Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.026
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(19): 3520-3532.e26, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36041435

RESUMEN

We use computational design coupled with experimental characterization to systematically investigate the design principles for macrocycle membrane permeability and oral bioavailability. We designed 184 6-12 residue macrocycles with a wide range of predicted structures containing noncanonical backbone modifications and experimentally determined structures of 35; 29 are very close to the computational models. With such control, we show that membrane permeability can be systematically achieved by ensuring all amide (NH) groups are engaged in internal hydrogen bonding interactions. 84 designs over the 6-12 residue size range cross membranes with an apparent permeability greater than 1 × 10-6 cm/s. Designs with exposed NH groups can be made membrane permeable through the design of an alternative isoenergetic fully hydrogen-bonded state favored in the lipid membrane. The ability to robustly design membrane-permeable and orally bioavailable peptides with high structural accuracy should contribute to the next generation of designed macrocycle therapeutics.


Asunto(s)
Amidas , Péptidos , Amidas/química , Hidrógeno , Enlace de Hidrógeno , Lípidos , Péptidos/química
2.
Cell ; 184(20): 5138-5150.e12, 2021 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-34496225

RESUMEN

Many transient receptor potential (TRP) channels respond to diverse stimuli and conditionally conduct small and large cations. Such functional plasticity is presumably enabled by a uniquely dynamic ion selectivity filter that is regulated by physiological agents. What is currently missing is a "photo series" of intermediate structural states that directly address this hypothesis and reveal specific mechanisms behind such dynamic channel regulation. Here, we exploit cryoelectron microscopy (cryo-EM) to visualize conformational transitions of the capsaicin receptor, TRPV1, as a model to understand how dynamic transitions of the selectivity filter in response to algogenic agents, including protons, vanilloid agonists, and peptide toxins, permit permeation by small and large organic cations. These structures also reveal mechanisms governing ligand binding substates, as well as allosteric coupling between key sites that are proximal to the selectivity filter and cytoplasmic gate. These insights suggest a general framework for understanding how TRP channels function as polymodal signal integrators.


Asunto(s)
Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/metabolismo , Regulación Alostérica , Permeabilidad de la Membrana Celular/efectos de los fármacos , Microscopía por Crioelectrón , Diterpenos/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico , Lípidos/química , Meglumina/farmacología , Modelos Moleculares , Unión Proteica , Conformación Proteica , Protones , Canales Catiónicos TRPV/agonistas
3.
Cell ; 182(5): 1170-1185.e9, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32795412

RESUMEN

Loss of the gene (Fmr1) encoding Fragile X mental retardation protein (FMRP) causes increased mRNA translation and aberrant synaptic development. We find neurons of the Fmr1-/y mouse have a mitochondrial inner membrane leak contributing to a "leak metabolism." In human Fragile X syndrome (FXS) fibroblasts and in Fmr1-/y mouse neurons, closure of the ATP synthase leak channel by mild depletion of its c-subunit or pharmacological inhibition normalizes stimulus-induced and constitutive mRNA translation rate, decreases lactate and key glycolytic and tricarboxylic acid (TCA) cycle enzyme levels, and triggers synapse maturation. FMRP regulates leak closure in wild-type (WT), but not FX synapses, by stimulus-dependent ATP synthase ß subunit translation; this increases the ratio of ATP synthase enzyme to its c-subunit, enhancing ATP production efficiency and synaptic growth. In contrast, in FXS, inability to close developmental c-subunit leak prevents stimulus-dependent synaptic maturation. Therefore, ATP synthase c-subunit leak closure encourages development and attenuates autistic behaviors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Subunidades de Proteína/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico/fisiología , Fibroblastos/metabolismo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , ARN Mensajero , Sinapsis/metabolismo
4.
Cell ; 177(2): 299-314.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30929899

RESUMEN

Autophagy is required in diverse paradigms of lifespan extension, leading to the prevailing notion that autophagy is beneficial for longevity. However, why autophagy is harmful in certain contexts remains unexplained. Here, we show that mitochondrial permeability defines the impact of autophagy on aging. Elevated autophagy unexpectedly shortens lifespan in C. elegans lacking serum/glucocorticoid regulated kinase-1 (sgk-1) because of increased mitochondrial permeability. In sgk-1 mutants, reducing levels of autophagy or mitochondrial permeability transition pore (mPTP) opening restores normal lifespan. Remarkably, low mitochondrial permeability is required across all paradigms examined of autophagy-dependent lifespan extension. Genetically induced mPTP opening blocks autophagy-dependent lifespan extension resulting from caloric restriction or loss of germline stem cells. Mitochondrial permeability similarly transforms autophagy into a destructive force in mammals, as liver-specific Sgk knockout mice demonstrate marked enhancement of hepatocyte autophagy, mPTP opening, and death with ischemia/reperfusion injury. Targeting mitochondrial permeability may maximize benefits of autophagy in aging.


Asunto(s)
Envejecimiento/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Membranas Mitocondriales/fisiología , Animales , Autofagia/fisiología , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiología , Restricción Calórica , Células HEK293 , Humanos , Longevidad/fisiología , Masculino , Ratones , Ratones Noqueados , Mitocondrias , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Permeabilidad , Cultivo Primario de Células , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Daño por Reperfusión/metabolismo , Transducción de Señal
5.
Cell ; 174(1): 202-217.e9, 2018 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-29958108

RESUMEN

Nuclear pore complexes (NPCs) conduct nucleocytoplasmic transport through an FG domain-controlled barrier. We now explore how surface-features of a mobile species determine its NPC passage rate. Negative charges and lysines impede passage. Hydrophobic residues, certain polar residues (Cys, His), and, surprisingly, charged arginines have striking translocation-promoting effects. Favorable cation-π interactions between arginines and FG-phenylalanines may explain this apparent paradox. Application of these principles to redesign the surface of GFP resulted in variants that show a wide span of transit rates, ranging from 35-fold slower than wild-type to ∼500 times faster, with the latter outpacing even naturally occurring nuclear transport receptors (NTRs). The structure of a fast and particularly FG-specific GFPNTR variant illustrates how NTRs can expose multiple regions for binding hydrophobic FG motifs while evading non-specific aggregation. Finally, we document that even for NTR-mediated transport, the surface-properties of the "passively carried" cargo can strikingly affect the translocation rate.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Poro Nuclear/metabolismo , Secuencias de Aminoácidos , Sitios de Unión , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Dominios Proteicos , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Propiedades de Superficie
6.
Annu Rev Cell Dev Biol ; 34: 189-215, 2018 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-30296390

RESUMEN

We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.


Asunto(s)
Glicoproteínas/química , Mucina-1/química , Moco/química , Relación Estructura-Actividad , Animales , Glicoproteínas/genética , Glicosilación , Humanos , Mucina-1/genética , Moco/metabolismo , Permeabilidad , Reología
7.
Immunity ; 51(3): 508-521.e6, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31471109

RESUMEN

Recent experimental data and clinical, genetic, and transcriptome evidence from patients converge to suggest a key role of interleukin-1ß (IL-1ß) in the pathogenesis of Kawasaki disease (KD). However, the molecular mechanisms involved in the development of cardiovascular lesions during KD vasculitis are still unknown. Here, we investigated intestinal barrier function in KD vasculitis and observed evidence of intestinal permeability and elevated circulating secretory immunoglobulin A (sIgA) in KD patients, as well as elevated sIgA and IgA deposition in vascular tissues in a mouse model of KD vasculitis. Targeting intestinal permeability corrected gut permeability, prevented IgA deposition and ameliorated cardiovascular pathology in the mouse model. Using genetic and pharmacologic inhibition of IL-1ß signaling, we demonstrate that IL-1ß lies upstream of disrupted intestinal barrier function, subsequent IgA vasculitis development, and cardiac inflammation. Targeting mucosal barrier dysfunction and the IL-1ß pathway may also be applicable to other IgA-related diseases, including IgA vasculitis and IgA nephropathy.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Inmunoglobulina A/inmunología , Inflamación/inmunología , Intestinos/inmunología , Animales , Modelos Animales de Enfermedad , Humanos , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Síndrome Mucocutáneo Linfonodular/inmunología , Permeabilidad , Transducción de Señal/inmunología , Vasculitis/inmunología
8.
Mol Cell ; 78(6): 1055-1069, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32559424

RESUMEN

Ca2+ ions are key second messengers in both excitable and non-excitable cells. Owing to the rather pleiotropic nature of Ca2+ transporters and other Ca2+-binding proteins, however, Ca2+ signaling has attracted limited attention as a potential target of anticancer therapy. Here, we discuss cancer-associated alterations of Ca2+ fluxes at specific organelles as we identify novel candidates for the development of drugs that selectively target Ca2+ signaling in malignant cells.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Neoplasias/metabolismo , Animales , Canales de Calcio/metabolismo , Humanos , Mitocondrias/metabolismo , Neoplasias/genética , Transducción de Señal/fisiología , Canales de Potencial de Receptor Transitorio/metabolismo
9.
Physiol Rev ; 100(2): 525-572, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31939708

RESUMEN

Of the 21 members of the connexin family, 4 (Cx37, Cx40, Cx43, and Cx45) are expressed in the endothelium and/or smooth muscle of intact blood vessels to a variable and dynamically regulated degree. Full-length connexins oligomerize and form channel structures connecting the cytosol of adjacent cells (gap junctions) or the cytosol with the extracellular space (hemichannels). The different connexins vary mainly with regard to length and sequence of their cytosolic COOH-terminal tails. These COOH-terminal parts, which in the case of Cx43 are also translated as independent short isoforms, are involved in various cellular signaling cascades and regulate cell functions. This review focuses on channel-dependent and -independent effects of connexins in vascular cells. Channels play an essential role in coordinating and synchronizing endothelial and smooth muscle activity and in their interplay, in the control of vasomotor actions of blood vessels including endothelial cell reactivity to agonist stimulation, nitric oxide-dependent dilation, and endothelial-derived hyperpolarizing factor-type responses. Further channel-dependent and -independent roles of connexins in blood vessel function range from basic processes of vascular remodeling and angiogenesis to vascular permeability and interactions with leukocytes with the vessel wall. Together, these connexin functions constitute an often underestimated basis for the enormous plasticity of vascular morphology and function enabling the required dynamic adaptation of the vascular system to varying tissue demands.


Asunto(s)
Vasos Sanguíneos/metabolismo , Diferenciación Celular , Plasticidad de la Célula , Conexinas/metabolismo , Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Animales , Vasos Sanguíneos/citología , Permeabilidad Capilar , Microambiente Celular , Uniones Comunicantes/metabolismo , Humanos , Neovascularización Fisiológica , Fenotipo , Transducción de Señal , Remodelación Vascular
10.
Development ; 151(21)2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-39373389

RESUMEN

The apical extracellular matrix (aECM) of external epithelia often contains lipid-rich outer layers that contribute to permeability barrier function. The external aECM of nematodes is known as the cuticle and contains an external lipid-rich layer - the epicuticle. Epicuticlins are a family of tandem repeat cuticle proteins of unknown function. Here, we analyze the localization and function of the three C. elegans epicuticlins (EPIC proteins). EPIC-1 and EPIC-2 localize to the surface of the cuticle near the outer lipid layer, as well as to interfacial cuticles and adult-specific struts. EPIC-3 is expressed in dauer larvae and localizes to interfacial aECM in the buccal cavity. Skin wounding in the adult induces epic-3 expression, and EPIC proteins localize to wound sites. Null mutants lacking EPIC proteins are viable with reduced permeability barrier function and normal epicuticle lipid mobility. Loss of function in EPIC genes modifies the skin blistering phenotypes of Bli mutants and reduces survival after skin wounding. Our results suggest EPIC proteins define specific cortical compartments of the aECM and promote wound repair.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Matriz Extracelular , Cicatrización de Heridas , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Matriz Extracelular/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cicatrización de Heridas/genética , Cicatrización de Heridas/fisiología , Larva/metabolismo , Piel/metabolismo
11.
Semin Cell Dev Biol ; 155(Pt C): 16-22, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-37479554

RESUMEN

In the human body, the 1013 blood endothelial cells (ECs) which cover a surface of 500-700 m2 (Mai et al., 2013) are key players of tissue homeostasis, remodeling and regeneration. Blood vessel ECs play a major role in the regulation of metabolic and gaz exchanges, cell trafficking, blood coagulation, vascular tone, blood flow and fluid extravasation (also referred to as blood vascular permeability). ECs are heterogeneous in various capillary beds and have the exquisite capacity to cope with environmental changes by regulating their gene expression. Ischemia has major detrimental effects on the endothelium and ischemia-induced regulation of vascular integrity is of paramount importance for human health, as small amounts of fluid accumulation in the interstitium may be responsible for major effects on organ functions and patients outcome. In this review, we will here focus on the stimuli and the molecular mechanisms that control blood endothelium maintenance and phenotypic plasticity/transition involved in controlling blood capillary leakage that might open new avenues for therapeutic applications.


Asunto(s)
Células Endoteliales , Endotelio Vascular , Humanos , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Isquemia/metabolismo , Permeabilidad Capilar , Adaptación Fisiológica , Permeabilidad
12.
EMBO J ; 41(9): e109890, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35243676

RESUMEN

Endothelial cells differ from other cell types responsible for the formation of the vascular wall in their unusual reliance on glycolysis for most energy needs, which results in extensive production of lactate. We find that endothelium-derived lactate is taken up by pericytes, and contributes substantially to pericyte metabolism including energy generation and amino acid biosynthesis. Endothelial-pericyte proximity is required to facilitate the transport of endothelium-derived lactate into pericytes. Inhibition of lactate production in the endothelium by deletion of the glucose transporter-1 (GLUT1) in mice results in loss of pericyte coverage in the retina and brain vasculatures, leading to the blood-brain barrier breakdown and increased permeability. These abnormalities can be largely restored by oral lactate administration. Our studies demonstrate an unexpected link between endothelial and pericyte metabolisms and the role of endothelial lactate production in the maintenance of the blood-brain barrier integrity. In addition, our observations indicate that lactate supplementation could be a useful therapeutic approach for GLUT1 deficiency metabolic syndrome patients.


Asunto(s)
Barrera Hematoencefálica , Pericitos , Animales , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Humanos , Ácido Láctico/metabolismo , Ratones , Pericitos/metabolismo
13.
J Cell Sci ; 137(9)2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38712627

RESUMEN

Tight junctions (TJs) are specialized regions of contact between cells of epithelial and endothelial tissues that form selective semipermeable paracellular barriers that establish and maintain body compartments with different fluid compositions. As such, the formation of TJs represents a critical step in metazoan evolution, allowing the formation of multicompartmental organisms and true, barrier-forming epithelia and endothelia. In the six decades that have passed since the first observations of TJs by transmission electron microscopy, much progress has been made in understanding the structure, function, molecular composition and regulation of TJs. The goal of this Perspective is to highlight the key concepts that have emerged through this research and the future challenges that lie ahead for the field.


Asunto(s)
Uniones Estrechas , Uniones Estrechas/metabolismo , Uniones Estrechas/ultraestructura , Humanos , Animales , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Células Epiteliales/citología
14.
J Cell Sci ; 137(5)2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38345099

RESUMEN

Glycosylated mucin proteins contribute to the essential barrier function of the intestinal epithelium. The transmembrane mucin MUC13 is an abundant intestinal glycoprotein with important functions for mucosal maintenance that are not yet completely understood. We demonstrate that in human intestinal epithelial monolayers, MUC13 localized to both the apical surface and the tight junction (TJ) region on the lateral membrane. MUC13 deletion resulted in increased transepithelial resistance (TEER) and reduced translocation of small solutes. TEER buildup in ΔMUC13 cells could be prevented by addition of MLCK, ROCK or protein kinase C (PKC) inhibitors. The levels of TJ proteins including claudins and occludin were highly increased in membrane fractions of MUC13 knockout cells. Removal of the MUC13 cytoplasmic tail (CT) also altered TJ composition but did not affect TEER. The increased buildup of TJ complexes in ΔMUC13 and MUC13-ΔCT cells was dependent on PKC. The responsible PKC member might be PKCδ (or PRKCD) based on elevated protein levels in the absence of full-length MUC13. Our results demonstrate for the first time that a mucin protein can negatively regulate TJ function and stimulate intestinal barrier permeability.


Asunto(s)
Proteína Quinasa C , Proteínas de Uniones Estrechas , Humanos , Proteínas de Uniones Estrechas/metabolismo , Proteína Quinasa C/metabolismo , Intestinos , Mucosa Intestinal/metabolismo , Uniones Estrechas/metabolismo , Ocludina , Mucinas/metabolismo , Células Epiteliales/metabolismo
15.
Brief Bioinform ; 25(5)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39210505

RESUMEN

Cyclic peptides are versatile therapeutic agents that boast high binding affinity, minimal toxicity, and the potential to engage challenging protein targets. However, the pharmaceutical utility of cyclic peptides is limited by their low membrane permeability-an essential indicator of oral bioavailability and intracellular targeting. Current machine learning-based models of cyclic peptide permeability show variable performance owing to the limitations of experimental data. Furthermore, these methods use features derived from the whole molecule that have traditionally been used to predict small molecules and ignore the unique structural properties of cyclic peptides. This study presents CycPeptMP: an accurate and efficient method to predict cyclic peptide membrane permeability. We designed features for cyclic peptides at the atom-, monomer-, and peptide-levels and seamlessly integrated these into a fusion model using deep learning technology. Additionally, we applied various data augmentation techniques to enhance model training efficiency using the latest data. The fusion model exhibited excellent prediction performance for the logarithm of permeability, with a mean absolute error of $0.355$ and correlation coefficient of $0.883$. Ablation studies demonstrated that all feature levels contributed and were relatively essential to predicting membrane permeability, confirming the effectiveness of augmentation to improve prediction accuracy. A comparison with a molecular dynamics-based method showed that CycPeptMP accurately predicted peptide permeability, which is otherwise difficult to predict using simulations.


Asunto(s)
Permeabilidad de la Membrana Celular , Péptidos Cíclicos , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Aprendizaje Automático , Aprendizaje Profundo , Biología Computacional/métodos
16.
Circ Res ; 134(10): 1292-1305, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38618716

RESUMEN

BACKGROUND: During myocardial ischemia/reperfusion (I/R) injury, high levels of matrix Ca2+ and reactive oxygen species (ROS) induce the opening of the mitochondrial permeability transition pore (mPTP), which causes mitochondrial dysfunction and ultimately necrotic death. However, the mechanisms of how these triggers individually or cooperatively open the pore have yet to be determined. METHODS: Here, we use a combination of isolated mitochondrial assays and in vivo I/R surgery in mice. We challenged isolated liver and heart mitochondria with Ca2+, ROS, and Fe2+ to induce mitochondrial swelling. Using inhibitors of the mPTP (cyclosporine A or ADP) lipid peroxidation (ferrostatin-1, MitoQ), we determined how the triggers elicit mitochondrial damage. Additionally, we used the combination of inhibitors during I/R injury in mice to determine if dual inhibition of these pathways is additivity protective. RESULTS: In the absence of Ca2+, we determined that ROS fails to trigger mPTP opening. Instead, high levels of ROS induce mitochondrial dysfunction and rupture independently of the mPTP through lipid peroxidation. As expected, Ca2+ in the absence of ROS induces mPTP-dependent mitochondrial swelling. Subtoxic levels of ROS and Ca2+ synergize to induce mPTP opening. Furthermore, this synergistic form of Ca2+- and ROS-induced mPTP opening persists in the absence of CypD (cyclophilin D), suggesting the existence of a CypD-independent mechanism for ROS sensitization of the mPTP. These ex vivo findings suggest that mitochondrial dysfunction may be achieved by multiple means during I/R injury. We determined that dual inhibition of the mPTP and lipid peroxidation is significantly more protective against I/R injury than individually targeting either pathway alone. CONCLUSIONS: In the present study, we have investigated the relationship between Ca2+ and ROS, and how they individually or synergistically induce mitochondrial swelling. Our findings suggest that Ca2+ mediates mitochondrial damage through the opening of the mPTP, although ROS mediates its damaging effects through lipid peroxidation. However, subtoxic levels both Ca2+ and ROS can induce mPTP-mediated mitochondrial damage. Targeting both of these triggers to preserve mitochondria viability unveils a highly effective therapeutic approach for mitigating I/R injury.


Asunto(s)
Peroxidación de Lípido , Ratones Endogámicos C57BL , Mitocondrias Cardíacas , Mitocondrias Hepáticas , Proteínas de Transporte de Membrana Mitocondrial , Poro de Transición de la Permeabilidad Mitocondrial , Daño por Reperfusión Miocárdica , Especies Reactivas de Oxígeno , Animales , Peroxidación de Lípido/efectos de los fármacos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ratones , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Mitocondrias Cardíacas/patología , Masculino , Daño por Reperfusión Miocárdica/metabolismo , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Mitocondrias Hepáticas/efectos de los fármacos , Calcio/metabolismo , Dilatación Mitocondrial/efectos de los fármacos
17.
Circ Res ; 2024 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-39421931

RESUMEN

BACKGROUND: Latrophilin-2 (Lphn2), an adhesive GPCR (G protein-coupled receptor), was found to be a specific marker of cardiac progenitors during the differentiation of pluripotent stem cells into cardiomyocytes or during embryonic heart development in our previous studies. Its role in adult heart physiology, however, remains unclear. METHODS: The embryonic lethality resulting from Lphn2 deletion necessitates the establishment of cardiomyocyte-specific, tamoxifen-inducible Lphn2 knockout mice, which was achieved by crossing Lphn2flox/flox mice with mice having MerCreMer (tamoxifen-inducible Cre recombinase) under the α-myosin heavy chain promoter. RESULTS: Tamoxifen treatment for several days completely suppressed Lphn2 expression, specifically in the myocardium, and induced the dilated cardiomyopathy (D-CMP) phenotype with serious arrhythmia and sudden death in a short period of time. Transmission electron microscopy showed mitochondrial abnormalities, blurred Z-discs, and dehiscent myofibrils. The D-CMP phenotype, or heart failure, worsened during myocardial infarction. In a mechanistic study of D-CMP, Lphn2 knockout suppressed PGC-1α and mitochondrial dysfunction, leading to the accumulation of reactive oxygen species and the global suppression of junctional molecules, such as N-cadherin (adherens junction), DSC-2 (desmocollin-2; desmosome), and connexin-43 (gap junction), leading to the dehiscence of cardiac myofibers and serious arrhythmia. In an experimental therapeutic trial, activators of p38-MAPK, which is a downstream signaling molecule of Lphn2, remarkably rescued the D-CMP phenotype of Lphn2 knockout in the heart by restoring PGC-1α and mitochondrial function and recovering global junctional proteins. CONCLUSIONS: Lphn2 is a critical regulator of heart integrity by controlling mitochondrial functions and cell-to-cell junctions in cardiomyocytes. Its deficiency leads to D-CMP, which can be rescued by activators of the p38-MAPK pathway.

18.
EMBO Rep ; 25(9): 4013-4032, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39112792

RESUMEN

VE-cadherin is a major component of the cell adhesion machinery which provides integrity and plasticity of the barrier function of endothelial junctions. Here, we analyze whether ubiquitination of VE-cadherin is involved in the regulation of the endothelial barrier in inflammation in vivo. We show that histamine and thrombin stimulate ubiquitination of VE-cadherin in HUVEC, which is completely blocked if the two lysine residues K626 and K633 are replaced by arginine. Similarly, these mutations block histamine-induced endocytosis of VE-cadherin. We describe two knock-in mouse lines with endogenous VE-cadherin being replaced by either a VE-cadherin K626/633R or a VE-cadherin KallR mutant, where all seven lysine residues are mutated. Mutant mice are viable, healthy and fertile with normal expression levels of junctional VE-cadherin. Histamine- or LPS-induced vascular permeability in the skin or lung of both of these mutant mice are clearly and similarly reduced in comparison to WT mice. Additionally, we detect a role of K626/633 for lysosomal targeting. Collectively, our findings identify ubiquitination of VE-cadherin as important for the induction of vascular permeability in the inflamed skin and lung.


Asunto(s)
Antígenos CD , Cadherinas , Permeabilidad Capilar , Inflamación , Ubiquitinación , Animales , Humanos , Ratones , Antígenos CD/metabolismo , Antígenos CD/genética , Cadherinas/metabolismo , Cadherinas/genética , Endocitosis , Técnicas de Sustitución del Gen , Histamina/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Inflamación/metabolismo , Inflamación/genética , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Lisosomas/metabolismo , Piel/metabolismo
19.
Mol Cell ; 69(4): 689-698.e7, 2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29429925

RESUMEN

Endothelial-to-mesenchymal transition (EndoMT) is a cellular process often initiated by the transforming growth factor ß (TGF-ß) family of ligands. Although required for normal heart valve development, deregulated EndoMT is linked to a wide range of pathological conditions. Here, we demonstrate that endothelial fatty acid oxidation (FAO) is a critical in vitro and in vivo regulator of EndoMT. We further show that this FAO-dependent metabolic regulation of EndoMT occurs through alterations in intracellular acetyl-CoA levels. Disruption of FAO via conditional deletion of endothelial carnitine palmitoyltransferase II (Cpt2E-KO) augments the magnitude of embryonic EndoMT, resulting in thickening of cardiac valves. Consistent with the known pathological effects of EndoMT, adult Cpt2E-KO mice demonstrate increased permeability in multiple vascular beds. Taken together, these results demonstrate that endothelial FAO is required to maintain endothelial cell fate and that therapeutic manipulation of endothelial metabolism could provide the basis for treating a growing number of EndoMT-linked pathological conditions.


Asunto(s)
Carnitina O-Palmitoiltransferasa/fisiología , Endotelio Vascular/metabolismo , Transición Epitelial-Mesenquimal , Ácidos Grasos/química , 3-Hidroxiacil-CoA Deshidrogenasas , Acetilcoenzima A/metabolismo , Acetil-CoA C-Aciltransferasa , Animales , Isomerasas de Doble Vínculo Carbono-Carbono , Células Cultivadas , Endotelio Vascular/citología , Enoil-CoA Hidratasa , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Racemasas y Epimerasas , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo
20.
Proc Natl Acad Sci U S A ; 120(34): e2308804120, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579173

RESUMEN

The next-generation semiconductors and devices, such as halide perovskites and flexible electronics, are extremely sensitive to water, thus demanding highly effective protection that not only seals out water in all forms (vapor, droplet, and ice), but simultaneously provides mechanical flexibility, durability, transparency, and self-cleaning. Although various solid-state encapsulation methods have been developed, no strategy is available that can fully meet all the above requirements. Here, we report a bioinspired liquid-based encapsulation strategy that offers protection from water without sacrificing the operational properties of the encapsulated materials. Using halide perovskite as a model system, we show that damage to the perovskite from exposure to water is drastically reduced when it is coated by a polymer matrix with infused hydrophobic oil. With a combination of experimental and simulation studies, we elucidated the fundamental transport mechanisms of ultralow water transmission rate that stem from the ability of the infused liquid to fill-in and reduce defects in the coating layer, thus eliminating the low-energy diffusion pathways, and to cause water molecules to diffuse as clusters, which act together as an excellent water permeation barrier. Importantly, the presence of the liquid, as the central component in this encapsulation method provides a unique possibility of reversing the water transport direction; therefore, the lifetime of enclosed water-sensitive materials could be significantly extended via replenishing the hydrophobic oils regularly. We show that the liquid encapsulation platform presented here has high potential in providing not only water protection of the functional device but also flexibility, optical transparency, and self-healing of the coating layer, which are critical for a variety of applications, such as in perovskite solar cells and bioelectronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA