Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.175
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(2): 243-255.e15, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30827682

RESUMEN

Mammals cannot see light over 700 nm in wavelength. This limitation is due to the physical thermodynamic properties of the photon-detecting opsins. However, the detection of naturally invisible near-infrared (NIR) light is a desirable ability. To break this limitation, we developed ocular injectable photoreceptor-binding upconversion nanoparticles (pbUCNPs). These nanoparticles anchored on retinal photoreceptors as miniature NIR light transducers to create NIR light image vision with negligible side effects. Based on single-photoreceptor recordings, electroretinograms, cortical recordings, and visual behavioral tests, we demonstrated that mice with these nanoantennae could not only perceive NIR light, but also see NIR light patterns. Excitingly, the injected mice were also able to differentiate sophisticated NIR shape patterns. Moreover, the NIR light pattern vision was ambient-daylight compatible and existed in parallel with native daylight vision. This new method will provide unmatched opportunities for a wide variety of emerging bio-integrated nanodevice designs and applications. VIDEO ABSTRACT.


Asunto(s)
Nanopartículas/uso terapéutico , Células Fotorreceptoras de Vertebrados/fisiología , Visión Ocular/fisiología , Animales , Femenino , Rayos Infrarrojos , Inyecciones/métodos , Luz , Masculino , Mamíferos/fisiología , Ratones , Ratones Endogámicos C57BL , Opsinas/metabolismo , Retina/metabolismo , Retina/fisiología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/genética
2.
Cell ; 175(3): 652-664.e12, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30270038

RESUMEN

Non-image-forming vision in mammals is mediated primarily by melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs). In mouse M1-ipRGCs, by far the best-studied subtype, melanopsin activates PLCß4 (phospholipase C-ß4) to open TRPC6,7 channels, mechanistically similar to phototransduction in fly rhabdomeric (microvillous) photoreceptors. We report here that, surprisingly, mouse M4-ipRGCs rely on a different and hitherto undescribed melanopsin-driven, ciliary phototransduction mechanism involving cyclic nucleotide as the second messenger and HCN channels rather than CNG channels as the ion channel for phototransduction. Even more surprisingly, within an individual mouse M2-ipRGC, this HCN-channel-dependent, ciliary phototransduction pathway operates in parallel with the TRPC6,7-dependent rhabdomeric pathway. These findings reveal a complex heterogeneity in phototransduction among ipRGCs and, more importantly, break a general dogma about segregation of the two phototransduction motifs, likely with strong evolutionary implications.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Ganglionares de la Retina/metabolismo , Visión Ocular , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nucleótidos Cíclicos/metabolismo , Células Ganglionares de la Retina/fisiología , Canales Catiónicos TRPC/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(11): e2316118121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442152

RESUMEN

Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.


Asunto(s)
Fármacos Neuroprotectores , Distrofias Retinianas , Retinitis Pigmentosa , Animales , Ratones , Células Fotorreceptoras Retinianas Conos , Retinitis Pigmentosa/genética , Modelos Animales de Enfermedad , Células Germinativas , Receptores Nucleares Huérfanos
4.
Immunol Rev ; 319(1): 81-99, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37555340

RESUMEN

Mammalian photoreceptor outer segment renewal is a highly coordinated process that hinges on timed cell signaling between photoreceptor neurons and the adjacent retinal pigment epithelial (RPE). It is a strictly rhythmic, synchronized process that underlies in part circadian regulation. We highlight findings from recently developed methods that quantify distinct phases of outer segment renewal in retinal tissue. At light onset, outer segments expose the conserved "eat-me" signal phosphatidylserine exclusively at their distal, most aged tip. A coordinated two-receptor efferocytosis process follows, in which ligands bridge outer segment phosphatidylserine with the RPE receptors αvß5 integrin, inducing cytosolic signaling toward Rac1 and focal adhesion kinase/MERTK, and with MERTK directly, additionally inhibiting RhoA/ROCK and thus enabling F-actin dynamics favoring outer segment fragment engulfment. Photoreceptors and RPE persist for life with each RPE cell in the eye servicing dozens of overlying photoreceptors. Thus, RPE cells phagocytose more often and process more material than any other cell type. Mutant mice with impaired outer segment renewal largely retain functional photoreceptors and retinal integrity. However, when anti-inflammatory signaling in the RPE via MERTK or the related TYRO3 is lacking, catastrophic inflammation leads to immune cell infiltration that swiftly destroys the retina causing blindness.


Asunto(s)
Proteínas Proto-Oncogénicas , Proteínas Tirosina Quinasas Receptoras , Ratones , Animales , Humanos , Tirosina Quinasa c-Mer , Proteínas Tirosina Quinasas Receptoras/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Pigmentos Retinianos , Fosfatidilserinas , Retina/metabolismo , Fagocitosis , Inflamación , Mamíferos/metabolismo
5.
Hum Mol Genet ; 33(9): 802-817, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38297980

RESUMEN

Mutations in Cytosolic Carboxypeptidase-like Protein 5 (CCP5) are associated with vision loss in humans. To decipher the mechanisms behind CCP5-associated blindness, we generated a novel mouse model lacking CCP5. In this model, we found that increased tubulin glutamylation led to progressive cone-rod dystrophy, with cones showing a more pronounced and earlier functional loss than rod photoreceptors. The observed functional reduction was not due to cell death, levels, or the mislocalization of major phototransduction proteins. Instead, the increased tubulin glutamylation caused shortened photoreceptor axonemes and the formation of numerous abnormal membranous whorls that disrupted the integrity of photoreceptor outer segments (OS). Ultimately, excessive tubulin glutamylation led to the progressive loss of photoreceptors, affecting cones more severely than rods. Our results highlight the importance of maintaining tubulin glutamylation for normal photoreceptor function. Furthermore, we demonstrate that murine cone photoreceptors are more sensitive to disrupted tubulin glutamylation levels than rods, suggesting an essential role for axoneme in the structural integrity of the cone outer segment. This study provides valuable insights into the mechanisms of photoreceptor diseases linked to excessive tubulin glutamylation.


Asunto(s)
Distrofias de Conos y Bastones , Tubulina (Proteína) , Humanos , Ratones , Animales , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Distrofias de Conos y Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Mutación
6.
Hum Mol Genet ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39231530

RESUMEN

Mutations in PRPH2 are a relatively common cause of sight-robbing inherited retinal degenerations (IRDs). Peripherin-2 (PRPH2) is a photoreceptor-specific tetraspanin protein that structures the disk rim membranes of rod and cone outer segment (OS) organelles, and is required for OS morphogenesis. PRPH2 is noteworthy for its broad spectrum of disease phenotypes; both inter- and intra-familial heterogeneity have been widely observed and this variability in disease expression and penetrance confounds efforts to understand genotype-phenotype correlations and pathophysiology. Here we report the generation and initial characterization of a gene-edited animal model for PRPH2 disease associated with a nonsense mutation (c.1095:C>A, p.Y285X), which is predicted to truncate the peripherin-2 C-terminal domain. Young (P21) Prph2Y285X/WT mice developed near-normal photoreceptor numbers; however, OS membrane architecture was disrupted, OS protein levels were reduced, and in vivo and ex vivo electroretinography (ERG) analyses found that rod and cone photoreceptor function were each severely reduced. Interestingly, ERG studies also revealed that rod-mediated downstream signaling (b-waves) were functionally compensated in the young animals. This resiliency in retinal function was retained at P90, by which time substantial IRD-related photoreceptor loss had occurred. Altogether, the current studies validate a new mouse model for investigating PRPH2 disease pathophysiology, and demonstrate that rod and cone photoreceptor function and structure are each directly and substantially impaired by the Y285X mutation. They also reveal that Prph2 mutations can induce a functional compensation that resembles homeostatic plasticity, which can stabilize rod-derived signaling, and potentially dampen retinal dysfunction during some PRPH2-associated IRDs.

7.
J Cell Sci ; 137(7)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38477343

RESUMEN

Vertebrate photoreceptors detect light through a large cilium-based outer segment, which is filled with photopigment-laden membranous discs. Surrounding the base of the outer segment are microvilli-like calyceal processes (CPs). Although CP disruption has been associated with altered outer segment morphology and photoreceptor degeneration, the role of the CPs remains elusive. Here, we used zebrafish as a model to characterize CPs. We quantified CP parameters and report a strong disparity in outer segment coverage between photoreceptor subtypes. CP length is stable across light and dark conditions, yet heat-shock inducible expression of tagged actin revealed rapid turnover of the CP actin core. Detailed imaging of the embryonic retina uncovered substantial remodeling of the developing photoreceptor apical surface, including a transition from dynamic tangential processes to vertically oriented CPs immediately prior to outer segment formation. Remarkably, we also found a direct connection between apical extensions of the Müller glia and retinal pigment epithelium, arranged as bundles around the ultraviolet sensitive cones. In summary, our data characterize the structure, development and surrounding environment of photoreceptor microvilli in the zebrafish retina.


Asunto(s)
Actinas , Pez Cebra , Animales , Actinas/metabolismo , Células Fotorreceptoras/metabolismo , Retina , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras de Vertebrados
8.
Development ; 150(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36537580

RESUMEN

Temporal identity factors regulate competence of neural progenitors to generate specific cell types in a time-dependent manner, but how they operate remains poorly defined. In the developing mouse retina, the Ikaros zinc-finger transcription factor Ikzf1 regulates production of early-born cell types, except cone photoreceptors. In this study we show that, during early stages of retinal development, another Ikaros family protein, Ikzf4, functions redundantly with Ikzf1 to regulate cone photoreceptor production. Using CUT&RUN and functional assays, we show that Ikzf4 binds and represses genes involved in late-born rod photoreceptor specification, hence favoring cone production. At late stages, when Ikzf1 is no longer expressed in progenitors, we show that Ikzf4 re-localizes to target genes involved in gliogenesis and is required for Müller glia production. We report that Ikzf4 regulates Notch signaling genes and is sufficient to activate the Hes1 promoter through two Ikzf GGAA-binding motifs, suggesting a mechanism by which Ikzf4 may influence gliogenesis. These results uncover a combinatorial role for Ikaros family members during nervous system development and provide mechanistic insights on how they temporally regulate cell fate output.


Asunto(s)
Factor de Transcripción Ikaros , Retina , Ratones , Animales , Retina/metabolismo , Factor de Transcripción Ikaros/genética , Factor de Transcripción Ikaros/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Diferenciación Celular/genética
9.
Proc Natl Acad Sci U S A ; 120(23): e2217885120, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37252956

RESUMEN

Retinitis pigmentosa (RP) is an ocular disease characterized by the loss of night vision, followed by the loss of daylight vision. Daylight vision is initiated in the retina by cone photoreceptors, which are gradually lost in RP, often as bystanders in a disease process that initiates in their neighboring rod photoreceptors. Using physiological assays, we investigated the timing of cone electroretinogram (ERG) decline in RP mouse models. A correlation between the time of loss of the cone ERG and the loss of rods was found. To investigate a potential role of the visual chromophore supply in this loss, mouse mutants with alterations in the regeneration of the retinal chromophore, 11-cis retinal, were examined. Reducing chromophore supply via mutations in Rlbp1 or Rpe65 resulted in greater cone function and survival in a RP mouse model. Conversely, overexpression of Rpe65 and Lrat, genes that can drive the regeneration of the chromophore, led to greater cone degeneration. These data suggest that abnormally high chromophore supply to cones upon the loss of rods is toxic to cones, and that a potential therapy in at least some forms of RP is to slow the turnover and/or reduce the level of visual chromophore in the retina.


Asunto(s)
Visión de Colores , Retinitis Pigmentosa , Ratones , Animales , Retina , Células Fotorreceptoras Retinianas Conos/fisiología , Células Fotorreceptoras Retinianas Bastones/fisiología , Retinitis Pigmentosa/genética , Modelos Animales de Enfermedad
10.
Proc Natl Acad Sci U S A ; 120(2): e2213418120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598946

RESUMEN

Human pluripotent stem cell (hPSC)-derived retinal organoids (ROs) can efficiently and reproducibly generate retinal neurons that have potential for use in cell replacement strategies [Capowski et al., Development 146, dev171686 (2019)]. The ability of these lab-grown retinal neurons to form new synaptic connections after dissociation from ROs is key to building confidence in their capacity to restore visual function. However, direct evidence of reestablishment of retinal neuron connectivity via synaptic tracing has not been reported to date. The present study employs an in vitro, rabies virus-based, monosynaptic retrograde tracing assay [Wickersham et al., Neuron 53, 639-647 (2007); Sun et al., Mol. Neurodegener. 14, 8 (2019)] to identify de novo synaptic connections among early retinal cell types following RO dissociation. A reproducible, high-throughput approach for labeling and quantifying traced retinal cell types was developed. Photoreceptors and retinal ganglion cells-the primary neurons of interest for retinal cell replacement-were the two major contributing populations among the traced presynaptic cells. This system provides a platform for assessing synaptic connections in cultured retinal neurons and sets the stage for future cell replacement studies aimed at characterizing or enhancing synaptogenesis. Used in this manner, in vitro synaptic tracing is envisioned to complement traditional preclinical animal model testing, which is limited by evolutionary incompatibilities in synaptic machinery inherent to human xenografts.


Asunto(s)
Células Madre Pluripotentes , Retina , Animales , Humanos , Especies Reactivas de Oxígeno , Retina/fisiología , Células Ganglionares de la Retina , Organoides , Diferenciación Celular
11.
Dev Biol ; 511: 39-52, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38548147

RESUMEN

The fovea is a small region within the central retina that is responsible for our high acuity daylight vision. Chickens also have a high acuity area (HAA), and are one of the few species that enables studies of the mechanisms of HAA development, due to accessible embryonic tissue and methods to readily perturb gene expression. To enable such studies, we characterized the development of the chick HAA using single molecule fluorescent in situ hybridization (smFISH), along with more classical methods. We found that Fgf8 provides a molecular marker for the HAA throughout development and into adult stages, allowing studies of the cellular composition of this area over time. The radial dimension of the ganglion cell layer (GCL) was seen to be the greatest at the HAA throughout development, beginning during the period of neurogenesis, suggesting that genesis, rather than cell death, creates a higher level of retinal ganglion cells (RGCs) in this area. In contrast, the HAA acquired its characteristic high density of cone photoreceptors post-hatching, which is well after the period of neurogenesis. We also confirmed that rod photoreceptors are not present in the HAA. Analyses of cell death in the developing photoreceptor layer, where rods would reside, did not show apoptotic cells, suggesting that lack of genesis, rather than death, created the "rod-free zone" (RFZ). Quantification of each cone photoreceptor subtype showed an ordered mosaic of most cone subtypes. The changes in cellular densities and cell subtypes between the developing and mature HAA provide some answers to the overarching strategy used by the retina to create this area and provide a framework for future studies of the mechanisms underlying its formation.


Asunto(s)
Retina , Células Ganglionares de la Retina , Animales , Embrión de Pollo , Células Ganglionares de la Retina/citología , Retina/embriología , Células Fotorreceptoras Retinianas Conos/metabolismo , Pollos , Neurogénesis/fisiología , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Factor 8 de Crecimiento de Fibroblastos/genética , Hibridación Fluorescente in Situ , Fóvea Central/embriología , Agudeza Visual , Células Fotorreceptoras Retinianas Bastones/metabolismo , Células Fotorreceptoras Retinianas Bastones/citología , Regulación del Desarrollo de la Expresión Génica
12.
J Biol Chem ; 300(3): 105781, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395306

RESUMEN

A delicate balance between photon absorption for vision and the protection of photoreceptors from light damage is pivotal for ocular health. This equilibrium is governed by the light-absorbing 11-cis-retinylidene chromophore of visual pigments, which, upon bleaching, transforms into all-trans-retinal and undergoes regeneration through an enzymatic pathway, named the visual cycle. Chemical side reactions of retinaldehyde during the recycling process can generate by-products that may result in a depletion of retinoids. In our study, we have clarified the crucial roles played by melanin pigmentation and the retinoid transporter STRA6 in preventing this loss and preserving the integrity of the visual cycle. Our experiments initially confirmed that consecutive green and blue light bleaching of isolated bovine rhodopsin produced 9-cis and 13-cis retinal. The same unusual retinoids were found in the retinas of mice exposed to intense light, with elevated concentrations observed in albino mice. Examining the metabolic fate of these visual cycle byproducts revealed that 9-cis-retinal, but not 13-cis-retinal, was recycled back to all-trans-retinal through an intermediate called isorhodopsin. However, investigations in Stra6 knockout mice unveiled that the generation of these visual cycle byproducts correlated with a light-induced loss of ocular retinoids and visual impairment. Collectively, our findings uncover important novel aspects of visual cycle dynamics, with implications for ocular health and photoreceptor integrity.


Asunto(s)
Proteínas de la Membrana , Retinoides , Animales , Bovinos , Ratones , Diterpenos , Ratones Noqueados , Retina/metabolismo , Retinaldehído/metabolismo , Retinoides/metabolismo , Visión Ocular , Proteínas de la Membrana/metabolismo
13.
Plant J ; 118(5): 1423-1438, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38402588

RESUMEN

This study investigates photoreceptor's role in the adaption of photosynthetic apparatus to high light (HL) intensity by examining the response of tomato wild type (WT) (Solanum lycopersicum L. cv. Moneymaker) and tomato mutants (phyA, phyB1, phyB2, cry1) plants to HL. Our results showed a photoreceptor-dependent effect of HL on the maximum quantum yield of photosystem II (Fv/Fm) with phyB1 exhibiting a decrease, while phyB2 exhibiting an increase in Fv/Fm. HL resulted in an increase in the efficient quantum yield of photosystem II (ΦPSII) and a decrease in the non-photochemical quantum yields (ΦNPQ and ΦN0) solely in phyA. Under HL, phyA showed a significant decrease in the energy-dependent quenching component of NPQ (qE), while phyB2 mutants showed an increase in the state transition (qT) component. Furthermore, ΔΔFv/Fm revealed that PHYB1 compensates for the deficit of PHYA in phyA mutants. PHYA signaling likely emerges as the dominant effector of PHYB1 and PHYB2 signaling within the HL-induced signaling network. In addition, PHYB1 compensates for the role of CRY1 in regulating Fv/Fm in cry1 mutants. Overall, the results of this research provide valuable insights into the unique role of each photoreceptor and their interplay in balancing photon energy and photoprotection under HL condition.


Asunto(s)
Luz , Complejo de Proteína del Fotosistema II , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/efectos de la radiación , Solanum lycopersicum/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Complejo de Proteína del Fotosistema II/genética , Fotosíntesis/fisiología , Fitocromo B/metabolismo , Fitocromo B/genética , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/genética , Mutación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitocromo A/metabolismo , Fitocromo A/genética
14.
Physiology (Bethesda) ; 39(1): 0, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37905983

RESUMEN

One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.


Asunto(s)
Criptocromos , Células Fotorreceptoras de Invertebrados , Humanos , Animales , Células Fotorreceptoras de Invertebrados/fisiología
15.
EMBO J ; 40(22): e107264, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34494680

RESUMEN

Emerging evidence suggests that intracellular molecules and organelles transfer between cells during embryonic development, tissue homeostasis and disease. We and others recently showed that transplanted and host photoreceptors engage in bidirectional transfer of intracellular material in the recipient retina, a process termed material transfer (MT). We used cell transplantation, advanced tissue imaging approaches, genetic and pharmacologic interventions and primary cell culture to characterize and elucidate the mechanism of MT. We show that MT correlates with donor cell persistence and the accumulation of donor-derived proteins, mitochondria and transcripts in acceptor cells in vivo. MT requires cell contact in vitro and is associated with the formation of stable microtubule-containing protrusions, termed photoreceptor nanotubes (Ph NTs), that connect donor and host cells in vivo and in vitro. Ph NTs mediate GFP transfer between connected cells in vitro. Furthermore, interfering with Ph NT outgrowth by targeting Rho GTPase-dependent actin remodelling inhibits MT in vivo. Collectively, our observations provide evidence for horizontal exchange of intracellular material via nanotube-like connections between neurons in vivo.


Asunto(s)
Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/ultraestructura , Retina/citología , Actinas/metabolismo , Animales , Transporte Biológico , Supervivencia Celular , Vesículas Extracelulares , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/metabolismo , Retina/fisiología , Retinoblastoma/metabolismo , Retinoblastoma/patología , Transducina/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
16.
Mol Syst Biol ; 20(4): 296-310, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438733

RESUMEN

Alternative Splicing (AS) programs serve as instructive signals of cell type specificity, particularly within the brain, which comprises dozens of molecularly and functionally distinct cell types. Among them, retinal photoreceptors stand out due to their unique transcriptome, making them a particularly well-suited system for studying how AS shapes cell type-specific molecular functions. Here, we use the Splicing Regulatory State (SRS) as a novel framework to discuss the splicing factors governing the unique AS pattern of photoreceptors, and how this pattern may aid in the specification of their highly specialized sensory cilia. In addition, we discuss how other sensory cells with ciliated structures, for which data is much scarcer, also rely on specific SRSs to implement a proteome specialized in the detection of sensory stimuli. By reviewing the general rules of cell type- and tissue-specific AS programs, firstly in the brain and subsequently in specialized sensory neurons, we propose a novel paradigm on how SRSs are established and how they can diversify. Finally, we illustrate how SRSs shape the outcome of mutations in splicing factors to produce cell type-specific phenotypes that can lead to various human diseases.


Asunto(s)
Células Receptoras Sensoriales , Transcriptoma , Humanos , Transcriptoma/genética , Células Fotorreceptoras , Empalme Alternativo/genética , Factores de Empalme de ARN/genética
17.
FASEB J ; 38(17): e70021, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39215566

RESUMEN

Cone photoreceptor cyclic nucleotide-gated (CNG) channels play an essential role in phototransduction and cellular Ca2+ homeostasis. Mutations in genes encoding the channel subunits CNGA3 and CNGB3 are associated with achromatopsia, progressive cone dystrophy, and early-onset macular degeneration. Cone loss in patients with achromatopsia and cone dystrophy associated with CNG channel mutations has been documented by optical coherence tomography and in mouse models of CNG channel deficiency. Cone death in CNG channel-deficient retinas involves endoplasmic reticulum (ER) stress-associated apoptosis, dysregulation of cellular/ER Ca2+ homeostasis, impaired protein folding/processing, and impaired ER-associated degradation (ERAD). The E3 ubiquitin-protein ligase synoviolin 1 (SYVN1) is the primary component of the SYVN1/SEL1L ER retrotranslocon responsible for ERAD. Previous studies have shown that manipulations that protect cones and reduce ER stress/cone death in CNG channel deficiency, such as increasing ER Ca2+ preservation or treatment with an ER chaperone, increase the expression of SYVN1 and other components of the ER retrotranslocon. The present work investigated the effects of SYVN1 overexpression. Intraocular injection of AAV5-IRBP/GNAT2-Syvn1 resulted in overexpression of SYVN1 in cones of CNG channel-deficient mice. Following treatment, cone density in Cnga3-/- mice was significantly increased, compared with untreated controls, outer segment localization of cone opsin was improved, and ER stress/apoptotic cell death was reduced. Overexpression of SYVN1 also led to increased expression levels of the retrotranslocon components, degradation in ER protein 1 (DERL1), ERAD E3 ligase adaptor subunit (SEL1L), and homocysteine inducible ER protein with ubiquitin-like domain 1 (HERPUD1). Moreover, overexpression of SYVN1 likely enhanced protein ubiquitination/proteasome degradation in CNG channel-deficient retinas. This study demonstrates the role of SYVN1/ERAD in cone preservation in CNG channel deficiency and supports the strategy of promoting ERAD for cone protection.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos , Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Células Fotorreceptoras Retinianas Conos , Ubiquitina-Proteína Ligasas , Animales , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Ratones , Retículo Endoplásmico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Ratones Noqueados , Ratones Endogámicos C57BL
18.
Proc Natl Acad Sci U S A ; 119(45): e2213911119, 2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36322748

RESUMEN

For sustained vision, photoactivated rhodopsin (Rho*) must undergo hydrolysis and release of all-trans-retinal, producing substrate for the visual cycle and apo-opsin available for regeneration with 11-cis-retinal. The kinetics of this hydrolysis has yet to be described for rhodopsin in its native membrane environment. We developed a method consisting of simultaneous denaturation and chromophore trapping by isopropanol/borohydride, followed by exhaustive protein digestion, complete extraction, and liquid chromatography-mass spectrometry. Using our method, we tracked Rho* hydrolysis, the subsequent formation of N-retinylidene-phosphatidylethanolamine (N-ret-PE) adducts with the released all-trans-retinal, and the reduction of all-trans-retinal to all-trans-retinol. We found that hydrolysis occurred faster in native membranes than in detergent micelles typically used to study membrane proteins. The activation energy of the hydrolysis in native membranes was determined to be 17.7 ± 2.4 kcal/mol. Our data support the interpretation that metarhodopsin II, the signaling state of rhodopsin, is the primary species undergoing hydrolysis and release of its all-trans-retinal. In the absence of NADPH, free all-trans-retinal reacts with phosphatidylethanolamine (PE), forming a substantial amount of N-ret-PE (∼40% of total all-trans-retinal at physiological pH), at a rate that is an order of magnitude faster than Rho* hydrolysis. However, N-ret-PE formation was highly attenuated by NADPH-dependent reduction of all-trans-retinal to all-trans-retinol. Neither N-ret-PE formation nor all-trans-retinal reduction affected the rate of hydrolysis of Rho*. Our study provides a comprehensive picture of the hydrolysis of Rho* and the release of all-trans-retinal and its reentry into the visual cycle, a process in which alteration can lead to severe retinopathies.


Asunto(s)
Retinaldehído , Rodopsina , Rodopsina/metabolismo , Retinaldehído/química , Vitamina A , Hidrólisis , NADP
19.
Proc Natl Acad Sci U S A ; 119(13): e2118803119, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35312355

RESUMEN

SignificanceThe function of our biological clock is dependent on environmental light. Rodent studies have shown that there are multiple colors that affect the clock, but indirect measures in humans suggest blue light is key. We performed functional MRI studies in human subjects with unprecedented spatial resolution to investigate color sensitivity of our clock. Here, we show that narrowband blue, green, and orange light were all effective in changing neuronal activity of the clock. While the clock of nocturnal rodents is excited by light, the human clock responds with a decrease in neuronal activity as indicated by a negative BOLD response. The sensitivity of the clock to multiple colors should be integrated in light therapy aimed to strengthen our 24-h rhythms.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano/fisiología , Humanos , Luz , Fotobiología , Núcleo Supraquiasmático/fisiología
20.
Proc Natl Acad Sci U S A ; 119(39): e2202485119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36122241

RESUMEN

Human cone outer segment (COS) length changes in response to stimuli bleaching up to 99% of L- and M-cone opsins were measured with high resolution, phase-resolved optical coherence tomography (OCT). Responses comprised a fast phase (∼5 ms), during which COSs shrink, and two slower phases (1.5 s), during which COSs elongate. The slower components saturated in amplitude (∼425 nm) and initial rate (∼3 nm ms-1) and are well described over the 200-fold bleaching range as the sum of two exponentially rising functions with time constants of 80 to 90 ms (component 1) and 1,000 to 1,250 ms (component 2). Measurements with adaptive optics reflection densitometry revealed component 2 to be linearly related to cone pigment bleaching, and the hypothesis is proposed that it arises from cone opsin and disk membrane swelling triggered by isomerization and rate-limited by chromophore hydrolysis and its reduction to membrane-localized all-trans retinol. The light sensitivity and kinetics of component 1 suggested that the underlying mechanism is an osmotic response to an amplified soluble by-product of phototransduction. The hypotheses that component 1 corresponds to G-protein subunits dissociating from the membrane, metabolites of cyclic guanosine monophosphate (cGMP) hydrolysis, or by-products of activated guanylate cyclase are rejected, while the hypothesis that it corresponds to phosphate produced by regulator of G-protein signaling 9 (RGS9)-catalyzed hydrolysis of guanosine triphosphate (GTP) in G protein-phosphodiesterase complexes was found to be consistent with the results. These results provide a basis for the assessment with optoretinography of phototransduction in individual cone photoreceptors in health and during disease progression and therapeutic interventions.


Asunto(s)
Opsinas de los Conos , GTP Fosfohidrolasas , Fosfatos , Proteínas RGS , Células Fotorreceptoras Retinianas Conos , Catálisis , Opsinas de los Conos/metabolismo , GTP Fosfohidrolasas/metabolismo , Guanosina Monofosfato/metabolismo , Guanosina Trifosfato/metabolismo , Guanilato Ciclasa/metabolismo , Humanos , Ósmosis , Fosfatos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Subunidades de Proteína/metabolismo , Proteínas RGS/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Vitamina A/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA