RESUMEN
Widespread metastasis is the primary reason for the high mortality associated with ovarian cancer (OC), and effective targeted therapy for tumor aggressiveness is still insufficient in clinical practice. Therefore, it is urgent to find new targets to improve prognosis of patients. PDE4A is a cyclic nucleotide phosphodiesterase that plays a crucial role in the occurrence and development in various malignancies. Our study firstly reported the function of PDE4A in OC. Expression of PDE4A was validated through bioinformatics analysis, RT-qPCR, Western blot, and immunohistochemistry. Additionally, its impact on cell growth and motility was assessed via in vitro and in vivo experiments. PDE4A was downregulated in OC tissues compared with normal tissues and low PDE4A expression was correlated with poor clinical outcomes in OC patients. The knockdown of PDE4A significantly promoted the proliferation, migration and invasion of OC cells while overexpression of PDE4A resulted in the opposite effect. Furthermore, smaller and fewer tumor metastatic foci were observed in mice bearing PDE4A-overexpressing OVCAR3 cells. Mechanistically, downregulation of PDE4A expression can induce epithelial-mesenchymal transition (EMT) and nuclear translocation of Snail, which suggests that PDE4A plays a pivotal role in suppressing OC progression. Notably, Rolipram, the PDE4 inhibitor, mirrored the effects observed with PDE4A deletion. In summary, the downregulation of PDE4A appears to facilitate OC progression by modulating the Snail/EMT pathway, underscoring the potential of PDE4A as a therapeutic target against ovarian cancer metastasis.
Asunto(s)
Movimiento Celular , Proliferación Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Neoplasias Ováricas , Factores de Transcripción de la Familia Snail , Humanos , Femenino , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Animales , Proliferación Celular/genética , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Ratones , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Progresión de la Enfermedad , Ratones Desnudos , Ratones Endogámicos BALB C , Núcleo Celular/metabolismo , PronósticoRESUMEN
We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1ß (IL-1ß). Astrocytes treated with IL-1ß showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.
Asunto(s)
Aminopiridinas , Acuaporina 4 , Astrocitos , Benzamidas , Edema Encefálico , Infarto de la Arteria Cerebral Media , Inhibidores de Fosfodiesterasa 4 , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Daño por Reperfusión/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Masculino , Edema Encefálico/metabolismo , Edema Encefálico/etiología , Edema Encefálico/patología , Aminopiridinas/farmacología , Benzamidas/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ciclopropanos/farmacología , Proteína Forkhead Box O3/metabolismo , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismoRESUMEN
BACKGROUND: Epidermal remodeling and hypertrophy are hallmarks of skin fibrotic disorders, and keratinocyte to mesenchymal (EMT)-like transformations drive epidermis alteration in skin fibrosis such as keloids and hypertrophic scars (HTS). While phosphodiesterase 4 (PDE4) inhibitors have shown effectiveness in various fibrotic disorders, their role in skin fibrosis is not fully understood. This study aimed to explore the specific role of PDE4B in epidermal remodeling and hypertrophy seen in skin fibrosis. METHODS: In vitro experiments examined the effects of inhibiting PDE4A-D (with Roflumilast) or PDE4B (with siRNA) on TGFß1-induced EMT differentiation and dedifferentiation in human 3D epidermis. In vivo studies investigated the impact of PDE4 inhibition on HOCl-induced skin fibrosis and epidermal hypertrophy in mice, employing both preventive and therapeutic approaches. RESULTS: The study found increased levels of PDE4B (mRNA, protein) in keloids > HTS compared to healthy epidermis, as well as in TGFß-stimulated 3D epidermis. Keloids and HTS epidermis exhibited elevated levels of collagen Iα1, fibronectin, αSMA, N-cadherin, and NOX4 mRNA, along with decreased levels of E-cadherin and ZO-1, confirming an EMT process. Inhibition of both PDE4A-D and PDE4B prevented TGFß1-induced Smad3 and ERK1/2 phosphorylation and mesenchymal differentiation in vitro. PDE4A-D inhibition also promoted mesenchymal dedifferentiation and reduced TGFß1-induced ROS and keratinocyte senescence by rescuing PPM1A, a Smad3 phosphatase. In vivo, PDE4 inhibition mitigated HOCl-induced epidermal hypertrophy in mice in both preventive and therapeutic settings. CONCLUSIONS: Overall, the study supports the potential of PDE4 inhibitors, particularly PDE4B, in treating skin fibrosis, including keloids and HTS, shedding light on their functional role in this condition.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Fibrosis , Queloide , Queratinocitos , Inhibidores de Fosfodiesterasa 4 , Humanos , Queloide/metabolismo , Queloide/patología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Inhibidores de Fosfodiesterasa 4/farmacología , Animales , Ratones , Epidermis/metabolismo , Epidermis/patología , Factor de Crecimiento Transformador beta1/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , MasculinoRESUMEN
BACKGROUND: Glucagon-like peptide (GLP)-1 receptor (GLP1R) agonists exert a multitude of beneficial cardiovascular effects beyond control of blood glucose levels and obesity reduction. They also have anti-inflammatory actions through both central and peripheral mechanisms. GLP1R is a G protein-coupled receptor (GPCR), coupling to adenylyl cyclase (AC)-stimulatory Gs proteins to raise cyclic 3`-5`-adenosine monophosphate (cAMP) levels in cells. cAMP exerts various anti-apoptotic and anti-inflammatory effects via its effectors protein kinase A (PKA) and Exchange protein directly activated by cAMP (Epac). However, the precise role and importance of cAMP in mediating GLP1R`s anti-inflammatory actions, at least in the heart, remains to be determined. To this end, we tested the effects of the GLP1R agonist liraglutide on lipopolysaccharide (LPS)-induced acute inflammatory injury in H9c2 cardiac cells, either in the absence of cAMP production (AC inhibition) or upon enhancement of cAMP levels via phosphodiesterase (PDE)-4 inhibition with roflumilast. METHODS & RESULTS: Liraglutide dose-dependently inhibited LPS-induced apoptosis and increased cAMP levels in H9c2 cells, with roflumilast but also PDE8 inhibition further enhancing cAMP production by liraglutide. GLP1R-stimulated cAMP markedly suppressed the LPS-dependent induction of pro-inflammatory tumor necrosis factor (TNF)-a, interleukin (IL)-1b, and IL-6 cytokine expression, of inducible nitric oxide synthase (iNOS) expression and nuclear factor (NF)-kB activity, of matrix metalloproteinases (MMP)-2 and MMP-9 levels and activities, and of myocardial injury markers in H9c2 cardiac cells. The effects of liraglutide were mediated by the GLP1R since they were abolished by the GLP1R antagonist exendin(9-39). Importantly, AC inhibition completely abrogated liraglutide`s suppression of LPS-dependent inflammatory injury, whereas roflumilast significantly enhanced the protective effects of liraglutide against LPS-induced inflammation. Finally, PKA inhibition or Epac1/2 inhibition alone only partially blocked liraglutide`s suppression of LPS-induced inflammation in H9c2 cardiac cells, but, together, PKA and Epac1/2 inhibition fully prevented liraglutide from reducing LPS-dependent inflammation. CONCLUSIONS: cAMP, via activation of both PKA and Epac, is essential for GLP1R`s anti-inflammatory signaling in cardiac cells and that cAMP levels crucially regulate the anti-inflammatory efficacy of GLP1R agonists in the heart. Strategies that elevate cardiac cAMP levels, such as PDE4 inhibition, may potentiate the cardiovascular, including anti-inflammatory, benefits of GLP1R agonist drugs.
RESUMEN
Activation and transdifferentiation of hepatic stellate cells (HSC) into migratory myofibroblasts is a key process in liver fibrogenesis. Cell migration requires an active remodeling of the cytoskeleton, which is a tightly regulated process coordinated by Rho-specific guanine nucleotide exchange factors (GEFs) and the Rho family of small GTPases. Rho-associated kinase (ROCK) promotes assembly of focal adhesions and actin stress fibers by regulating cytoskeleton organization. GEF exchange protein directly activated by cAMP 1 (EPAC1) has been implicated in modulating TGFß1 and Rho signaling; however, its role in HSC migration has never been examined. The aim of this study was to evaluate the role of cAMP-degrading phosphodiesterase 4 (PDE4) enzymes in regulating EPAC1 signaling, HSC migration, and fibrogenesis. We show that PDE4 protein expression is increased in activated HSCs expressing alpha smooth muscle actin and active myosin light chain (MLC) in fibrotic tissues of human nonalcoholic steatohepatitis cirrhosis livers and mouse livers exposed to carbon tetrachloride. In human livers, TGFß1 levels were highly correlated with PDE4 expression. TGFß1 treatment of LX2 HSCs decreased levels of cAMP and EPAC1 and increased PDE4D expression. PDE4 specific inhibitor, rolipram, and an EPAC-specific agonist decreased TGFß1-mediated cell migration in vitro. In vivo, targeted delivery of rolipram to the liver prevented fibrogenesis and collagen deposition and decreased the expression of several fibrosis-related genes, and HSC activation. Proteomic analysis of mouse liver tissues identified the regulation of actin cytoskeleton by the kinase effectors of Rho GTPases as a major pathway impacted by rolipram. Western blot analyses confirmed that PDE4 inhibition decreased active MLC and endothelin 1 levels, key proteins involved in cytoskeleton remodeling and contractility. The current study, for the first time, demonstrates that PDE4 enzymes are expressed in hepatic myofibroblasts and promote cytoskeleton remodeling and HSC migration. © 2023 The Pathological Society of Great Britain and Ireland.
Asunto(s)
Actinas , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Animales , Humanos , Ratones , Actinas/metabolismo , Movimiento Celular , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/patología , Fibrosis , Células Estrelladas Hepáticas/metabolismo , Cirrosis Hepática/patología , Proteómica , Rolipram/metabolismoRESUMEN
BACKGROUND: The topical phosphodiesterase 4 inhibitor roflumilast has been studied in several dermatologic conditions. OBJECTIVE: Roflumilast foam 0.3% is being investigated as a topical treatment for seborrheic dermatitis (SD). METHODS: In this phase 3, double-blinded trial, patients with SD were randomly assigned (2:1 ratio) to once-daily roflumilast foam 0.3% or vehicle foam for 8 weeks. The primary efficacy outcome was Investigator Global Assessment (IGA) Success at week 8, defined as IGA of 0 (Clear) or 1 (Almost Clear) plus ≥2-point improvement from baseline. Safety was also assessed. RESULTS: 79.5% of roflumilast-treated and 58.0% of vehicle-treated patients met the primary endpoint (P < .001); statistically significant differences in IGA Success also favored roflumilast at week 2 (roflumilast: 43.0%; vehicle: 25.7%; P < .001) and week 4 (roflumilast: 73.1%; vehicle: 47.1%; P < .001). Roflumilast was well-tolerated with a low rate of treatment-emergent adverse events. LIMITATIONS: Study limitations include the 8-week treatment period for this chronic condition. CONCLUSIONS: Once-daily roflumilast foam was superior to vehicle in leading to IGA of Clear or Almost Clear plus ≥2-point improvement from baseline at 8 weeks in patients with SD. Longer trials are needed to determine durability and safety of roflumilast foam in SD.
Asunto(s)
Benzamidas , Dermatitis Seborreica , Adulto , Humanos , Adolescente , Resultado del Tratamiento , Aminopiridinas/efectos adversos , Inmunoglobulina A , Método Doble Ciego , Índice de Severidad de la Enfermedad , CiclopropanosRESUMEN
BACKGROUND: Crisaborole ointment, 2%, is a nonsteroidal topical phosphodiesterase 4 inhibitor approved for the treatment of mild-to-moderate atopic dermatitis. OBJECTIVE: To evaluate the efficacy and safety of crisaborole in stasis dermatitis (SD). METHODS: In this randomized, double-blind, vehicle-controlled, decentralized phase 2a study (NCT04091087), 65 participants aged ≥45 years with SD without active ulceration received crisaborole or vehicle (1:1) twice-daily for 6 weeks. The primary end point was percentage change from baseline in total sign score at week 6 based on in-person assessment. RESULTS: Crisaborole-treated participants had significantly reduced total sign score from baseline versus vehicle based on in-person (nondermatologist) assessment (-32.4% vs -18.1%, P = .0299) and central reader (dermatologists) assessment of photographs (-52.5% vs -10.3%, P = .0004). Efficacy according to success and improvement per Investigator's Global Assessment score and lesional percentage body surface area reached statistical significance based on central reader but not in-person assessments. Skin and subcutaneous tissue disorders were common all-causality treatment-emergent adverse events with crisaborole. LIMITATIONS: Small sample size and short treatment duration were key limitations. In-person assessment was not conducted by dermatologists. CONCLUSION: Crisaborole improved signs and symptoms of SD and was well tolerated. Central reader assessment represents a promising approach for siteless clinical research.
Asunto(s)
Dermatitis Atópica , Eccema , Dermatosis de la Pierna , Humanos , Compuestos de Boro/efectos adversos , Compuestos Bicíclicos Heterocíclicos con Puentes/efectos adversos , Dermatitis Atópica/diagnóstico , Método Doble Ciego , Eccema/tratamiento farmacológico , Pomadas/uso terapéutico , Piel , Resultado del Tratamiento , Prueba de Estudio ConceptualRESUMEN
BACKGROUND: Weight loss is reported with oral roflumilast, which is approved for chronic obstructive pulmonary disease (COPD). Recently, the drug has shown efficacy in psoriasis, a disease strongly linked to overweight/obesity. OBJECTIVE: To describe the effects of oral roflumilast on body weight and cardio-metabolic parameters in patients with psoriasis. METHODS: Posthoc analyses from the PSORRO study, where patients with moderate-to-severe plaque psoriasis were randomized 1:1 to oral roflumilast 500 µg once-daily or placebo for 12 weeks, followed by active, open-label treatment through week 24 in both groups. Changes in body weight, blood pressure, gastrointestinal symptoms, and laboratory tests were registered. No lifestyle or dietary interventions were applied. RESULTS: Forty-six patients were randomized. Baseline characteristics across groups were comparable; mean weight was 103.6 kg. In patients receiving roflumilast, median weight change was -2.6% and -4% at week 12 and 24, respectively. Corresponding numbers were 0.0% and 1.3% in patients initially allocated to placebo. Reduced appetite was more frequent with active therapy. No changes in blood pressure or laboratory tests were observed. LIMITATIONS: Posthoc analyses and low numbers. CONCLUSION: Oral roflumilast induced weight loss and reduced appetite, which support the growing evidence of roflumilast as an attractive treatment alternative for patients with psoriasis.
Asunto(s)
Aminopiridinas , Benzamidas , Ciclopropanos , Inhibidores de Fosfodiesterasa 4 , Psoriasis , Pérdida de Peso , Humanos , Aminopiridinas/administración & dosificación , Aminopiridinas/uso terapéutico , Ciclopropanos/administración & dosificación , Ciclopropanos/uso terapéutico , Ciclopropanos/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Psoriasis/tratamiento farmacológico , Benzamidas/administración & dosificación , Benzamidas/uso terapéutico , Benzamidas/efectos adversos , Adulto , Administración Oral , Inhibidores de Fosfodiesterasa 4/administración & dosificación , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Pérdida de Peso/efectos de los fármacos , Método Doble Ciego , Peso Corporal/efectos de los fármacos , Anciano , Presión Sanguínea/efectos de los fármacos , Resultado del Tratamiento , Índice de Severidad de la EnfermedadRESUMEN
Phosphodiesterases (PDEs) have become a promising therapeutic target for various disorders. PDEs are a vast and diversified family of enzymes that degrade cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have several biochemical and physiological functions. Phosphodiesterase 4 (PDE4) is the most abundant PDE in the central nervous system (CNS) and is extensively expressed in the mammalian brain, where it catalyzes the hydrolysis of intracellular cAMP. An alteration in the balance of PDE4 and cAMP results in the dysregulation of different biological mechanisms involved in neurodegenerative diseases. By inhibiting PDE4 with drugs, the levels of cAMP inside the cells could be stabilized, which may improve the symptoms of mental and neurological disorders such as memory loss, depression, and Parkinson's disease (PD). Though numerous studies have shown that phosphodiesterase 4 inhibitors (PDE4Is) are beneficial in PD, there are presently no approved PDE4I drugs for PD. This review presents an overview of PDE4Is and their effects on PD, their possible underlying mechanism in the restoration/protection of dopaminergic cell death, which holds promise for developing PDE4Is as a treatment strategy for PD. Methods on how these drugs could be effectively delivered to develop as a promising treatment for PD have been suggested.
Asunto(s)
Dietilestilbestrol/análogos & derivados , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Inhibidores de Fosfodiesterasa 4 , Animales , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/uso terapéutico , AMP Cíclico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , GMP Cíclico/metabolismo , Mamíferos/metabolismoRESUMEN
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high mortality lung disease. Although the antifibrotic drugs pirfenidone and nintedanib could slow the rate of lung function decline, the usual course of the condition is inexorably to respiratory failure and death. Therefore, new approaches and novel therapeutic drugs for the treatment of IPF are urgently needed. And the selective PDE4 inhibitor has in vivo and in vitro anti-fibrotic effects in IPF models. But the clinical application of most PDE4 inhibitors are limited by their unexpected and severe side effects such as nausea, vomiting, and diarrhea. Herein, structure-based optimizations of the natural product Moracin M resulted in a novel a novel series of 2-arylbenzofurans as potent PDE4 inhibitors. The most potent inhibitor L13 has an IC50 of 36 ± 7 nM with remarkable selectivity across the PDE families and administration of L13·citrate (10.0 mg/kg) exhibited comparable anti-pulmonary fibrosis effects to pirfenidone (300 mg/kg) in a bleomycin-induced IPF mice model, indicate that L13 is a potential lead for the treatment of IPF.
Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4 , Fibrosis Pulmonar Idiopática , Inhibidores de Fosfodiesterasa 4 , Fibrosis Pulmonar Idiopática/tratamiento farmacológico , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/inducido químicamente , Inhibidores de Fosfodiesterasa 4/farmacología , Inhibidores de Fosfodiesterasa 4/química , Inhibidores de Fosfodiesterasa 4/síntesis química , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Animales , Relación Estructura-Actividad , Ratones , Estructura Molecular , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Bleomicina , Relación Dosis-Respuesta a Droga , Ratones Endogámicos C57BL , Masculino , Benzofuranos/farmacología , Benzofuranos/química , Benzofuranos/síntesis químicaRESUMEN
In this study, we designed and synthesized novel analogues of roflumilast that exhibit selective inhibition of PDE-4B. To accomplish this target; synthesis of novel series (4a-u, 5a-i, and 6) was done, aiming at obtaining new PDE-4B inhibitors hits based on the proposed pharmacophore, 1-(cyclopropylmethoxy)-2-(difluoromethoxy) benzene moiety. Enzyme assay was used to measure the IC50 values for the PDE-4B inhibition of all the synthesized compounds along with roflumilast as a reference drug. The results demonstrated that most of the examined candidates exhibited considerable inhibitory activity against the PDE-4B enzyme. The four compounds (4i, 4k, 4p, and 4q) exhibited the highest potency (IC50 = 7.25, 7.15, 5.50, 7.19 nM, respectively) with no significant inhibition difference from roflumilast (no statistical difference at p < 0.05). Interestingly, compound 4p with 3-OH and 4-OCH3 substituents was found to be the most potent against PDE-4B enzyme (IC50 = 5.50 nM), compared to that of roflumilast (IC50 = 2.36 nM). Moreover, the most potent derivatives 4i, 4k, 4p, and 4q were further tested for PDE-4D inhibitory activity to investigate their PDE-4D/PDE-4B selectivity ratio. Compound 4k showed the highest selectivity towards PDE-4B isozyme more than the reference drug roflumilast (PDE-4D/4B IC50 ratio for compound 4k and roflumilast = 3.22 and 3.02, respectively). Additionally, compound 4p was chosen to test its selectivity for PDE-4B over PDE-8A, PDE-11A, and PDE-1B compared to thereference drug roflumilast. Compound 4p showed approximately 6-fold selectivity for PDE-4B over PDE-8A, about 5-fold selectivity for PDE-4B over PDE-11A, and about 11-fold selectivity of PDE-4B over PDE-1B. Compound 4p showed a higher selectivity towards PDE-4B than PDE-1B, more than the reference compound roflumilast. Furthermore, the most potent compounds (4i, 4k, 4p, 4q) were subjected to further investigation, and their effects on the cAMP level and percentage of inhibition of tumor necrosis factor-alpha (TNF-α) were studied and compared with reference drug roflumilast. Compound 4q showed the highest increase in the level of intracellular cAMP (6.55 ± 0.37 pmol/mL) and compound 4i showed the highest % of TNF-α inhibition (77.22 %). On the other side, a molecular docking study against PDE-4B clarified that all the examined candidates achieved nearly similar binding modes with similar orientations to that of the native roflumilast ligand and showed higher docking scores than roflumilast.
RESUMEN
Phosphodiesterases (PDEs) are important intracellular enzymes that hydrolyze the second messengers cAMP and/or cGMP. Now several studies have shown that PDE4 received particular attention due to which it represents the most prominent cAMP-metabolizing enzyme involved in many diseases. In this study, we performed prescreening of our internal compound library and discovered the compound (PTC-209) with moderate PDE4 inhibitory activity (IC50 of 4.78 ± 0.08 µM). And a series of 4-(imidazo[1,2-a]pyrimidin-3-yl)thiazol-2-amine derivatives as novel PDE4 inhibitors starting from PTC-209 were successfully designed and synthesized using a structure-based discovery strategy. L19, the most potent inhibitor, exhibited good inhibitory activity (IC50 of 0.48 ± 0.02 µM) and remarkable metabolic stability in rat liver microsomes. Our study presents an example of discovery novel PDE4 inhibitors, which would be helpful for design and optimization of novel inhibitors in future.
RESUMEN
Inhibition of phosphodiesterase 4D (PDE4D) enzymes has been investigated as therapeutic strategy to treat memory problems in Alzheimer's disease (AD). Although PDE4D inhibitors are effective in enhancing memory processes in rodents and humans, severe side effects may hamper their clinical use. PDE4D enzymes comprise different isoforms, which, when targeted specifically, can increase treatment efficacy and safety. The function of PDE4D isoforms in AD and in molecular memory processes per se has remained unresolved. Here, we report the upregulation of specific PDE4D isoforms in transgenic AD mice and hippocampal neurons exposed to amyloid-ß. Furthermore, by means of pharmacological inhibition and CRISPR-Cas9 knockdown, we show that the long-form PDE4D3, -D5, -D7, and -D9 isoforms regulate neuronal plasticity and convey resilience against amyloid-ß in vitro. These results indicate that isoform-specific, next to non-selective, PDE4D inhibition is efficient in promoting neuroplasticity in an AD context. Therapeutic effects of non-selective PDE4D inhibitors are likely achieved through actions on long isoforms. Future research should identify which long PDE4D isoforms should be specifically targeted in vivo to both improve treatment efficacy and reduce side effects.
Asunto(s)
Enfermedad de Alzheimer , Hidrolasas Diéster Fosfóricas , Humanos , Animales , Ratones , Neuritas , Péptidos beta-Amiloides , Neuronas , Ratones Transgénicos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4RESUMEN
Rationale: Phosphodiesterase-4 (PDE4) inhibitors have demonstrated increased efficacy in patients with chronic obstructive pulmonary disease who had chronic bronchitis or higher blood eosinophil counts. Further characterization of patients who are most likely to benefit is warranted. Objective: To identify determinants of response to the PDE4 inhibitor tanimilast. Methods: A PDE4 gene expression signature in blood was developed by unsupervised clustering of the ECLIPSE study dataset (ClinicalTrials.gov ID: NCT00292552; Gene Expression Omnibus Series ID: GSE76705). The signature was further evaluated using blood and sputum transcriptome data from the BIOMARKER study (NCT03004417; GSE133513), enabling validation of the association between PDE4 signaling and target biomarkers. Predictivity of the associated biomarkers against clinical response was then tested in the phase-2b PIONEER tanimilast study (NCT02986321). Measurements and Main Results: The PDE4 gene expression signature developed in the ECLIPSE dataset classified subgroups of patients associated with different PDE4 signaling in the BIOMARKER cohort with an area under the receiver operator curve of 98%. In the BIOMARKER study, serum IL-8 was the only variable that was consistently associated with PDE4 signaling, with lower levels associated with higher PDE4 activity. In the PIONEER study, the exacerbation rate reduction mediated by tanimilast treatment increased up to twofold in patients with lower IL-8 levels; 36% versus 18%, reaching statistical significance at ⩽20 pg/ml (P = 0.035). The combination with blood eosinophils ⩾150 µl-1 or chronic bronchitis provided further additive exacerbation rate reduction: 45% (P = 0.013) and 47% (P = 0.027), respectively. Conclusions: Using selected heterogeneous datasets, this analysis identifies IL-8 as an independent predictor of PDE4 inhibition, as tanimilast had a greater effect on exacerbation prevention in patients with chronic obstructive pulmonary disease who had lower baseline serum IL-8 levels. Testing of this biomarker in other datasets is warranted. Clinical trial registered with www.clinicaltrials.gov (NCT00292552 [Gene Expression Omnibus Series ID: GSE76705], NCT03004417 [GSE133513], and NCT02986321).
Asunto(s)
Bronquitis Crónica , Inhibidores de Fosfodiesterasa 4 , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/uso terapéutico , Interleucina-8 , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/genética , Inhibidores de Fosfodiesterasa 4/efectos adversos , BiomarcadoresRESUMEN
AIM: Circulated histones play a crucial role in the pathogenesis of infectious diseases and severe trauma, and it is one of the potential molecular targets for therapeutics. Recently, we reported that histone is one of the causative agents for urinary L-FABP increase. However, the mechanism is still unclear, especially in severe cases. We further investigated the mechanism of urinary L-FABP increase using a more severe mouse model with histone-induced kidney injury. This study also aims to evaluate the therapeutic responsiveness of urinary L-FABP as a preliminary study. METHODS: Human L-FABP chromosomal transgenic mice were administrated 30 mg/kg histone from a tail vein with a single dose. We also performed a comparative study in LPS administration model. For the evaluation of the therapeutic responsiveness of urinary L-FABP, we used heparin and rolipram. RESULTS: The histological change with cast formation as a characteristic of the models was observed in proximal tubules. Urinary L-FABP levels were significantly elevated and these levels tended to be higher in those with more cast formation. Heparin and rolipram had the ameliorative effect of the cast formation induced by histone and urinary L-FABP levels significantly decreased. CONCLUSION: Histone is one of the causative agents for the increase of urinary L-FABP at an early stage of AKI. In addition, it suggested that urinary L-FABP may be useful as a subclinical AKI marker reflecting kidney damage induced by histone. Furthermore, urinary L-FABP reflected the degree of the damage after the administration of therapeutic agents such as heparin and PDE4 inhibitor.
Asunto(s)
Lesión Renal Aguda , Histonas , Ratones , Animales , Humanos , Preparaciones Farmacéuticas , Rolipram , Riñón/patología , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/diagnóstico , Ratones Transgénicos , Proteínas de Unión a Ácidos Grasos/genética , Proteínas de Unión a Ácidos Grasos/orina , Biomarcadores/orina , Heparina , HígadoRESUMEN
With recent advances in topical therapies for atopic dermatitis (AD), steroid-sparing options like calcineurin inhibitors, Janus kinase (JAK) inhibitors, and phosphodiesterase-4 (PDE-4) inhibitors are becoming mainstays in therapy, underscoring the importance of careful selection and usage of topical corticosteroids (TCSs) to minimize side effects. Alongside the necessity of emollient use, these steroid-sparing alternatives offer rapid itch relief and efficacy in improving disease severity. While TCSs still hold a prominent role in AD management, promising novel topical treatments like tapinarof and live biotherapeutics to modulate the skin microbiome are also discussed. Overall, the recent addition of novel topical therapies offers diverse options for AD management and underscores the importance of topical treatments in the management of AD.
Asunto(s)
Dermatitis Atópica , Humanos , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/microbiología , Administración Tópica , Corticoesteroides/uso terapéutico , Corticoesteroides/administración & dosificación , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Administración Cutánea , Piel/efectos de los fármacos , Piel/microbiología , Piel/patología , Inhibidores de la Calcineurina/uso terapéutico , Inhibidores de la Calcineurina/administración & dosificación , Fármacos Dermatológicos/uso terapéutico , Fármacos Dermatológicos/administración & dosificación , Fármacos Dermatológicos/efectos adversosRESUMEN
OBJECTIVE: Inflammatory Bowel Disease (IBD) poses a persistent challenge in the realm of gastroenterology, necessitating continual exploration of innovative treatment strategies. The limited efficacy and potential side effects associated with existing therapeutic modalities underscore the urgent need for novel approaches in IBD management. This study aims to examine potential therapeutic targets and recent advancements in understanding the disease's intricate pathogenesis, with a spotlight on the gut microbiome, immune dysregulation, and genetic predispositions. METHODS: A comprehensive review was conducted to delve into the pressing demand for new avenues in IBD treatment. The study examined potential therapeutic targets such as phosphodiesterase 4 (PDE4) inhibitors, immune system modulators, Tyrosine kinase receptors (TYK), Toll-like receptors (TLRs), modulation of the gut microbiota, stem cell therapy, fibrosis management, interleukins (ILs) regulation, and oxidative stress mitigation. Additionally, advances in precision medicine, biologics, small molecule inhibitors, and microbiome modulation techniques were explored. RESULTS: The investigation unveiled promising therapeutic targets and provided insights into recent breakthroughs that herald a transformative era in the therapeutic landscape for IBD. Advances in precision medicine, biologics, small molecule inhibitors, and the exploration of microbiome modulation techniques stood out as pivotal milestones in the field of gastroenterology. CONCLUSIONS: The findings offer renewed hope for enhanced efficacy, reduced side effects, and improved patient outcomes in the treatment of IBD. These innovative approaches necessitate continual exploration and underscore the urgent need for novel strategies in IBD management, potentially revolutionizing the realm of gastroenterology.
Asunto(s)
Microbioma Gastrointestinal , Enfermedades Inflamatorias del Intestino , Humanos , Enfermedades Inflamatorias del Intestino/inmunología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/inmunología , Animales , Inhibidores de Fosfodiesterasa 4/uso terapéutico , Terapia Molecular Dirigida/métodos , Medicina de Precisión/métodosRESUMEN
BACKGROUND: Atopic dermatitis (AD) is a common skin condition with multiple topical treatment options, but uncertain comparative effects. OBJECTIVE: We sought to systematically synthesize the benefits and harms of AD prescription topical treatments. METHODS: For the 2023 American Academy of Allergy, Asthma & Immunology and American College of Allergy, Asthma, and Immunology Joint Task Force on Practice Parameters AD guidelines, we searched MEDLINE, EMBASE, CENTRAL, CINAHL, LILACS, ICTRP, and GREAT databases to September 5, 2022, for randomized trials addressing AD topical treatments. Paired reviewers independently screened records, extracted data, and assessed risk of bias. Random-effects network meta-analyses addressed AD severity, itch, sleep, AD-related quality of life, flares, and harms. The Grading of Recommendations Assessment, Development and Evaluation approach informed certainty of evidence ratings. We classified topical corticosteroids (TCS) using 7 groups-group 1 being most potent. This review is registered in the Open Science Framework (https://osf.io/q5m6s). RESULTS: The 219 included trials (43,123 patients) evaluated 68 interventions. With high-certainty evidence, pimecrolimus improved 6 of 7 outcomes-among the best for 2; high-dose tacrolimus (0.1%) improved 5-among the best for 2; low-dose tacrolimus (0.03%) improved 5-among the best for 1. With moderate- to high-certainty evidence, group 5 TCS improved 6-among the best for 3; group 4 TCS and delgocitinib improved 4-among the best for 2; ruxolitinib improved 4-among the best for 1; group 1 TCS improved 3-among the best for 2. These interventions did not increase harm. Crisaborole and difamilast were intermediately effective, but with uncertain harm. Topical antibiotics alone or in combination may be among the least effective. To maintain AD control, group 5 TCS were among the most effective, followed by tacrolimus and pimecrolimus. CONCLUSIONS: For individuals with AD, pimecrolimus, tacrolimus, and moderate-potency TCS are among the most effective in improving and maintaining multiple AD outcomes. Topical antibiotics may be among the least effective.
Asunto(s)
Asma , Dermatitis Atópica , Fármacos Dermatológicos , Eccema , Humanos , Dermatitis Atópica/tratamiento farmacológico , Tacrolimus/uso terapéutico , Metaanálisis en Red , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Fármacos Dermatológicos/uso terapéutico , Asma/tratamiento farmacológico , Antibacterianos/uso terapéuticoRESUMEN
Difamilast, a phosphodiesterase 4 (PDE4) inhibitor, has been shown to be effective in the treatment of atopic dermatitis (AD), although the mechanism involved remains unclear. Since IL-33 plays an important role in the pathogenesis of AD, we investigated the effect of difamilast on IL-33 activity. Since an in vitro model of cultured normal human epidermal keratinocytes (NHEKs) has been utilized to evaluate the pharmacological potential of adjunctive treatment of AD, we treated NHEKs with difamilast and analyzed the expression of the suppression of tumorigenicity 2 protein (ST2), an IL-33 receptor with transmembrane (ST2L) and soluble (sST2) isoforms. Difamilast treatment increased mRNA and protein levels of sST2, a decoy receptor suppressing IL-33 signal transduction, without affecting ST2L expression. Furthermore, supernatants from difamilast-treated NHEKs inhibited IL-33-induced upregulation of TNF-α, IL-5, and IL-13 in KU812 cells, a basophil cell line sensitive to IL-33. We also found that difamilast activated the aryl hydrocarbon receptor (AHR)-nuclear factor erythroid 2-related factor 2 (NRF2) axis. Additionally, the knockdown of AHR or NRF2 abolished the difamilast-induced sST2 production. These results indicate that difamilast treatment produces sST2 via the AHR-NRF2 axis, contributing to improving AD symptoms by inhibiting IL-33 activity.
Asunto(s)
Proteína 1 Similar al Receptor de Interleucina-1 , Interleucina-33 , Queratinocitos , Factor 2 Relacionado con NF-E2 , Inhibidores de Fosfodiesterasa 4 , Receptores de Hidrocarburo de Aril , Transducción de Señal , Humanos , Factor 2 Relacionado con NF-E2/metabolismo , Queratinocitos/metabolismo , Queratinocitos/efectos de los fármacos , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Proteína 1 Similar al Receptor de Interleucina-1/genética , Receptores de Hidrocarburo de Aril/metabolismo , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Inhibidores de Fosfodiesterasa 4/farmacología , Interleucina-33/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea CelularRESUMEN
Phosphodiesterases (PDE) are involved in the regulation of cellular physiological processes and neurological functions, including neuronal plasticity, synapto-genesis, synaptic transmission, memory formation and cognitive functions by catalyzing the hydrolysis of intracellular cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Many basic and clinical studies have shown that PDE4 inhibitors block or ameliorate the occurrence and development of central nervous system (CNS) diseases by inhibiting cAMP hydrolysis, increasing cAMP content and enhancing its downstream effects. PDE4 inhibitors have long-term potentiation effect, which can enhance phosphorylation of cAMP response element binding protein (CREB) and upregulate expression of memory related Arc genes in hippocampal neurons, thereby improving cognitive impairment and Alzheimer's disease-like symptoms. They can also delay the occurrence and development of Parkinson's disease by reducing the cytotoxicity induced by α-syn and increasing the effect of miR-124-3p on cell functions. Alteration of PDE4 activity is the molecular basis for psychosis and some cognitive disorders, therefore it is considered as a therapeutic target for schizophrenia. PDE4 inhibitors play a role in depression by inhibiting the advanced glycation end product receptor (RAGE), TLR4 and NLRP3 pathways in the hippocampus, reducing the activation of microglia and the production of IL-1ß, down-regulating HMGB1/RAGE signaling pathway and inhibiting inflammatory factors. PDE4 inhibitor plays a role in the treatment of autism spectrum disorder by reducing the damage of cerebellar glial cells, increasing nociceptive threshold, and improving mutual learning and memory deficits. PDE4 inhibitors might be used in the treatment of fragile X syndrome by regulating the level of cAMP and affecting the expression of fragile X mental retardation protein (FMRP). PDE4 inhibitors can also promote the differentiation of oligodendrocyte progenitor cells and enhance myelination, which has potential in the treatment of multiple sclerosis. PDE4 is also related to bipolar disorder, which may be one of the therapeutic targets. At present, several PDE4 inhibitors are in clinical trials for the treatment of CNS diseases. This article reviews and discusses the progress on basic research and clinical trials of PDE4 inhibitors in CNS diseases, providing a reference for the prevention and treatment of CNS diseases and the development of new drugs.