Receptor trkB , Humanos , Receptor trkB/metabolismo , Receptor trkB/química , Animales , Dominios Proteicos , Transducción de Señal , Antidepresivos/uso terapéutico , Antidepresivos/farmacología , Antidepresivos/química , Antidepresivos/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/químicaRESUMEN
Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.
Asunto(s)
Síndrome de Rett , Humanos , Femenino , Ratones , Animales , Síndrome de Rett/terapia , Factor de Crecimiento Nervioso/metabolismo , Distribución Tisular , Proteína 2 de Unión a Metil-CpG/genética , Encéfalo/metabolismo , Neuronas/metabolismo , Modelos Animales de EnfermedadRESUMEN
Maintaining functional adipose innervation is critical for metabolic health. We found that subcutaneous white adipose tissue (scWAT) undergoes peripheral neuropathy (PN) with obesity, diabetes, and aging (reduced small-fiber innervation and nerve/synaptic/growth-cone/vesicle markers, altered nerve activity). Unlike with nerve injuries, peripheral nerves do not regenerate with PN, and therefore new therapies are needed for treatment of this condition affecting 20-30 million Americans. Here, we validated a gene therapy approach using an adipocyte-tropic adeno-associated virus (AAV; serotype Rec2) to deliver neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]) directly to scWAT to improve tissue-specific PN as a proof-of-concept approach. AAVRec2-BDNF intra-adipose delivery improved tissue innervation in obese/diabetic mice with PN, but after longer periods of dietary obesity there was reduced efficacy, revealing a key time window for therapies. AAVRec2-NGF also increased scWAT innervation in obese mice and was more effective than BDNF, likely because Rec2 targeted adipocytes, the tissue's endogenous NGF source. AAVRec2-NGF also worked well even after 25 weeks of dietary obesity, unlike BDNF, which likely needs a vector that targets its physiological cellular source (stromal vascular fraction cells). Given the differing effects of AAVs carrying NGF versus BDNF, a combined therapy may be ideal for PN.
Asunto(s)
Adipocitos , Factor Neurotrófico Derivado del Encéfalo , Dependovirus , Terapia Genética , Vectores Genéticos , Obesidad , Grasa Subcutánea , Animales , Dependovirus/genética , Obesidad/terapia , Obesidad/metabolismo , Ratones , Terapia Genética/métodos , Adipocitos/metabolismo , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Grasa Subcutánea/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Modelos Animales de Enfermedad , Factor de Crecimiento Nervioso/metabolismo , Factor de Crecimiento Nervioso/genética , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/genética , Técnicas de Transferencia de Gen , Humanos , Masculino , Enfermedades del Sistema Nervioso Periférico/terapia , Enfermedades del Sistema Nervioso Periférico/etiología , Enfermedades del Sistema Nervioso Periférico/metabolismo , Enfermedades del Sistema Nervioso Periférico/genética , Transducción GenéticaRESUMEN
VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.
Asunto(s)
Movimientos Oculares , Neuronas Motoras , Terminales Presinápticos , Factor A de Crecimiento Endotelial Vascular , Animales , Anticuerpos Neutralizantes , Axotomía , Gatos , Movimientos Oculares/efectos de los fármacos , Movimientos Oculares/fisiología , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Músculos Oculomotores/efectos de los fármacos , Músculos Oculomotores/fisiología , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/fisiología , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Factor A de Crecimiento Endotelial Vascular/farmacología , Factor A de Crecimiento Endotelial Vascular/fisiologíaRESUMEN
Charcot-Marie-Tooth disease (CMT) is a genetic peripheral neuropathy caused by mutations in many functionally diverse genes. The aminoacyl-tRNA synthetase (ARS) enzymes, which transfer amino acids to partner tRNAs for protein synthesis, represent the largest protein family genetically linked to CMT aetiology, suggesting pathomechanistic commonalities. Dominant intermediate CMT type C (DI-CMTC) is caused by YARS1 mutations driving a toxic gain-of-function in the encoded tyrosyl-tRNA synthetase (TyrRS), which is mediated by exposure of consensus neomorphic surfaces through conformational changes of the mutant protein. In this study, we first showed that human DI-CMTC-causing TyrRSE196K mis-interacts with the extracellular domain of the BDNF receptor TrkB, an aberrant association we have previously characterised for several mutant glycyl-tRNA synthetases linked to CMT type 2D (CMT2D). We then performed temporal neuromuscular assessments of YarsE196K mice modelling DI-CMT. We determined that YarsE196K homozygotes display a selective, age-dependent impairment in in vivo axonal transport of neurotrophin-containing signalling endosomes, phenocopying CMT2D mice. This impairment is replicated by injection of recombinant TyrRSE196K, but not TyrRSWT, into muscles of wild-type mice. Augmenting BDNF in DI-CMTC muscles, through injection of recombinant protein or muscle-specific gene therapy, resulted in complete axonal transport correction. Therefore, this work identifies a non-cell autonomous pathomechanism common to ARS-related neuropathies, and highlights the potential of boosting BDNF levels in muscles as a therapeutic strategy.
Asunto(s)
Transporte Axonal , Factor Neurotrófico Derivado del Encéfalo , Enfermedad de Charcot-Marie-Tooth , Modelos Animales de Enfermedad , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/genética , Ratones , Tirosina-ARNt Ligasa/genética , Tirosina-ARNt Ligasa/metabolismo , Humanos , Ratones Transgénicos , Músculo Esquelético/metabolismo , Receptor trkB/metabolismo , Receptor trkB/genética , MutaciónRESUMEN
With an increasing understanding of the mechanisms of fracture healing, it has been found that nerve injury plays a crucial role in the process, but the specific mechanism is yet to be completely revealed. To address this issue and provide novel insights for fracture treatment, we compiled this review. This review aims to study the impact of nerve injury on fracture healing, exploring the role of neurotrophic factors in the healing process. We first revisited the effects of the central nervous system (CNS) and the peripheral nervous system (PNS) on the skeletal system, and further explained the phenomenon of significantly accelerated fracture healing under nerve injury conditions. Then, from the perspective of neurotrophic factors, we delved into the physiological functions and mechanisms of neurotrophic factors, such as nerve growth factor (NGF), Neuropeptides (NPs), and Brain-derived neurotrophic factor (BDNF), in bone metabolism. These effects include direct actions on bone cells, improvement of local blood supply, regulation of bone growth factors, control of cellular signaling pathways, promotion of callus formation and bone regeneration, and synergistic or antagonistic effects with other endocrine factors, such as Sema3A and Transforming Growth Factor ß (TGF-ß). Finally, we discussed the treatments of fractures with nerve injuries and the future research directions in this review, suggesting that the relationship between nerve injury and fracture healing, as well as the role of nerve injury in other skeletal diseases.
Asunto(s)
Fracturas Óseas , Neuropéptidos , Enfermedades del Sistema Nervioso Periférico , Humanos , Curación de Fractura/fisiología , Regeneración Ósea/fisiologíaRESUMEN
Pain management following acute injury or post-operative procedures is highly necessary for proper recovery and quality of life. Opioids and non-steroidal anti-inflammatory drugs (NSAIDS) have been used for this purpose, but opioids cause addiction and withdrawal symptoms whereas NSAIDS have several systemic toxicities. Derivatives of the naturally occurring iboga alkaloids have previously shown promising behavior in anti-addiction of morphine by virtue of their interaction with opioid receptors. On this frontier, four benzofuran analogs of the iboga family have been synthesized and their analgesic effects have been studied in formalin induced acute pain model in male Swiss albino mice at 30â mg/kg of body weight dose administered intraperitoneally. The antioxidant, anti-inflammatory and neuro-modulatory effects of the analogs were analyzed. Reversal of tail flick latency, restricted locomotion and anxiogenic behavior were observed in iboga alcohol, primary amide and secondary amide. Local neuroinflammatory mediators' substance P, calcitonin gene related peptide, cyclooxygenase-2 and p65 were significantly decreased whereas the depletion of brain derived neurotrophic factor and glia derived neurotrophic factor was overturned on iboga analog treatment. Behavioral patterns after oral administration of the best analog were also analyzed. Taken together, these results show that the iboga family of alkaloid has huge potential in pain management.
Asunto(s)
Benzofuranos , Modelos Animales de Enfermedad , Inflamación , Nocicepción , Animales , Ratones , Masculino , Benzofuranos/farmacología , Benzofuranos/química , Benzofuranos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Nocicepción/efectos de los fármacos , Dolor Agudo/tratamiento farmacológico , Dolor Agudo/metabolismo , Analgésicos/farmacología , Analgésicos/química , Analgésicos/uso terapéuticoRESUMEN
ATP has recently been reconsidered as a molecule with functional properties which go beyond its recognized role of the energetic driver of the cell. ATP has been described as an allosteric modulator as well as a biological hydrotrope with anti-aggregation properties in the crowded cellular environment. The role of ATP as a modulator of the homeostasis of the neurotrophins (NTs), a growth factor protein family whose most known member is the nerve growth factor (NGF), has been investigated. The modulation of NTs by small endogenous ligands is still a scarcely described area, with few papers reporting on the topic, and very few reports on the molecular determinants of these interactions. However, a detailed atomistic description of the NTs interaction landscape is of urgent need, aiming at the identification of novel molecules as potential therapeutics and considering the wide range of potential pharmacological applications for NGF and its family members. This mini-review will focus on the unique cartography casting the interactions of the endogenous ligand ATP, in the interaction with NGF as well as with its precursor proNGF. These interactions revealed interesting features of the ATP binding and distinct differences in the binding mode between the highly structured mature NGF and its precursor, proNGF, which is characterized by an intrinsically unstructured domain. The overview on the recent available data will be presented, together with the future perspectives on the field.
Asunto(s)
Adenosina Trifosfato , Factor de Crecimiento Nervioso , Unión Proteica , Factor de Crecimiento Nervioso/metabolismo , Adenosina Trifosfato/metabolismo , Humanos , Animales , Precursores de Proteínas/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Factores de Crecimiento Nervioso/química , Ligandos , Sitios de UniónRESUMEN
Heterotopic ossification (HO) is a pathological process characterized by the aberrant formation of bone in muscles and soft tissues. It is commonly triggered by traumatic brain injury, spinal cord injury, and burns. Despite a wide range of evidence underscoring the significance of neurogenic signals in proper bone remodeling, a clear understanding of HO induced by nerve injury remains rudimentary. Recent studies suggest that injury to the nervous system can activate various signaling pathways, such as TGF-ß, leading to neurogenic HO through the release of neurotrophins. These pathophysiological changes lay a robust groundwork for the prevention and treatment of HO. In this review, we collected evidence to elucidate the mechanisms underlying the pathogenesis of HO related to nerve injury, aiming to enhance our understanding of how neurological repair processes can culminate in HO.
Asunto(s)
Osificación Heterotópica , Osificación Heterotópica/metabolismo , Humanos , Animales , Neurotransmisores/metabolismo , Transducción de Señal/fisiologíaRESUMEN
INTRODUCTION: Cancer stem cells (CSCs) shape the tumor microenvironment via neuroendocrine signaling and orchestrate drug resistance and metastasis. Cytokine antibody array demonstrated the upregulation of neurotrophin-3 (NT-3) in lung CSCs. This study aims to dissect the role of NT-3 in lung CSCs during tumor innervation. METHODS: Western blotting, quantitative reverse transcription-PCR, and flow cytometry were used to determine the expression of the NT-3 axis in lung CSCs. NT-3-knockdown and NT-3-overexpressed cells were derived lung CSCs, followed by examining the stemness gene expression, tumorsphere formation, transwell migration and invasion, drug resistance, soft agar colony formation, and in vivo tumorigenicity. Human lung cancer tissue microarray and bioinformatic databases were used to investigate the clinical relevance of NT-3 in lung cancer. RESULTS: NT-3 and its receptor tropomyosin receptor kinase C (TrkC) were augmented in lung tumorspheres. NT-3 silencing (shNT-3) suppressed the migration and anchorage-independent growth of lung cancer cells. Further, shNT-3 abolished the sphere-forming capability, chemo-drug resistance, invasion, and in vivo tumorigenicity of lung tumorspheres with a decreased expression of CSC markers. Conversely, NT-3 overexpression promoted migration and anchorage-independent growth and fueled tumorsphere formation by upregulating the expression of CSC markers. Lung cancer tissue microarray analysis revealed that NT-3 increased in patients with advanced-stage, lymphatic metastasis and positively correlated with Sox2 expression. Bioinformatic databases confirmed a co-expression of NT-3/TrkC-axis and demonstrated that NT-3, NT-3/TrkC, NT-3/Sox2, and NT-3/CD133 worsen the survival of lung cancer patients. CONCLUSION: NT-3 conferred the stemness features in lung cancer during tumor innervation, which suggests that NT-3-targeting is feasible in eradicating lung CSCs.
Asunto(s)
Neoplasias Pulmonares , Células Madre Neoplásicas , Neurotrofina 3 , Humanos , Neurotrofina 3/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Animales , Línea Celular Tumoral , Ratones , Receptor trkC/metabolismo , Receptor trkC/genética , Movimiento Celular/fisiología , Regulación Neoplásica de la Expresión GénicaRESUMEN
The pancreas is a heterocrine gland that has both exocrine and endocrine parts. Most pancreatic cancer begins in the cells that line the ducts of the pancreas and is called pancreatic ductal adenocarcinoma (PDAC). PDAC is the most encountered pancreatic cancer type. One of the most important characteristic features of PDAC is neuropathy which is primarily due to perineural invasion (PNI). PNI develops tumor microenvironment which includes overexpression of fibroblasts cells, macrophages, as well as angiogenesis which can be responsible for neuropathy pain. In tumor microenvironment inactive fibroblasts are converted into an active form that is cancer-associated fibroblasts (CAFs). Neurotrophins they also increase the level of Substance P, calcitonin gene-related peptide which is also involved in pain. Matrix metalloproteases are the zinc-associated proteases enzymes which activates proinflammatory interleukin-1ß into its activated form and are responsible for release and activation of Substance P which is responsible for neuropathic pain by transmitting pain signal via dorsal root ganglion. All the molecules and their role in being responsible for neuropathic pain are described below.
Asunto(s)
Neuralgia , Neoplasias Pancreáticas , Humanos , Sustancia P , Neuralgia/etiología , Páncreas , Neoplasias Pancreáticas/complicaciones , Fibroblastos , Microambiente TumoralRESUMEN
BACKGROUND: Acute pancreatitis is an inflammation of the pancreatic glandular parenchyma that causes injury with or without the destruction of pancreatic acini. Clinical and experimental evidence suggest that certain systemic proinflammatory mediators may be responsible for initiating the fundamental mechanisms involved in microglial reactivity. Here, we investigated the possible repercussions of acute pancreatitis (AP) on the production of inflammatory mediators in the brain parenchyma focusing on microglial activation in the hippocampus. METHODS: The acute pancreatic injury in rats was induced by a pancreas ligation surgical procedure (PLSP) on the splenic lobe, which corresponds to approximately 10% of total mass of the pancreas. Blood samples were collected via intracardiac puncture for the measurement of serum amylase. After euthanasia, frozen or paraffin-embedded brains and pancreas were analyzed using qRT-PCR or immunohistochemistry, respectively. RESULTS: Immunohistochemistry assays showed a large number of Iba1 and PU.1-positive cells in the CA1, CA3, and dentate gyrus (DG) regions of the hippocampus of the PLSP group. TNF-α mRNA expression was significantly higher in the brain from PLSP group. NLRP3 inflammasome expression was found to be significantly increased in the pancreas and brain of rats of the PLSP group. High levels of BNDF mRNA were found in the rat brain of PLSP group. In contrast, NGF mRNA levels were significantly higher in the control group versus PLSP group. CONCLUSION: Our findings suggest that AP has the potential to induce morphological changes in microglia consistent with an activated phenotype.
Asunto(s)
Pancreatitis , Ratas , Animales , Pancreatitis/metabolismo , Microglía/metabolismo , Enfermedad Aguda , Hipocampo/metabolismo , Páncreas/metabolismo , ARN Mensajero/metabolismoRESUMEN
Orofacial nerve injuries may result in temporary or long-term loss of sensory function and decreased quality of life in patients. B vitamins are required for DNA synthesis and the repair and maintenance of phospholipids. In particular, vitamins B1, B6, and B12 are essential for neuronal function. Deficiency in vitamin B complex (VBC) has been linked to increased oxidative stress, inflammation and demyelination. Photobiomodulation (PBM) has antioxidant activity and is neuroprotective. In addition, a growing literature attests to the positive effects of PBM on nerve repair. To assess the effect of PBM and VBC on regenerative process we evaluated the expression of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), myelin basic protein (MBP), laminin and neurofilaments (NFs) using Western blotting to identify regenerative pattern after chronic constriction injury of the infraorbital nerve (CCI IoN) treated by PBM, VBC or its combination. After CCI IoN, the rats were divided into six groups naive, sham, injured (CCI IoN), treated with photobiomodulation (904 nm, 6.23 J/cm2, CCI IoN + PBM), treated with VBC (containing B1, B6 and B12) 5 times, CCI IoN + VBC) and treated with PBM and VBC (CCI IoN + VBC + PBM). The treatments could revert low expression of BDNF, MBP and laminin. Also reverted the higher expression of neurofilaments and enhanced expression of NGF. PBM and VBC could accelerate injured infraorbital nerve repair in rats through reducing the expression of neurofilaments, increasing the expression of BDNF, laminin and MBP and overexpressing NGF. These data support the notion that the use of PBM and VBC may help in the treatment of nerve injuries. This finding has potential clinical applications.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Modelos Animales de Enfermedad , Terapia por Luz de Baja Intensidad , Factor de Crecimiento Nervioso , Regeneración Nerviosa , Complejo Vitamínico B , Animales , Ratas , Regeneración Nerviosa/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Masculino , Laminina/metabolismo , Traumatismos del Nervio Facial/radioterapia , Traumatismos del Nervio Facial/terapia , Ratas Wistar , Proteína Básica de Mielina/metabolismoRESUMEN
OBJECTIVE: To investigate the effects of combined acupuncture anesthesia and ropivacaine on postoperative analgesia and neuro-related factors in patients undergoing chest surgery. METHODS: The analgesic drug dosage, postoperative PCIA pressing times, VAS scores at rest and during activity at 6 h (T1), 12 h (T2), 18 h (T3), and 24 h (T4) postoperatively. RESULTS: The analgesic drug dosage and postoperative PCIA pressing times were lower in the observation group than in the control group (p < 0.05). The VAS scores at T1-T4 postoperatively were lower in the observation group than in the control group (p < 0.05). The SAS scores at T1-T4 postoperatively were lower in the observation group than in the control group (p < 0.05). The levels of IL-6 and IL-10 on postoperative day 1 were higher than those on preoperative day 1 in both groups, with a smaller change in the observation group (p < 0.05). The levels of S100ß protein on postoperative day 1 were higher than those on preoperative day 1 in both groups, while the BDNF levels were lower, with a smaller change in the observation group (p < 0.05). There was no significant difference in the incidence of adverse reactions between the control group (11.36%) and the observation group (15.56%) (p > 0.05). CONCLUSION: Combined acupuncture anesthesia and ropivacaine can effectively improve postoperative analgesia and agitation in patients undergoing chest surgery, reduce the dosage of analgesic drugs, regulate the levels of inflammatory factors and neurotrophic factors in patients, and do not increase the risk of adverse reactions related to patients.
RESUMEN
Spinal cord injury (SCI) is a catastrophic condition that disrupts neurons within the spinal cord, leading to severe motor and sensory deficits. While current treatments can alleviate pain, they do not promote neural regeneration or functional recovery. Three-dimensional (3D) bioprinting offers promising solutions for SCI repair by enabling the creation of complex neural tissue constructs. This review provides a comprehensive overview of 3D bioprinting techniques, bioinks, and stem cell applications in SCI repair. Additionally, it highlights recent advancements in 3D bioprinted scaffolds, including the integration of conductive materials, the incorporation of bioactive molecules like neurotrophic factors, drugs, and exosomes, and the design of innovative structures such as multi-channel and axial scaffolds. These innovative strategies in 3D bioprinting can offer a comprehensive approach to optimizing the spinal cord microenvironment, advancing SCI repair. This review highlights a comprehensive understanding of the current state of 3D bioprinting in SCI repair, offering insights into future directions in the field of regenerative medicine.
Asunto(s)
Bioimpresión , Impresión Tridimensional , Traumatismos de la Médula Espinal , Ingeniería de Tejidos , Andamios del Tejido , Traumatismos de la Médula Espinal/terapia , Humanos , Bioimpresión/métodos , Andamios del Tejido/química , Animales , Ingeniería de Tejidos/métodos , Medicina Regenerativa/métodos , Regeneración NerviosaRESUMEN
There is substantial evidence supporting the neuroprotective effects of the MIND diet in neurodegenerative diseases like Parkinson's and Alzheimer's. Our aim was to evaluate the impact of a nutritional intervention (NI) with this diet on multiple sclerosis (MS) patients. The study was conducted in two stages. In the first stage, two groups were included: MS patients before the NI (group A) and healthy control subjects (group B). In this stage, groups (A) and (B) were compared (case-control study). In the second stage, group (A) was assessed after the NI, with comparisons made between baseline and final measurements (before-and-after study). In the case-control stage (baseline evaluation), we found significant differences in fatigue scores (p < 0.001), adherence to the MIND diet (p < 0.001), the serum levels of brain-derived neurotrophic factor (BDNF) (p < 0.001), and higher oxidative status in the MS group, with lower levels of reduced glutathione (p < 0.001), reduced/oxidised glutathione ratio (p < 0.001), and elevated levels of lipoperoxidation (p < 0.002) and 8-hydroxy-2'-deoxyguanosine (p < 0.025). The before-and-after intervention stage showed improvements in fatigue scores (p < 0.001) and physical quality-of-life scores (MSQOL-54) (p < 0.022), along with decreases in the serum levels of glial-derived neurotrophic factor (GDNF) (p < 0.041), lipoperoxidation (p < 0.046), and 8-hydroxy-2'-deoxyguanosine (p < 0.05). Consumption of the MIND diet is linked to clinical and biochemical improvement in MS patients.
Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/dietoterapia , Esclerosis Múltiple/sangre , Femenino , Masculino , Adulto , Factor Neurotrófico Derivado del Encéfalo/sangre , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Estudios de Casos y Controles , Persona de Mediana Edad , Estrés Oxidativo , Glutatión/sangreRESUMEN
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Asunto(s)
Melanoma , Melatonina , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/genética , Citoplasma , Factores de Crecimiento NerviosoRESUMEN
Human milk comprehensively meets the nutritional needs of a child, providing not only structural and energy components but also various bioactive factors. Among these, neurotrophic factors and hormones involved in metabolic processes deserve special attention. Studies using enzyme-linked immunosorbent assays compared the content of neurotrophic factors-CNTF, NT-3, and NGF-and hormones, leptin and insulin, in two groups of breast milk samples: early lactation (1-3 months) and extended lactation (>6 months, up to 12 months). The results indicated changes in leptin and insulin levels as the lactation period extended. NGF, leptin, and insulin were present in milk samples from both study groups, with leptin and insulin levels being higher in the early lactation group. CNTF and NT-3 were not detected in any of the samples from either study group. The analyses confirmed that human milk from women who breastfeed for extended periods remains a source of biologically active components and macronutrients that support a child's development and health.
Asunto(s)
Insulina , Lactancia , Leptina , Leche Humana , Humanos , Leche Humana/química , Lactancia/metabolismo , Leptina/metabolismo , Leptina/análisis , Femenino , Insulina/metabolismo , Factores de Crecimiento Nervioso/análisis , Factores de Crecimiento Nervioso/metabolismo , Adulto , Lactancia MaternaRESUMEN
Background and Objectives: Diabetic peripheral neuropathy (DPN) affects approximately half of patients with diabetes mellitus (DM), contributing to falls and fractures. Oxidative stress, which is linked to DM-induced hyperglycemia, has been implicated in the onset of DPN. Although exercise is recommended for patients with DM, its effect on DPN remains unclear. Therefore, this study aimed to investigate the effect of exercise on DPN and the mechanisms involved. Material and Methods: Thirty male Wistar rats were divided into control, streptozotocin (STZ)-induced diabetic (DM), and STZ-induced diabetic/exercise (DM + Ex) groups. Diabetes was induced using STZ injection. Rats in the DM + Ex groups underwent six weeks of treadmill exercise. Sciatic nerve parameters, which included motor nerve conduction velocity (MNCV), antioxidant enzymes (catalase, glutathione peroxidase [GPx], and superoxide dismutase [SOD]), oxidative stress markers (malondialdehyde [MDA] and 4-hydroxy-2-nonenal [4HNE]), and neurotrophic factors (brain-derived neurotrophic factor [BDNF] and nerve growth factor [NGF]), were examined. Results: Exercise alleviated DM-induced decreases in MNCV in rats. Although exercise did not significantly affect antioxidant enzyme activity, 4HNE levels increased significantly, indicating increased oxidative stress. Additionally, exercise did not significantly affect DM-induced increases in NGF and BDNF levels in rats. Conclusions: Exercise may prevent DPN in rats with DM, possibly through nonantioxidant mechanisms.
Asunto(s)
Antioxidantes , Diabetes Mellitus Experimental , Humanos , Ratas , Masculino , Animales , Antioxidantes/farmacología , Estreptozocina , Factor Neurotrófico Derivado del Encéfalo , Ratas Wistar , Diabetes Mellitus Experimental/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Estrés Oxidativo , Nervio Ciático/metabolismo , Glucemia/metabolismoRESUMEN
The review considers the use of exogenous neurotrophic factors in the treatment of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and others. This group of diseases is associated with the death of neurons and dysfunction of the nervous tissue. Currently, there is no effective therapy for neurodegenerative diseases, and their treatment remains a serious problem of modern medicine. A promising strategy is the use of exogenous neurotrophic factors. Targeted delivery of these factors to the nervous tissue can improve survival of neurons during the development of neurodegenerative processes and ensure neuroplasticity. There are methods of direct injection of neurotrophic factors into the nervous tissue, delivery using viral vectors, as well as the use of gene cell products. The effectiveness of these approaches has been studied in numerous experimental works and in a number of clinical trials. Further research in this area could provide the basis for the creation of an alternative treatment for neurodegenerative diseases.