Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.218
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Immunol ; 39: 791-817, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33902311

RESUMEN

Programmed cell death (PCD) is a requisite feature of development and homeostasis but can also be indicative of infections, injuries, and pathologies. In concordance with these heterogeneous contexts, an array of disparate effector responses occur downstream of cell death and its clearance-spanning tissue morphogenesis, homeostatic turnover, host defense, active dampening of inflammation, and tissue repair. This raises a fundamental question of how a single contextually appropriate response ensues after an event of PCD. To explore how complex inputs may together tailor the specificity of the resulting effector response, here we consider (a) the varying contexts during which different cell death modalities are observed, (b) the nature of the information that can be passed on by cell corpses, and (c) the ways by which efferocyte populations synthesize signals from dying cells with those from the surrounding microenvironment.


Asunto(s)
Apoptosis , Animales , Muerte Celular , Homeostasis , Humanos
2.
Annu Rev Immunol ; 36: 489-517, 2018 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-29400998

RESUMEN

The human body generates 10-100 billion cells every day, and the same number of cells die to maintain homeostasis in our body. Cells infected by bacteria or viruses also die. The cell death that occurs under physiological conditions mainly proceeds by apoptosis, which is a noninflammatory, or silent, process, while pathogen infection induces necroptosis or pyroptosis, which activates the immune system and causes inflammation. Dead cells generated by apoptosis are quickly engulfed by macrophages for degradation. Caspases are a large family of cysteine proteases that act in cascades. A cascade that leads to caspase 3 activation mediates apoptosis and is responsible for killing cells, recruiting macrophages, and presenting an "eat me" signal(s). When apoptotic cells are not efficiently engulfed by macrophages, they undergo secondary necrosis and release intracellular materials that represent a damage-associated molecular pattern, which may lead to a systemic lupus-like autoimmune disease.


Asunto(s)
Apoptosis/inmunología , Fagocitosis/inmunología , Animales , Biomarcadores , Caspasas/metabolismo , Muerte Celular , Humanos , Lisosomas/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Fosfatidilserinas/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores de Muerte Celular/metabolismo , Transducción de Señal , Especificidad por Sustrato
3.
Cell ; 187(20): 5665-5678.e18, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39208797

RESUMEN

In mammalian cells, two phosphatidylserine (PS) synthases drive PS synthesis. Gain-of-function mutations in the Ptdss1 gene lead to heightened PS production, causing Lenz-Majewski syndrome (LMS). Recently, pharmacological inhibition of PSS1 has been shown to suppress tumorigenesis. Here, we report the cryo-EM structures of wild-type human PSS1 (PSS1WT), the LMS-causing Pro269Ser mutant (PSS1P269S), and PSS1WT in complex with its inhibitor DS55980254. PSS1 contains 10 transmembrane helices (TMs), with TMs 4-8 forming a catalytic core in the luminal leaflet. These structures revealed a working mechanism of PSS1 akin to the postulated mechanisms of the membrane-bound O-acyltransferase family. Additionally, we showed that both PS and DS55980254 can allosterically inhibit PSS1 and that inhibition by DS55980254 activates the SREBP pathways, thus enhancing the expression of LDL receptors and increasing cellular LDL uptake. This work uncovers a mechanism of mammalian PS synthesis and suggests that selective PSS1 inhibitors have the potential to lower blood cholesterol levels.


Asunto(s)
Fosfatidilserinas , Humanos , Fosfatidilserinas/metabolismo , Microscopía por Crioelectrón , Lipoproteínas LDL/metabolismo , Receptores de LDL/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/metabolismo , CDPdiacilglicerol-Serina O-Fosfatidiltransferasa/genética , Animales , Células HEK293
4.
Annu Rev Cell Dev Biol ; 37: 89-114, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34152790

RESUMEN

Recent observations indicate that, rather than being an all-or-none response, phagocytosis is finely tuned by a host of developmental and environmental factors. The expression of key phagocytic determinants is regulated via transcriptional and epigenetic means that confer memory on the process. Membrane traffic, the cytoskeleton, and inside-out signaling control the activation of phagocytic receptors and their ability to access their targets. An exquisite extra layer of complexity is introduced by the coexistence of distinct "eat-me" and "don't-eat-me" signals on targets and of corresponding "eat" and "don't-eat" receptors on the phagocyte surface. Moreover, assorted physical barriers constitute "don't-come-close-to-me" hurdles that obstruct the engagement of ligands by receptors. The expression, mobility, and accessibility of all these determinants can be modulated, conferring extreme plasticity on phagocytosis and providing attractive targets for therapeutic intervention in cancer, atherosclerosis, and dementia.


Asunto(s)
Neoplasias , Plásticos , Humanos , Fagocitos , Fagocitosis/genética , Plásticos/uso terapéutico , Transducción de Señal/fisiología
5.
Cell ; 177(4): 881-895.e17, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31051106

RESUMEN

Non-alcoholic fatty liver is the most common liver disease worldwide. Here, we show that the mitochondrial protein mitofusin 2 (Mfn2) protects against liver disease. Reduced Mfn2 expression was detected in liver biopsies from patients with non-alcoholic steatohepatitis (NASH). Moreover, reduced Mfn2 levels were detected in mouse models of steatosis or NASH, and its re-expression in a NASH mouse model ameliorated the disease. Liver-specific ablation of Mfn2 in mice provoked inflammation, triglyceride accumulation, fibrosis, and liver cancer. We demonstrate that Mfn2 binds phosphatidylserine (PS) and can specifically extract PS into membrane domains, favoring PS transfer to mitochondria and mitochondrial phosphatidylethanolamine (PE) synthesis. Consequently, hepatic Mfn2 deficiency reduces PS transfer and phospholipid synthesis, leading to endoplasmic reticulum (ER) stress and the development of a NASH-like phenotype and liver cancer. Ablation of Mfn2 in liver reveals that disruption of ER-mitochondrial PS transfer is a new mechanism involved in the development of liver disease.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fosfatidilserinas/metabolismo , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Inflamación/metabolismo , Hígado/patología , Hepatopatías/etiología , Hepatopatías/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Cultivo Primario de Células , Transporte de Proteínas/fisiología , Transducción de Señal , Triglicéridos/metabolismo
6.
Cell ; 168(1-2): 239-251.e16, 2017 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-28041850

RESUMEN

K-Ras is targeted to the plasma membrane by a C-terminal membrane anchor that comprises a farnesyl-cysteine-methyl-ester and a polybasic domain. We used quantitative spatial imaging and atomistic molecular dynamics simulations to examine molecular details of K-Ras plasma membrane binding. We found that the K-Ras anchor binds selected plasma membrane anionic lipids with defined head groups and lipid side chains. The precise amino acid sequence and prenyl group define a combinatorial code for lipid binding that extends beyond simple electrostatics; within this code lysine and arginine residues are non-equivalent and prenyl chain length modifies nascent polybasic domain lipid preferences. The code is realized by distinct dynamic tertiary structures of the anchor on the plasma membrane that govern amino acid side-chain-lipid interactions. An important consequence of this specificity is the ability of such anchors when aggregated to sort subsets of phospholipids into nanoclusters with defined lipid compositions that determine K-Ras signaling output.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Membrana Celular/química , Humanos , Lípidos/química , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Neopreno/química , Neopreno/metabolismo , Dominios Proteicos , Proteínas Proto-Oncogénicas p21(ras)/genética
7.
Cell ; 169(2): 286-300.e16, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28388412

RESUMEN

The activation of mixed lineage kinase-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3) results in plasma membrane (PM) disruption and a form of regulated necrosis, called necroptosis. Here, we show that, during necroptosis, MLKL-dependent calcium (Ca2+) influx and phosphatidylserine (PS) exposure on the outer leaflet of the plasma membrane preceded loss of PM integrity. Activation of MLKL results in the generation of broken, PM "bubbles" with exposed PS that are released from the surface of the otherwise intact cell. The ESCRT-III machinery is required for formation of these bubbles and acts to sustain survival of the cell when MLKL activation is limited or reversed. Under conditions of necroptotic cell death, ESCRT-III controls the duration of plasma membrane integrity. As a consequence of the action of ESCRT-III, cells undergoing necroptosis can express chemokines and other regulatory molecules and promote antigenic cross-priming of CD8+ T cells.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Necrosis/metabolismo , Animales , Calcio/metabolismo , Supervivencia Celular , Células HT29 , Humanos , Células Jurkat , Ratones , Células 3T3 NIH , Fosfatidilserinas , Proteínas Quinasas/metabolismo , Transducción de Señal
8.
Mol Cell ; 82(22): 4262-4276.e5, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36347258

RESUMEN

BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.


Asunto(s)
Cisteína , Proteínas Proto-Oncogénicas B-raf , Humanos , Cisteína/genética , Proteínas Proto-Oncogénicas B-raf/genética , Dominios Proteicos , Mutación , Síndrome
9.
Mol Cell ; 81(9): 2031-2040.e8, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33909989

RESUMEN

Autophagy is a fundamental catabolic process that uses a unique post-translational modification, the conjugation of ATG8 protein to phosphatidylethanolamine (PE). ATG8 lipidation also occurs during non-canonical autophagy, a parallel pathway involving conjugation of ATG8 to single membranes (CASM) at endolysosomal compartments, with key functions in immunity, vision, and neurobiology. It is widely assumed that CASM involves the same conjugation of ATG8 to PE, but this has not been formally tested. Here, we discover that all ATG8s can also undergo alternative lipidation to phosphatidylserine (PS) during CASM, induced pharmacologically, by LC3-associated phagocytosis or influenza A virus infection, in mammalian cells. Importantly, ATG8-PS and ATG8-PE adducts are differentially delipidated by the ATG4 family and bear different cellular dynamics, indicating significant molecular distinctions. These results provide important insights into autophagy signaling, revealing an alternative form of the hallmark ATG8 lipidation event. Furthermore, ATG8-PS provides a specific "molecular signature" for the non-canonical autophagy pathway.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Autofagosomas/metabolismo , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Autofagia , Proteínas Asociadas a Microtúbulos/metabolismo , Fosfatidilserinas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Autofagosomas/efectos de los fármacos , Autofagosomas/genética , Autofagosomas/patología , Familia de las Proteínas 8 Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Femenino , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Virus de la Influenza A/patogenicidad , Macrólidos/farmacología , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/genética , Monensina/farmacología , Fagocitosis , Fosfatidiletanolaminas/metabolismo , Células RAW 264.7 , Transducción de Señal
10.
Mol Cell ; 81(7): 1397-1410.e9, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33725486

RESUMEN

Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasas/metabolismo , Membrana Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Proteolisis , Animales , Proteínas Reguladoras de la Apoptosis/genética , Caspasas/genética , Línea Celular Tumoral , Membrana Celular/genética , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Proteínas de la Membrana/genética , Ratones , Fosfolípidos/genética , Multimerización de Proteína
11.
EMBO J ; 43(16): 3414-3449, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38918635

RESUMEN

Phosphatidylserine (PS) is an important anionic phospholipid that is synthesized within the endoplasmic reticulum (ER). While PS shows the highest enrichment and serves important functional roles in the plasma membrane (PM) but its role in the nucleus is poorly explored. Using three orthogonal approaches, we found that PS is also uniquely enriched in the inner nuclear membrane (INM) and the nuclear reticulum (NR). Nuclear PS is critical for supporting the translocation of CCTα and Lipin1α, two key enzymes important for phosphatidylcholine (PC) biosynthesis, from the nuclear matrix to the INM and NR in response to oleic acid treatment. We identified the PS-interacting regions within the M-domain of CCTα and M-Lip domain of Lipin1α, and show that lipid droplet formation is altered by manipulations of nuclear PS availability. Our studies reveal an unrecognized regulatory role of nuclear PS levels in the regulation of key PC synthesizing enzymes within the nucleus.


Asunto(s)
Citidililtransferasa de Colina-Fosfato , Membrana Nuclear , Fosfatidilcolinas , Fosfatidilserinas , Membrana Nuclear/metabolismo , Fosfatidilserinas/metabolismo , Fosfatidilcolinas/metabolismo , Citidililtransferasa de Colina-Fosfato/metabolismo , Citidililtransferasa de Colina-Fosfato/genética , Humanos , Animales , Ratones , Núcleo Celular/metabolismo , Retículo Endoplásmico/metabolismo
12.
Immunity ; 51(6): 983-996.e6, 2019 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-31836429

RESUMEN

Excessive activation of the coagulation system leads to life-threatening disseminated intravascular coagulation (DIC). Here, we examined the mechanisms underlying the activation of coagulation by lipopolysaccharide (LPS), the major cell-wall component of Gram-negative bacteria. We found that caspase-11, a cytosolic LPS receptor, activated the coagulation cascade. Caspase-11 enhanced the activation of tissue factor (TF), an initiator of coagulation, through triggering the formation of gasdermin D (GSDMD) pores and subsequent phosphatidylserine exposure, in a manner independent of cell death. GSDMD pores mediated calcium influx, which induced phosphatidylserine exposure through transmembrane protein 16F, a calcium-dependent phospholipid scramblase. Deletion of Casp11, ablation of Gsdmd, or neutralization of phosphatidylserine or TF prevented LPS-induced DIC. In septic patients, plasma concentrations of interleukin (IL)-1α and IL-1ß, biomarkers of GSDMD activation, correlated with phosphatidylserine exposure in peripheral leukocytes and DIC scores. Our findings mechanistically link immune recognition of LPS to coagulation, with implications for the treatment of DIC.


Asunto(s)
Caspasas Iniciadoras/metabolismo , Coagulación Intravascular Diseminada/patología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Fosfatidilserinas/metabolismo , Tromboplastina/metabolismo , Animales , Coagulación Sanguínea/fisiología , Caspasas Iniciadoras/genética , Línea Celular Tumoral , Endotoxemia/patología , Activación Enzimática , Células HT29 , Células HeLa , Humanos , Interleucina-1alfa/sangre , Interleucina-1beta/sangre , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Unión a Fosfato/genética , Piroptosis/fisiología , Transducción de Señal/fisiología
13.
EMBO J ; 42(14): e111790, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37211968

RESUMEN

The mature mammalian brain connectome emerges during development via the extension and pruning of neuronal connections. Glial cells have been identified as key players in the phagocytic elimination of neuronal synapses and projections. Recently, phosphatidylserine has been identified as neuronal "eat-me" signal that guides elimination of unnecessary input sources, but the associated transduction systems involved in such pruning are yet to be described. Here, we identified Xk-related protein 8 (Xkr8), a phospholipid scramblase, as a key factor for the pruning of axons in the developing mammalian brain. We found that mouse Xkr8 is highly expressed immediately after birth and required for phosphatidylserine exposure in the hippocampus. Mice lacking Xkr8 showed excess excitatory nerve terminals, increased density of cortico-cortical and cortico-spinal projections, aberrant electrophysiological profiles of hippocampal neurons, and global brain hyperconnectivity. These data identify phospholipid scrambling by Xkr8 as a central process in the labeling and discrimination of developing neuronal projections for pruning in the mammalian brain.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Proteínas de Transferencia de Fosfolípidos , Animales , Ratones , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Fosfatidilserinas/metabolismo , Axones/metabolismo , Plasticidad Neuronal , Mamíferos , Proteínas de la Membrana/metabolismo
14.
Mol Cell ; 75(5): 1043-1057.e8, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31402097

RESUMEN

The plasma membrane (PM) is composed of a complex lipid mixture that forms heterogeneous membrane environments. Yet, how small-scale lipid organization controls physiological events at the PM remains largely unknown. Here, we show that ORP-related Osh lipid exchange proteins are critical for the synthesis of phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2], a key regulator of dynamic events at the PM. In real-time assays, we find that unsaturated phosphatidylserine (PS) and sterols, both Osh protein ligands, synergistically stimulate phosphatidylinositol 4-phosphate 5-kinase (PIP5K) activity. Biophysical FRET analyses suggest an unconventional co-distribution of unsaturated PS and phosphatidylinositol 4-phosphate (PI4P) species in sterol-containing membrane bilayers. Moreover, using in vivo imaging approaches and molecular dynamics simulations, we show that Osh protein-mediated unsaturated PI4P and PS membrane lipid organization is sensed by the PIP5K specificity loop. Thus, ORP family members create a nanoscale membrane lipid environment that drives PIP5K activity and PI(4,5)P2 synthesis that ultimately controls global PM organization and dynamics.


Asunto(s)
Proteínas Portadoras/metabolismo , Fosfatidilinositol 4,5-Difosfato/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Portadoras/genética , Fosfatidilinositol 4,5-Difosfato/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
Proc Natl Acad Sci U S A ; 121(27): e2311831121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38941274

RESUMEN

TMEM16F is a calcium-activated phospholipid scramblase and nonselective ion channel, which allows the movement of lipids bidirectionally across the plasma membrane. While the functions of TMEM16F have been extensively characterized in multiple cell types, the role of TMEM16F in the central nervous system remains largely unknown. Here, we sought to study how TMEM16F in the brain may be involved in neurodegeneration. Using a mouse model that expresses the pathological P301S human tau (PS19 mouse), we found reduced tauopathy and microgliosis in 6- to 7-mo-old PS19 mice lacking TMEM16F. Furthermore, this reduction of pathology can be recapitulated in the PS19 mice with TMEM16F removed from neurons, while removal of TMEM16F from microglia of PS19 mice did not significantly impact tauopathy at this time point. Moreover, TMEM16F mediated aberrant phosphatidylserine exposure in neurons with phospho-tau burden. These studies raise the prospect of targeting TMEM16F in neurons as a potential treatment of neurodegeneration.


Asunto(s)
Anoctaminas , Neuronas , Fosfatidilserinas , Tauopatías , Proteínas tau , Animales , Anoctaminas/metabolismo , Anoctaminas/genética , Fosfatidilserinas/metabolismo , Neuronas/metabolismo , Neuronas/patología , Proteínas tau/metabolismo , Proteínas tau/genética , Ratones , Tauopatías/metabolismo , Tauopatías/patología , Humanos , Microglía/metabolismo , Microglía/patología , Fosforilación , Ratones Transgénicos , Modelos Animales de Enfermedad , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Encéfalo/metabolismo , Encéfalo/patología , Ratones Noqueados
16.
Proc Natl Acad Sci U S A ; 121(15): e2316447121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557174

RESUMEN

Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.


Asunto(s)
Receptor 2 Celular del Virus de la Hepatitis A , Células Asesinas Naturales , Leucemia , Linfoma , Membrana Celular/metabolismo , Receptor 2 Celular del Virus de la Hepatitis A/metabolismo , Interferón gamma/metabolismo , Receptores de Células Asesinas Naturales , Humanos , Leucemia/metabolismo , Linfoma/metabolismo , Proteínas de la Membrana/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(16): e2210047120, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37040405

RESUMEN

CD8+ T cells are crucial for the clearance of viral infections. During the acute phase, proinflammatory conditions increase the amount of circulating phosphatidylserine+ (PS) extracellular vesicles (EVs). These EVs interact especially with CD8+ T cells; however, it remains unclear whether they can actively modulate CD8+ T cell responses. In this study, we have developed a method to analyze cell-bound PS+ EVs and their target cells in vivo. We show that EV+ cell abundance increases during viral infection and that EVs preferentially bind to activated, but not naive, CD8+ T cells. Superresolution imaging revealed that PS+ EVs attach to clusters of CD8 molecules on the T cell surface. Furthermore, EV-binding induces antigen (Ag)-specific TCR signaling and increased nuclear translocation of the transcription factor Nuclear factor of activated T-cells (NFATc1) in vivo. EV-decorated but not EV-free CD8+ T cells are enriched for gene signatures associated with T-cell receptor signaling, early effector differentiation, and proliferation. Our data thus demonstrate that PS+ EVs provide Ag-specific adjuvant effects to activated CD8+ T cells in vivo.


Asunto(s)
Vesículas Extracelulares , Virosis , Humanos , Linfocitos T CD8-positivos , Fosfatidilserinas/metabolismo , Vesículas Extracelulares/metabolismo , Virosis/metabolismo , Diferenciación Celular
18.
Proc Natl Acad Sci U S A ; 120(24): e2303392120, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37276397

RESUMEN

Phagocytic clearance of degenerating neurons is triggered by "eat-me" signals exposed on the neuronal surface. The conserved neuronal eat-me signal phosphatidylserine (PS) and the engulfment receptor Draper (Drpr) mediate phagocytosis of degenerating neurons in Drosophila. However, how PS is recognized by Drpr-expressing phagocytes in vivo remains poorly understood. Using multiple models of dendrite degeneration, we show that the Drosophila chemokine-like protein Orion can bind to PS and is responsible for detecting PS exposure on neurons; it is supplied cell-non-autonomously to coat PS-exposing dendrites and to mediate interactions between PS and Drpr, thus enabling phagocytosis. As a result, the accumulation of Orion on neurons and on phagocytes produces opposite outcomes by potentiating and suppressing phagocytosis, respectively. Moreover, the Orion dosage is a key determinant of the sensitivity of phagocytes to PS exposed on neurons. Lastly, mutagenesis analyses show that the sequence motifs shared between Orion and human immunomodulatory proteins are important for Orion function. Thus, our results uncover a missing link in PS-mediated phagocytosis in Drosophila and imply conserved mechanisms of phagocytosis of neurons.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Apoptosis/fisiología , Quimiocinas , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuronas/metabolismo , Fagocitosis/fisiología , Fosfatidilserinas/metabolismo
19.
Proc Natl Acad Sci U S A ; 120(35): e2301410120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607230

RESUMEN

The membrane contact site ER/PM junctions are hubs for signaling pathways, including Ca2+ signaling. Phosphatidylserine (PtdSer) mediates various physiological functions; however, junctional PtdSer composition and the role of PtdSer in Ca2+ signaling and Ca2+-dependent gene regulation are not understood. Here, we show that STIM1-formed junctions are required for PI(4)P/PtdSer exchange by ORP5 and ORP8, which have reciprocal lipid exchange modes and function as a rheostat that sets the junctional PtdSer/PI(4)P ratio. Targeting the ORP5 and ORP8 and their lipid transfer ORD domains to PM subdomains revealed that ORP5 sets low and ORP8 high junctional PI(4)P/PtdSer ratio that controls STIM1-STIM1 and STIM1-Orai1 interaction and the activity of the SERCA pump to determine the pattern of receptor-evoked Ca2+ oscillations, and consequently translocation of NFAT to the nucleus. Significantly, targeting the ORP5 and ORP8 ORDs to the STIM1 ER subdomain reversed their function. Notably, changing PI(4)P/PtdSer ratio by hydrolysis of PM or ER PtdSer with targeted PtdSer-specific PLA1a1 reproduced the ORPs function. The function of the ORPs is determined both by their differential lipid exchange modes and by privileged localization at the ER/PM subdomains. These findings reveal a role of PtdSer as a signaling lipid that controls the available PM PI(4)P, the unappreciated role of ER PtdSer in cell function, and the diversity of the ER/PM junctions. The effect of PtdSer on the junctional PI(4)P level should have multiple implications in cellular signaling and functions.


Asunto(s)
Fosfatidilserinas , Transducción de Señal , Núcleo Celular , Hidrólisis , Membranas Mitocondriales
20.
Dev Biol ; 511: 1-11, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548146

RESUMEN

Maintenance of appropriate muscle mass is crucial for physical activity and metabolism. Aging and various pathological conditions can cause sarcopenia, a condition characterized by muscle mass decline. Although sarcopenia has been actively studied, the mechanisms underlying muscle atrophy are not well understood. Thus, we aimed to investigate the role of Phosphatidylserine synthase (Pss) in muscle development and homeostasis in Drosophila. The results showed that muscle-specific Pss knockdown decreased exercise capacity and produced sarcopenic phenotypes. In addition, it increased the apoptosis rate because of the elevated reactive oxygen species production resulting from mitochondrial dysfunction. Moreover, the autophagy rate increased due to increased FoxO activity caused by reduced Akt activity. Collectively, these findings demonstrate that enhanced apoptosis and autophagy rates resulting from muscle-specific Pss knockdown jointly contribute to sarcopenia development, highlighting the key role of the PSS pathway in muscle health.


Asunto(s)
Apoptosis , Proteínas de Drosophila , Drosophila melanogaster , Atrofia Muscular , Especies Reactivas de Oxígeno , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Especies Reactivas de Oxígeno/metabolismo , Autofagia/genética , Factores de Transcripción Forkhead/metabolismo , Factores de Transcripción Forkhead/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Músculo Esquelético/patología , Músculo Esquelético/metabolismo , Sarcopenia/patología , Sarcopenia/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Drosophila/metabolismo , Técnicas de Silenciamiento del Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA