Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Genes Dev ; 34(5-6): 395-397, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122967

RESUMEN

To induce cell type-specific forms of gene regulation, pioneer factors open tightly packed, inaccessible chromatin sites, enabling the molecular machinery to act on functionally significant information encoded in DNA. While previous studies of pioneer factors have revealed their functions in transcriptional regulation, pioneer factors that open chromatin for other physiological events remain undetermined. In this issue of Genes & Development, Spruce and colleagues (pp. 398-412) report the functional significance of a "pioneer complex" in mouse meiotic recombination. This complex, comprised of the zinc finger DNA-binding protein PRDM9 and the SNF2 family chromatin remodeler HELLS, exposes nucleosomal DNA to designate the sites of DNA double-strand breaks that initiate meiotic recombination. Both HELLS and PRDM9 are required for the determination of these recombination hot spots. Through the identification of a pioneer complex for meiotic recombination, this study broadens the conceptual scope of pioneer factors, indicating their functional significance in biological processes beyond transcriptional regulation.


Asunto(s)
Meiosis/fisiología , Recombinación Genética/fisiología , Animales , ADN Helicasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Ratones , Complejos Multiproteicos/metabolismo , Nucleosomas/metabolismo
2.
Genes Dev ; 34(5-6): 398-412, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32001511

RESUMEN

Chromatin barriers prevent spurious interactions between regulatory elements and DNA-binding proteins. One such barrier, whose mechanism for overcoming is poorly understood, is access to recombination hot spots during meiosis. Here we show that the chromatin remodeler HELLS and DNA-binding protein PRDM9 function together to open chromatin at hot spots and provide access for the DNA double-strand break (DSB) machinery. Recombination hot spots are decorated by a unique combination of histone modifications not found at other regulatory elements. HELLS is recruited to hot spots by PRDM9 and is necessary for both histone modifications and DNA accessibility at hot spots. In male mice lacking HELLS, DSBs are retargeted to other sites of open chromatin, leading to germ cell death and sterility. Together, these data provide a model for hot spot activation in which HELLS and PRDM9 form a pioneer complex to create a unique epigenomic environment of open chromatin, permitting correct placement and repair of DSBs.


Asunto(s)
ADN Helicasas/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Recombinación Homóloga/genética , Meiosis/fisiología , Animales , Muerte Celular/genética , Roturas del ADN de Doble Cadena , Células Germinativas/patología , Código de Histonas/genética , Infertilidad Masculina/genética , Infertilidad Masculina/fisiopatología , Sustancias Macromoleculares/metabolismo , Masculino , Meiosis/genética , Ratones
3.
Mol Cell ; 73(2): 238-249.e3, 2019 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-30554944

RESUMEN

The classic view of nucleosome organization at active promoters is that two well-positioned nucleosomes flank a nucleosome-depleted region (NDR). However, this view has been recently disputed by contradictory reports as to whether wider (≳150 bp) NDRs instead contain unstable, micrococcal nuclease-sensitive ("fragile") nucleosomal particles. To determine the composition of fragile particles, we introduce CUT&RUN.ChIP, in which targeted nuclease cleavage and release is followed by chromatin immunoprecipitation. We find that fragile particles represent the occupancy of the RSC (remodeling the structure of chromatin) nucleosome remodeling complex and RSC-bound, partially unwrapped nucleosomal intermediates. We also find that general regulatory factors (GRFs) bind to partially unwrapped nucleosomes at these promoters. We propose that RSC binding and its action cause nucleosomes to unravel, facilitate subsequent binding of GRFs, and constitute a dynamic cycle of nucleosome deposition and clearance at the subset of wide Pol II promoter NDRs.


Asunto(s)
Ensamble y Desensamble de Cromatina , Inmunoprecipitación de Cromatina/métodos , ADN de Hongos/metabolismo , Proteínas de Unión al ADN/metabolismo , Nucleasa Microcócica/metabolismo , Nucleosomas/enzimología , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Sitios de Unión , ADN de Hongos/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica , Conformación de Ácido Nucleico , Nucleosomas/genética , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
4.
Trends Genet ; 32(6): 322-333, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27066865

RESUMEN

A new paradigm has emerged in recent years characterizing transcription initiation as a bidirectional process encompassing a larger proportion of the genome than previously thought. Past concepts of coding genes thinly scattered among a vast background of transcriptionally inert noncoding DNA have been abandoned. A richer picture has taken shape, integrating transcription of coding genes, enhancer RNAs (eRNAs), and various other noncoding transcriptional events. In this review we give an overview of recent studies detailing the mechanisms of RNA polymerase II (RNA Pol II)-based transcriptional initiation and discuss the ways in which transcriptional direction is established as well as its functional implications.


Asunto(s)
Elementos de Facilitación Genéticos , ARN Polimerasa II/genética , ARN/genética , Transcripción Genética , Cromatina/genética , Humanos , Regiones Promotoras Genéticas , Activación Transcripcional
5.
Biochem Biophys Res Commun ; 476(2): 57-62, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27208777

RESUMEN

Nucleosome-depleted regions (NDRs) (also called nucleosome-free regions or NFRs) are often found in the promoter regions of many yeast genes, and are formed by multiple mechanisms, including the binding of activators and enhancers, the actions of chromatin remodeling complexes, and the specific DNA sequences themselves. However, it remains unclear whether NDR formation per se is essential for transcriptional activation. Here, we examined the relationship between nucleosome organization and gene expression using a defined yeast reporter system, consisting of the CYC1 minimal core promoter and the lacZ gene. We introduced simple repeated sequences that should be either incorporated in nucleosomes or excluded from nucleosomes in the site upstream of the TATA boxes. The (CTG)12, (GAA)12 and (TGTAGG)6 inserts were incorporated into a positioned nucleosome in the core promoter region, and did not affect the reporter gene expression. In contrast, the insertion of (CGG)12, (TTAGGG)6, (A)34 or (CG)8 induced lacZ expression by 10-20 fold. Nucleosome mapping analyses revealed that the inserts that induced the reporter gene expression prevented nucleosome formation, and created an NDR upstream of the TATA boxes. Thus, our results demonstrated that NDR formation dictated by DNA sequences is sufficient for transcriptional activation from the core promoter in vivo.


Asunto(s)
ADN de Hongos/genética , Regulación Fúngica de la Expresión Génica , Nucleosomas/genética , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética , Activación Transcripcional , Secuencia de Bases , Cromosomas Fúngicos/química , Cromosomas Fúngicos/genética , ADN de Hongos/química , Operón Lac , Nucleosomas/química , Saccharomyces cerevisiae/citología , TATA Box
6.
Biochim Biophys Acta ; 1839(3): 118-28, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24275614

RESUMEN

One of the key events in eukaryotic gene regulation and consequent transcription is the assembly of general transcription factors and RNA polymerase II into a functional pre-initiation complex at core promoters. An emerging view of complexity arising from a variety of promoter associated DNA motifs, their binding factors and recent discoveries in characterising promoter associated chromatin properties brings an old question back into the limelight: how is a promoter defined? In addition to position-dependent DNA sequence motifs, accumulating evidence suggests that several parallel acting mechanisms are involved in orchestrating a pattern marked by the state of chromatin and general transcription factor binding in preparation for defining transcription start sites. In this review we attempt to summarise these promoter features and discuss the available evidence pointing at their interactions in defining transcription initiation in developmental contexts. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Cromatina/metabolismo , Epigénesis Genética/fisiología , ARN Polimerasa II/metabolismo , Elementos de Respuesta/fisiología , Iniciación de la Transcripción Genética/fisiología , Animales , Cromatina/genética , Humanos , ARN Polimerasa II/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Epigenomes ; 8(2)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38804369

RESUMEN

Nucleosomes are non-uniformly distributed across eukaryotic genomes, with stretches of 'open' chromatin strongly associated with transcriptionally active promoters and enhancers. Understanding chromatin accessibility patterns in normal tissue and how they are altered in pathologies can provide critical insights to development and disease. With the advent of high-throughput sequencing, a variety of strategies have been devised to identify open regions across the genome, including DNase-seq, MNase-seq, FAIRE-seq, ATAC-seq, and NicE-seq. However, the broad application of such methods to FFPE (formalin-fixed paraffin-embedded) tissues has been curtailed by the major technical challenges imposed by highly fixed and often damaged genomic material. Here, we review the most common approaches for mapping open chromatin regions, recent optimizations to overcome the challenges of working with FFPE tissue, and a brief overview of a typical data pipeline with analysis considerations.

8.
Cell Rep ; 42(5): 112465, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37133993

RESUMEN

Chromatin organization is crucial for transcriptional regulation in eukaryotes. Mediator is an essential and conserved co-activator thought to act in concert with chromatin regulators. However, it remains largely unknown how their functions are coordinated. Here, we provide evidence in the yeast Saccharomyces cerevisiae that Mediator establishes physical contact with RSC (Remodels the Structure of Chromatin), a conserved and essential chromatin remodeling complex that is crucial for nucleosome-depleted region (NDR) formation. We determine the role of Mediator-RSC interaction in their chromatin binding, nucleosome occupancy, and transcription on a genomic scale. Mediator and RSC co-localize on wide NDRs of promoter regions, and specific Mediator mutations affect nucleosome eviction and TSS-associated +1 nucleosome stability. This work shows that Mediator contributes to RSC remodeling function to shape NDRs and maintain chromatin organization on promoter regions. It will help in our understanding of transcriptional regulation in the chromatin context relevant for severe diseases.


Asunto(s)
Nucleosomas , Proteínas de Saccharomyces cerevisiae , Nucleosomas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Ensamble y Desensamble de Cromatina , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cromatina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regiones Promotoras Genéticas/genética
9.
Mol Cell Biol ; 42(2): e0047221, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-34898278

RESUMEN

In transcriptionally active genes, nucleosome positions in promoters are regulated by nucleosome-displacing factors (NDFs) and chromatin-remodeling enzymes. Depletion of NDFs or the RSC chromatin remodeler shrinks or abolishes the nucleosome-depleted regions (NDRs) in promoters, which can suppress gene activation and result in cryptic transcription. Despite their vital cellular functions, how the action of chromatin remodelers may be directly affected by site-specific binding factors like NDFs is poorly understood. Here, we demonstrate that two NDFs, Reb1 and Cbf1, can direct both Chd1 and RSC chromatin-remodeling enzymes in vitro, stimulating repositioning of the histone core away from their binding sites. Interestingly, although the Pho4 transcription factor had a much weaker effect on nucleosome positioning, both NDFs and Pho4 were able to similarly redirect positioning of hexasomes. In chaperone-mediated nucleosome assembly assays, Reb1 but not Pho4 showed an ability to block deposition of the histone H3/H4 tetramer, but Reb1 did not block addition of the H2A/H2B dimer to hexasomes. Our in vitro results show that NDFs bias the action of remodelers to increase the length of the free DNA in the vicinity of their binding sites. These results suggest that NDFs could directly affect NDR architecture through chromatin remodelers.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Sitios de Unión , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Regulación Fúngica de la Expresión Génica/genética , Nucleosomas/metabolismo , Unión Proteica/fisiología , Saccharomyces cerevisiae/metabolismo
10.
J Biomol Screen ; 21(6): 634-42, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26993320

RESUMEN

RNA activation (RNAa) is a mechanism of positive gene expression regulation mediated by small-activating RNAs (saRNAs), which target gene promoters and have been used as tools to manipulate gene expression. Studies have shown that RNAa is associated with epigenetic modifications at promoter regions; however, it is unclear whether these modifications are the cause or a consequence of RNAa. In this study, we examined changes in nucleosome repositioning and the involvement of RNA polymerase II (RNAPII) in this process. We screened saRNAs for OCT4 (POU5F1), SOX2, and NANOG, and identified several novel saRNAs. We found that nucleosome positioning was altered after saRNA treatment and that the formation of nucleosome-depleted regions (NDRs) contributed to RNAa at sites of RNAPII binding, such as the TATA box, CpG islands (CGIs), proximal enhancers, and proximal promoters. Moreover, RNAPII appeared to be bound specifically to NDRs. These results suggested that changes in nucleosome positions resulted from RNAa. We thus propose a hypothesis that targeting promoter regions using exogenous saRNAs can induce the formation of NDRs, exposing regulatory binding sites to recruit RNAPII, a key component of preinitiation complex, and leading to increased initiation of transcription.


Asunto(s)
Nucleosomas/genética , ARN Polimerasa II/genética , ARN Pequeño no Traducido/aislamiento & purificación , ARN/genética , Sitios de Unión , Ensamble y Desensamble de Cromatina/genética , Islas de CpG/genética , Epigénesis Genética/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Proteína Homeótica Nanog/genética , Nucleosomas/ultraestructura , Factor 3 de Transcripción de Unión a Octámeros/genética , Regiones Promotoras Genéticas , ARN/metabolismo , ARN Polimerasa II/metabolismo , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Factores de Transcripción SOXB1/genética , Activación Transcripcional/genética
11.
Epigenetics ; 9(10): 1422-30, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25437056

RESUMEN

Gene silencing in cancer frequently involves hypermethylation and dense nucleosome occupancy across promoter regions. How a promoter transitions to this silent state is unclear. Using colorectal adenomas, we investigated nucleosome positioning, DNA methylation, and gene expression in the early stages of gene silencing. Genome-wide gene expression correlated with highly positioned nucleosomes upstream and downstream of a nucleosome-depleted transcription start site (TSS). Hypermethylated promoters displayed increased nucleosome occupancy, specifically at the TSS. We investigated 2 genes, CDH1 and CDKN2B, which were silenced in adenomas but lacked promoter hypermethylation. Instead, silencing correlated with loss of nucleosomes from the -2 position upstream of the TSS relative to normal mucosa. In contrast, permanent CDH1 silencing in carcinoma cells was characterized by promoter hypermethylation and dense nucleosome occupancy. Our findings suggest that silenced genes transition through an intermediary stage involving altered promoter nucleosome positioning, before permanent silencing by hypermethylation and dense nucleosome occupancy.


Asunto(s)
Metilación de ADN , Silenciador del Gen , Nucleosomas/genética , Regiones Promotoras Genéticas , Sitio de Iniciación de la Transcripción , Adenoma/genética , Anciano , Antígenos CD , Cadherinas/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Epigénesis Genética , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA