Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 923
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 214, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413907

RESUMEN

BACKGROUND: Peach bacterial shot hole, caused by Xanthomonas arboricola pv pruni (Xap), is a global bacterial disease that poses a threat to the yield and quality of cultivated peach trees (Prunus persica). RESULTS: This study compared the mRNA and miRNA profiles of two peach varieties, 'Yanbao' (resistant) and 'Yingzui' (susceptible), after inoculation with Xap to identify miRNAs and target genes associated with peach tree resistance. mRNA sequencing results revealed that in the S0-vs-S3 comparison group, 1574 genes were upregulated and 3975 genes were downregulated. In the R0-vs-R3 comparison group, 1575 genes were upregulated and 3726 genes were downregulated. Through miRNA sequencing, a total of 112 known miRNAs belonging to 70 miRNA families and 111 new miRNAs were identified. Notably, some miRNAs were exclusively expressed in either resistant or susceptible varieties. Additionally, 59 miRNAs were downregulated and 69 miRNAs were upregulated in the R0-vs-R3 comparison group, while 46 miRNAs were downregulated and 52 miRNAs were upregulated in the S0-vs-S3 comparison group. Joint analysis of mRNA and miRNA identified 79 relationship pairs in the S0-vs-S3 comparison group, consisting of 48 miRNAs and 51 target genes. In the R0-vs-R3 comparison group, there were 58 relationship pairs, comprising 28 miRNAs and 20 target genes. Several target genes related to resistance, such as SPL6, TIFY6B, and Prupe.4G041800_v2.0.a1 (PPO), were identified through literature reports and GO/KEGG enrichment analysis. CONCLUSION: In conclusion, this study discovered several candidate genes involved in peach tree resistance by analyzing differential expression of mRNA and miRNA. These findings provide valuable insights into the mechanisms underlying resistance to Xap in peach trees.


Asunto(s)
MicroARNs , Prunus persica , Xanthomonas , Humanos , MicroARNs/genética , Transcriptoma , Prunus persica/genética , ARN Mensajero/genética
2.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961329

RESUMEN

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Asunto(s)
Frutas , Perfilación de la Expresión Génica , Metabolómica , Hojas de la Planta , Prunus persica , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Prunus persica/genética , Prunus persica/metabolismo , Prunus persica/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metaboloma , Transcriptoma , Flavonoides/metabolismo , Ácidos Indolacéticos/metabolismo
3.
Plant Mol Biol ; 114(3): 46, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630415

RESUMEN

Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.


Asunto(s)
Prunus persica , Solanum lycopersicum , Prunus persica/genética , Frutas/genética , Filogenia , Saccharomyces cerevisiae , Solanum lycopersicum/genética , Factores de Transcripción/genética
4.
Curr Issues Mol Biol ; 46(8): 7944-7954, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39194686

RESUMEN

5-Aminolevulinic acid (ALA), as a novel plant growth regulator, is a critical precursor for the biosynthesis of porphyrin compounds in all organisms. Many studies have reported that exogenous ALA treatment could improve fruit sweetness. However, the mechanism by which ALA promotes the increase in sugar content in fruit remains unclear. In this study, we found that ALA significantly promoted sucrose accumulation and SPS (sucrose phosphate synthase) activity in peach fruit. At 14, 28, 42, 50 and 60 days after ALA treatment, sucrose content of fruit was increased by 23%, 43%, 37%, 40% and 16%, respectively, compared with control treatment, and SPS enzyme activity was increased by 21%, 28%, 47%, 37% and 29%, respectively. Correlation analysis showed that the sucrose content of peach fruit under ALA treatment was significantly positively correlated with SPS activity. Subsequently, bioinformatics was used to identify SPS gene family members in peach fruit, and it was found that there were four members of the PpSPS gene family, distributed on chromosomes 1, 7 and 8, named PpSPS1, PpSPS2, PpSPS3 and PpSPS4, respectively. The results of qRT-PCR showed that PpSPS2 and PpSPS3 were highly expressed in response to ALA during fruit development, and the expression of PpSPS2 was positively correlated with SPS activity and sucrose accumulation in peach fruit. The results of tobacco subcellular localization showed that PpSPS2 was mainly distributed in the cytoplasm and nucleus, while PpSPS3 was mainly distributed in the nucleus. The results of this study will lay the foundation for further study on the functions of PpSPS and the regulation of sugar metabolism during the development and ripening of peach fruit by ALA.

5.
BMC Plant Biol ; 24(1): 643, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973005

RESUMEN

BACKGROUND: Flower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition. RESULTS: Treatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins. CONCLUSIONS: The peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.


Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Giberelinas , Reguladores del Crecimiento de las Plantas , Prunus persica , Giberelinas/metabolismo , Flores/crecimiento & desarrollo , Flores/genética , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
BMC Plant Biol ; 24(1): 701, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048957

RESUMEN

Peach tree is one of the most important fruit trees in the world, and it has been cultivated for more than 7,500 years. In recent years, the genome and population resequencing of peach trees have been published continuously, which has effectively promoted the research of peach tree genetics and breeding. In order to promote the further mining and utilization of these data, we integrated and constructed a comprehensive peach genome and variation database (PPGV, http://peachtree.work/home ). The PPGV contains 10 sets of published peach tree genome data, as well as genomic variation information for 1,378 peach tree samples (the resequencing data of 1,378 samples were aligned with the high-quality genomes of Lovell, CN14 and Chinesecling, respectively, for mutation detection). A variety of useful and flexible tools, such as BLAST, Gene ID Convert, KEGG/GO Enrichment, Primer Design and Gene function, were also specially designed for searching data and assisting in breeding.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Genoma de Planta , Prunus persica , Prunus persica/genética
7.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872462

RESUMEN

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Prunus persica , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Polimorfismo de Nucleótido Simple/genética , Genes de Plantas
8.
J Exp Bot ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39110720

RESUMEN

The defense response of peach (Prunus persica) to insect attack involves changes in gene expression and metabolites. Piercing/sucking insects such as green peach aphid cause direct damage by obtaining phloem nutrients and indirect damage by spreading plant viruses. To investigate the response of peach trees to aphids, the leaf transcriptome and metabolome of two genotypes with different sensitivities to green peach aphid (GPA, Myzus persicae) were studied. The transcriptome analysis of infected peach leaves showed two different response patterns. The gene expression of aphid-susceptible peach plants infected by aphids was more similar to that of the control plants, while the gene expression of aphid-resistant peach plants infected by aphids showed strongly induced changes in gene expression compared with the response in the control plants. Furthermore, gene transcripts in defense-related pathways, including plant-pathogen interaction, MAPK signaling, and several metabolic pathways, were more strongly enriched upon aphid infestation. Untargeted secondary metabolite profiling confirmed that aphid treatment induced larger changes in aphid-resistant peaches than in aphid-susceptible peaches. Consistent with transcriptomic alterations, nine triterpenoids showed extremely significant GPA-induced accumulation in aphid-resistant peaches, whereas triterpenoid abundance remained predominantly unchanged or undetected in aphid- susceptible peaches. Furthermore, some types of transcription factors (including WRKYs, ERFs, NACs, etc.) were more strongly induced upon GPA infestation in aphid-resistant peaches but not in aphid-susceptible peaches. Aphid feeding-dependent transcriptome and metabolite profiles provide the foundation for understanding the molecular mechanisms underlying the response of peach to aphid infestation. These results suggested that accumulation of specialized triterpenoids and the corresponding pathway transcripts may play a key role in peach GPA resistance.

9.
Artículo en Inglés | MEDLINE | ID: mdl-38174961

RESUMEN

BACKGROUND AND OBJECTIVE: Peach allergy is a prevalent cause of food allergy. Despite the repertoire of allergens available for molecular diagnosis, there are still patients with undetectable IgE levels to peach allergens but presenting symptoms after its ingestion. The objective of this study was to investigate the allergenic profile in a patient population with symptoms produced by peach. METHODS: An exploratory retrospective study was performed with patients presenting symptoms after the ingestion of peach. Forty-two patients were included in the study. The allergenic profile of individual patients was investigated by immunoblot. A serum pool was prepared with the sera that recognized a 70 kDa band. This pool was used to detect this protein in peach peel and pulp and to identify the 70 kDa protein in 2D immunoblot. Spots recognized in the 2D immunoblot were sequenced by LC-MS/MS. Inhibition studies were performed between peach peel and almond. RESULTS: Twenty-two patients (52.4%) recognized the 70 kDa protein in immunoblot. This protein was recognized in peel and pulp. Two different spots were observed in 2D-PAGE, both were identified as (R)-mandelonitrile lyases (RML) with high amino acid similarity with Pru du 10. Peach RML were partially inhibited with an almond extract. No association was found between any reported symptom and sensitization to RML. RML-sensitized patients were older and reported pollen associated respiratory symptoms more frequently than negative patients. CONCLUSION: A new peach allergen, a RML, homologous of Pru du 10, recognized by 52% of the population has been identified.

10.
Biol Res ; 57(1): 63, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39243048

RESUMEN

Chilean peach growers have achieved worldwide recognition for their high-quality fruit products. Among the main factors influencing peach fruit quality, sweetness is pivotal for maintaining the market's competitiveness. Numerous studies have been conducted in different peach-segregating populations to unravel SSC regulation. However, different cultivars may also have distinct genetic conformation, and other factors, such as environmental conditions, can significantly impact SSC. Using a transcriptomic approach with a gene co-expression network analysis, we aimed to identify the regulatory mechanism that controls the sugar accumulation process in an 'O × N' peach population. This population was previously studied through genomic analysis, associating LG5 with the genetic control of the SSC trait. The results obtained in this study allowed us to identify 91 differentially expressed genes located on chromosome 5 of the peach genome as putative new regulators of sugar accumulation in peach, together with a regulatory network that involves genes directly associated with sugar transport (PpSWEET15), cellulose biosynthesis (PpCSLG2), flavonoid biosynthesis (PpPAL1), pectin modifications (PpPG, PpPL and PpPMEi), expansins (PpEXPA1 and PpEXPA8) and several transcription factors (PpC3H67, PpHB7, PpRVE1 and PpCBF4) involved with the SSC phenotype. These results contribute to a better understanding of the genetic control of the SSC trait for future breeding programs in peaches.


Asunto(s)
Frutas , Redes Reguladoras de Genes , Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Frutas/genética , Frutas/metabolismo , Redes Reguladoras de Genes/genética , Regulación de la Expresión Génica de las Plantas/genética , Azúcares/metabolismo , Perfilación de la Expresión Génica , Chile
11.
Lett Appl Microbiol ; 77(7)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38886121

RESUMEN

Hafnia sp. was one of the specific spoilage bacteria in aquatic products, and the aim of the study was to investigate the inhibition ability of the silver nanoparticles (AgNPs) biosynthesis by an aqueous extract of Prunus persica leaves toward the spoilage-related virulence factors of Hafnia sp. The synthesized P-AgNPs were spherical, with a mean particle size of 36.3 nm and zeta potential of 21.8 ± 1.33 mV. In addition, the inhibition effects of P-AgNPs on the growth of two Hafnia sp. strains and their quorum sensing regulated virulence factors, such as the formation of biofilm, secretion of N-acetyl-homoserine lactone (AHLs), proteases, and exopolysaccharides, as well as their swarming and swimming motilities were evaluated. P-AgNPs had a minimum inhibitory concentration (MIC) of 64 µg ml-1 against the two Hafnia sp. strains. When the concentration of P-AgNPs was below MIC, it could inhibit the formation of biofilms by Hafnia sp at 8-32 µg ml-1, but it promoted the formation of biofilms by Hafnia sp at 0.5-4 µg ml-1. P-AgNPs exhibited diverse inhibiting effects on AHLs and protease production, swimming, and swarming motilities at various concentrations.


Asunto(s)
Antibacterianos , Biopelículas , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Hojas de la Planta , Prunus persica , Percepción de Quorum , Plata , Percepción de Quorum/efectos de los fármacos , Plata/farmacología , Plata/química , Plata/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Hojas de la Planta/microbiología , Hojas de la Planta/química , Nanopartículas del Metal/química , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Antibacterianos/farmacología , Prunus persica/microbiología , Aizoaceae/química , Factores de Virulencia/metabolismo
12.
Food Microbiol ; 120: 104465, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38431317

RESUMEN

Biological antagonists serve as the most important green alternatives to chemical fungicides, a class of microorganism that inhibits the growth of pathogenic fungi to reduce fruit incidence. In this paper, healthy and diseased peach fruit was selected for amplicon sequencing of the epiphytic microbiota on their surface to obtain a comprehensive understanding. Community structure, diversity and LefSe analysis were performed to screen Acetobacter, Muribaculaceae and Burkholderia as the core bacteria, Mycosphaerella, Penicillium and Alternaria as the core fungi, they showed significant differences and were highly enriched. Two strains fungi (Penicillium K3 and N1) and one strain antagonistic bacteria (Burkholderia J2) were isolated. The in intro test results indicated the bacterial suspension, fermentation broth and volatile organic compounds of antagonistic bacteria J2 were able to significantly inhibit pathogen growth. In vivo experiments, peach was stored at 28 °C for 6 days after different treatments, and samples were taken every day. It was found that Burkholderia J2 enhanced peach resistance by increasing the activities of antioxidant-related enzymes such as SOD, POD, PAL, PPO, GR, MDHAR, and DHAR. The results improved that Burkholderia J2 has great biocontrol potential and could be used as a candidate strain for green control of blue mold.


Asunto(s)
Penicillium , Prunus persica , Prunus persica/microbiología , Bacterias/genética , Frutas/microbiología , Alternaria
13.
Food Microbiol ; 122: 104551, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38839219

RESUMEN

Brown rot, caused by Monilinia fructicola, is considered one of the devasting diseases of pre-harvest and post-harvest peach fruits, restricting the yield and quality of peach fruits and causing great economic losses to the peach industry every year. Presently, the management of the disease relies heavily on chemical control. In the study, we demonstrated that the volatile organic compounds (VOCs) of endophyte bacterial Pseudomonas protegens QNF1 inhibited the mycelial growth of M. fructicola by 95.35% compared to the control, thereby reducing the brown rot on postharvest fruits by 98.76%. Additionally, QNF1 VOCs severely damaged the mycelia of M. fructicola. RNA-seq analysis revealed that QNF1 VOCs significantly repressed the expressions of most of the genes related to pathogenesis (GO:0009405) and integral component of plasma membrane (GO:0005887), and further analysis revealed that QNF1 VOCs significantly altered the expressions of the genes involved in various metabolism pathways including Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. The findings of the study indicated that QNF1 VOCs displayed substantial control efficacy by disrupting the mycelial morphology of M. fructicola, weakening its pathogenesis, and causing its metabolic disorders. The study provided a potential way and theoretical support for the management of the brown rot of peach fruits.


Asunto(s)
Ascomicetos , Frutas , Enfermedades de las Plantas , Prunus persica , Pseudomonas , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Prunus persica/microbiología , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Pseudomonas/genética , Pseudomonas/metabolismo , Ascomicetos/genética , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Ascomicetos/metabolismo , Micelio/crecimiento & desarrollo , Micelio/efectos de los fármacos , Micelio/genética , Endófitos/genética , Endófitos/metabolismo
14.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33558417

RESUMEN

Personality traits predict important life outcomes, such as success in love and work life, well-being, health, and longevity. Given these positive relations to important outcomes, economists, policy makers, and scientists have proposed intervening to change personality traits to promote positive life outcomes. However, nonclinical interventions to change personality traits are lacking so far in large-scale naturalistic populations. This study (n = 1,523) examined the effects of a 3-mo digital personality change intervention using a randomized controlled trial and the smartphone application PEACH (PErsonality coACH). Participants who received the intervention showed greater self-reported changes compared to participants in the waitlist control group who had to wait 1 mo before receiving the intervention. Self-reported changes aligned with intended goals for change and were significant for those desiring to increase on a trait (d = 0.52) and for those desiring to decrease on a trait (d = -0.58). Observers such as friends, family members, or intimate partners also detected significant personality changes in the desired direction for those desiring to increase on a trait (d = 0.35). Observer-reported changes for those desiring to decrease on a trait were not significant (d = -0.22). Moreover, self- and observer-reported changes persisted until 3 mo after the end of the intervention. This work provides the strongest evidence to date that normal personality traits can be changed through intervention in nonclinical samples.


Asunto(s)
Personalidad , Psicoterapia/métodos , Femenino , Humanos , Masculino , Autoinforme , Teléfono Inteligente
15.
Int J Biometeorol ; 68(1): 125-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37957434

RESUMEN

Mining the various records of plant phenology before the era of modern weather observations is an important but challenging task. We mined descriptions of plant phenology in Kanazawa, Japan, during the first half of the nineteenth century in the Kakuson Diary. We retrieved records of full bloom of 28 plant species, appearance of 31 seasonal foods, and peak leaf colouring. In particular, we found more than 10 years of records of plum, peach, cherry blossoms, udo, and bamboo shoots in spring; watermelon in summer; and persimmon, chestnut, and peak leaf colouring in autumn. The records suggest that spring phenology during 1807 to 1838 was later and autumn phenology was earlier than now. Despite spatio-temporal uncertainty in records in old diaries, we need to mine records of plant phenology in more old diaries and publish them in English.


Asunto(s)
Hojas de la Planta , Tiempo (Meteorología) , Japón , Estaciones del Año , Flores , Temperatura
16.
Pestic Biochem Physiol ; 203: 106006, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39084801

RESUMEN

Peach is one of the popular and economically important fruit crops in China. Peach cultivation is hampered due to attacks of anthracnose disease, causing significant economic losses. Colletotrichum fructicola and Colletotrichum siamense belong to the Colletotrichum gloeosporioides species complex and are considered major pathogens of peach anthracnose. Application of different groups of fungicides is a routine approach for controlling this disease. However, fungicide resistance is a significant drawback in managing peach anthracnose nowadays. In this study, 39 isolates of C. fructicola and 41 isolates of C. siamense were collected from different locations in various provinces in China. The sensitivity of C. fructicola and C. siamense to some commonly used fungicides, i.e., carbendazim, iprodione, fluopyram, and propiconazole, was determined. All the isolates of C. fructicola collected from Guangdong province showed high resistance to carbendazim, whereas isolates collected from Guizhou province were sensitive. In C. siamense, isolates collected from Hebei province showed moderate resistance, while those from Shandong province were sensitive to carbendazim. On the other hand, all the isolates of C. fructicola and C. siamense showed high resistance to the dicarboximide (DCF) fungicide iprodione and succinate dehydrogenase inhibitor (SDHI) fungicide fluopyram. However, they are all sensitive to the demethylation inhibitor (DMI) fungicide propiconazole. Positive cross-resistance was observed between carbendazim and benomyl as they are members of the same methyl benzimidazole carbamate (MBC) group. While no correlation of sensitivity was observed between different groups of fungicides. No significant differences were found in each fitness parameter between carbendazim-resistant and sensitive isolates in both species. Molecular characterization of the ß-tubulin 2 (TUB2) gene revealed that in C. fructicola, the E198A point mutation was the determinant for the high resistance to carbendazim, while the F200Y point mutation was linked with the moderate resistance to carbendazim in C. siamense. Based on the results of this study, DMI fungicides, e.g., propiconazole or prochloraz could be used to control peach anthracnose, especially at locations where the pathogens have already developed the resistance to carbendazim and other fungicides.


Asunto(s)
Carbamatos , Colletotrichum , Farmacorresistencia Fúngica , Fungicidas Industriales , Enfermedades de las Plantas , Prunus persica , Colletotrichum/efectos de los fármacos , Colletotrichum/genética , Fungicidas Industriales/farmacología , Prunus persica/microbiología , Enfermedades de las Plantas/microbiología , Carbamatos/farmacología , China , Bencimidazoles/farmacología , Hidantoínas/farmacología , Triazoles/farmacología , Aminoimidazol Carboxamida/análogos & derivados
17.
Chem Biodivers ; : e202401239, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327817

RESUMEN

INTRODUCTION: Peach kernel (PK), one of the medicinal and edible plants, has been widely used in the treatment of clinical thrombotic diseases and exhibited great therapeutic effects. However, the effective substances and targets are still obscure. METHODS: A method consisting of affinity ultrafiltration (AUF) coupled with ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-Q-TOF-MS) was established to rapidly screen active components that inhibit thrombin, a key mediator in coagulation cascade. The binding energy and sites were analyzed by molecular docking to evaluate the binding capacity of thrombin-ligand complexes, and the thrombin inhibitory activity of screened ligands was further validated via in vitro and in vivo tests. RESULTS: two potential thrombin ligands (L-arginine and cytidine) were screened by AUF-HPLC and identified by UPLC-Q-TOF-MS. The ligands with anti-thrombin structure exhibited great affinity with thrombin. The anticoagulant bioactivity of ligands was validated by a significant reduction in thrombosis in zebrafish tails and the potential mechanism could be related to direct inhibition of thrombin. CONCLUSION: The systematic screening of anti-thrombin active components in PK based on AUF-UPLC-Q-TOF-MS is a feasible and effective method, providing valuable information for the future development of direct thrombin inhibitors.

18.
Plant Dis ; 108(6): 1486-1490, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38372721

RESUMEN

Although it is currently eradicated from the United States, Plum pox virus (PPV) poses an ongoing threat to U.S. stone fruit production. Although almond (Prunus dulcis) is known to be largely resistant to PPV, there is conflicting evidence about its potential to serve as an asymptomatic reservoir host for the virus and thus serve as a potential route of entry. Here, we demonstrate that both Tuono and Texas Mission cultivars can be infected by the U.S. isolate PPV Dideron (D) Penn4 and that Tuono is a transmission-competent host, capable of serving as a source of inoculum for aphid transmission of the virus. These findings have important implications for efforts to keep PPV out of the United States and highlight the need for additional research to test the susceptibility of almond to other PPV-D isolates.


Asunto(s)
Áfidos , Enfermedades de las Plantas , Virus Eruptivo de la Ciruela , Prunus dulcis , Virus Eruptivo de la Ciruela/fisiología , Virus Eruptivo de la Ciruela/genética , Prunus dulcis/virología , Enfermedades de las Plantas/virología , Áfidos/virología , Animales , Prunus/virología
19.
Plant Dis ; : PDIS11222669RE, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37822103

RESUMEN

Phony peach disease (PPD), found predominantly in central and southern Georgia, is a re-emerging disease caused by Xylella fastidiosa (Xf) subsp. multiplex. Accurate detection and rapid removal of symptomatic trees are crucial to effective disease management. Currently, peach producers rely solely on visual identification of symptoms to confirm PPD, which can be ambiguous if early in development. We compared visual assessment to quantitative PCR (qPCR) for detecting Xf in 'Julyprince' in 2019 and 2020 (JP2019 and JP2020) and in 'Scarletprince' in 2020 (SP2020). With no prior knowledge of qPCR results, all trees in each orchard were assessed by a cohort of five experienced and five inexperienced raters in the morning and afternoon. Visual identification accuracy of PPD was variable, but experienced raters were more accurate when identifying PPD trees. In JP2019, the mean rater accuracy for experienced and inexperienced raters was 0.882 and 0.805, respectively. For JP2020, the mean rater accuracy for experienced and inexperienced raters was 0.914 and 0.816, respectively. For SP2020, the mean rater accuracy for experienced and inexperienced raters was 0.898 and 0.807, respectively. All raters had false positive (FP) and false negative (FN) observations, but experienced raters had significantly lower FN rates compared with the inexperienced group. Almost all raters overestimated the incidence of PPD in the orchards. Reliability of visual assessments was demonstrated as moderate to good, regardless of experience. Further research is needed to develop accurate and reliable methods of detection to aid management of PPD as both FPs and FNs are costly to peach production.

20.
Plant Dis ; 108(7): 2190-2196, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38537137

RESUMEN

Bacterial spot is one of the most serious diseases of peach caused by the pathogen Xanthomonas arboricola pv. pruni (XAP), leading to early defoliation and unmarketable fruit. The pathogen can overwinter in peach twigs and form spring cankers, which are considered the primary inoculum source for early season leaf and fruitlet infection. The amount of overwintering bacterial inoculum plays a critical role for the bacterial spot development, but no reliable quantification method is available. Thus, we developed a long-amplicon propidium monoazide (PMA)-quantitative PCR (qPCR) assay for specific detection of viable XAP cells. The optimized PMA-qPCR assay used 20 µM of PMAxx for pure bacterial suspensions and 100 µM for peach twig tissues. The Qiagen Plant Pro Kit with an additional lysozyme digestion step was the DNA extraction protocol that yielded the best detection sensitivity with the bacteria-spiked peach twig extracts. The PMA-qPCR assay was tested with different mixtures of viable and heat-killed XAP cells in pure bacterial suspensions and bacteria-spiked peach twig tissues. The results showed that this assay enabled sensitive, specific, and accurate quantification of viable XAP cells as low as 103 CFU/ml with the presence of up to 107 CFU/ml of dead XAP cells, while suppressing the amplification of DNA from dead cells. For mixtures of viable and dead cells, the PMA-qPCR results were linearly correlated with the predicted concentrations of viable XAP (R2 > 0.98). Thus, the PMA-qPCR assay will be a suitable tool for quantifying overwintering XAP population on peach trees.


Asunto(s)
Azidas , Enfermedades de las Plantas , Propidio , Prunus persica , Xanthomonas , Azidas/química , Xanthomonas/genética , Xanthomonas/aislamiento & purificación , Propidio/análogos & derivados , Propidio/química , Enfermedades de las Plantas/microbiología , Prunus persica/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , ADN Bacteriano/genética , Árboles/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA