Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.278
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(24): e2400639121, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38838018

RESUMEN

Leaf wounding triggers rapid long-range electrical signaling that initiates systemic defense responses to protect the plants from further attack. In Arabidopsis, this process largely depends on clade three GLUTAMATE RECEPTOR-LIKE (GLR) genes GLR3.3 and GLR3.6. In the cellular context, phloem sieve elements and xylem contact cells where GLRs were mostly present are implicated in the signaling events. In spite of that, the spatial requirements of different leaf cell types for leaf-to-leaf signaling remain poorly investigated. In this study, we dissected cell-type-specific long-distance wound signaling mediated by GLR3s and showed that phloem companion cells are critical in shaping the functions of GLR3.3 and GLR3.6 in the signaling pathway. GLR3.3-mediated response is phloem-specific, during which, GLR3.3 has to be renewed from companion cells to allow its function in sieve elements. GLR3.6 functions dually in ectopic phloem companion cells, in addition to xylem contact cells. Furthermore, the action of GLR3.6 in phloem is independent of its paralog GLR3.3 and probably requires synthesis of GLR3.6 from xylem contact cells. Overall, our work highlights that the phloem companion cell is crucial for both GLRs in controlling leaf-to-leaf electrical signaling.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Floema , Hojas de la Planta , Transducción de Señal , Hojas de la Planta/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Floema/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Receptores de Glutamato/metabolismo , Xilema/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Mol Cell ; 70(1): 136-149.e7, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625034

RESUMEN

Insect herbivory causes severe damage to plants and threatens the world's food production. During evolutionary adaptation, plants have evolved sophisticated mechanisms to rapidly accumulate a key defense hormone, jasmonate (JA), that triggers plant defense against herbivory. However, little is known about how plants initially activate JA biosynthesis at encounter with herbivory. Here, we uncover that a novel JAV1-JAZ8-WRKY51 (JJW) complex controls JA biosynthesis to defend against insect attack. In healthy plants, the JJW complex represses JA biosynthesis to restrain JA at a low basal level to ensure proper plant growth. When plants are injured by insect attack, injury rapidly triggers calcium influxes to activate calmodulin-dependent phosphorylation of JAV1, which disintegrates JJW complex and activates JA biosynthesis, giving rise to the rapid burst of JA for plant defense. Our findings offer new insights into the highly sophisticated defense systems evolved by plants to defend against herbivory.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Calcio/metabolismo , Calmodulina/metabolismo , Proteínas Co-Represoras/metabolismo , Ciclopentanos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Oxilipinas/metabolismo , Hojas de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , Spodoptera/fisiología , Factores de Transcripción/metabolismo , Animales , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Señalización del Calcio , Calmodulina/genética , Proteínas Co-Represoras/genética , Regulación de la Expresión Génica de las Plantas , Herbivoria , Péptidos y Proteínas de Señalización Intracelular/genética , Complejos Multiproteicos , Fosforilación , Hojas de la Planta/genética , Plantas Modificadas Genéticamente/genética , Factores de Transcripción/genética
3.
Proc Natl Acad Sci U S A ; 120(35): e2308500120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37607232

RESUMEN

When insect herbivores attack plants, elicitors from oral secretions and regurgitants (OS) enter wounds during feeding, eliciting defense responses. These generally require plant jasmonate (JA) signaling, specifically, a jasmonoyl-L-isoleucine (JA-Ile) burst, for their activation and are well studied in the native tobacco Nicotiana attenuata. We used intraspecific diversity captured in a 26-parent MAGIC population planted in nature and an updated genome assembly to impute natural variation in the OS-elicited JA-Ile burst linked to a mutation in the JA-Ile biosynthetic gene NaJAR4. Experiments revealed that NaJAR4 variants were associated with higher fitness in the absence of herbivores but compromised foliar defenses, with two NaJAR homologues (4 and 6) complementing each other spatially and temporally. From decade-long seed collections of natural populations, we uncovered enzymatically inactive variants occurring at variable frequencies, consistent with a balancing selection regime maintaining variants. Integrative analyses of OS-induced transcriptomes and metabolomes of natural accessions revealed that NaJAR4 is embedded in a nonlinear complex gene coexpression network orchestrating responses to OS, which we tested by silencing four hub genes in two connected coexpressed networks and examining their OS-elicited metabolic responses. Lines silenced in two hub genes (NaGLR and NaFB67) co-occurring in the NaJAR4/6 module showed responses proportional to JA-Ile accumulations; two from an adjacent module (NaERF and NaFB61) had constitutively expressed defenses with high resistance. We infer that mutations with large fitness consequences can persist in natural populations due to compensatory responses from gene networks, which allow for diversification in conserved signaling pathways and are generally consistent with predictions of an omnigene model.


Asunto(s)
Redes Reguladoras de Genes , Herbivoria , Herbivoria/genética , Mutación
4.
Plant J ; 119(1): 84-99, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38578218

RESUMEN

Tuta absoluta ("leafminer"), is a major pest of tomato crops worldwide. Controlling this insect is difficult due to its efficient infestation, rapid proliferation, and resilience to changing weather conditions. Furthermore, chemical pesticides have only a short-term effect due to rapid development of T. absoluta strains. Here, we show that a variety of tomato cultivars, treated with external phenylalanine solutions exhibit high resistance to T. absoluta, under both greenhouse and open field conditions, at different locations. A large-scale metabolomic study revealed that tomato leaves absorb and metabolize externally given Phe efficiently, resulting in a change in their volatile profile, and repellence of T. absoluta moths. The change in the volatile profile is due to an increase in three phenylalanine-derived benzenoid phenylpropanoid volatiles (BPVs), benzaldehyde, phenylacetaldehyde, and 2-phenylethanol. This treatment had no effect on terpenes and green leaf volatiles, known to contribute to the fight against insects. Phe-treated plants also increased the resistance of neighboring non-treated plants. RNAseq analysis of the neighboring non-treated plants revealed an exclusive upregulation of genes, with enrichment of genes related to the plant immune response system. Exposure of tomato plants to either benzaldehyde, phenylacetaldehyde, or 2-phenylethanol, resulted in induction of genes related to the plant immune system that were also induced due to neighboring Phe-treated plants. We suggest a novel role of phenylalanine-derived BPVs as mediators of plant-insect interactions, acting as inducers of the plant defense mechanisms.


Asunto(s)
Fenilalanina , Hojas de la Planta , Solanum lycopersicum , Compuestos Orgánicos Volátiles , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/parasitología , Fenilalanina/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/parasitología , Benzaldehídos/metabolismo , Benzaldehídos/farmacología , Acetaldehído/análogos & derivados , Acetaldehído/metabolismo , Acetaldehído/farmacología , Mariposas Nocturnas/fisiología , Mariposas Nocturnas/efectos de los fármacos , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/inmunología , Manduca/fisiología
5.
Plant J ; 117(2): 541-560, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37932864

RESUMEN

Carotenoids are isoprenoid pigments indispensable for photosynthesis. Moreover, they are the precursor of apocarotenoids, which include the phytohormones abscisic acid (ABA) and strigolactones (SLs) as well as retrograde signaling molecules and growth regulators, such as ß-cyclocitral and zaxinone. Here, we show that the application of the volatile apocarotenoid ß-ionone (ß-I) to Arabidopsis plants at micromolar concentrations caused a global reprogramming of gene expression, affecting thousands of transcripts involved in stress tolerance, growth, hormone metabolism, pathogen defense, and photosynthesis. This transcriptional reprogramming changes, along with induced changes in the level of the phytohormones ABA, jasmonic acid, and salicylic acid, led to enhanced Arabidopsis resistance to the widespread necrotrophic fungus Botrytis cinerea (B.c.) that causes the gray mold disease in many crop species and spoilage of harvested fruits. Pre-treatment of tobacco and tomato plants with ß-I followed by inoculation with B.c. confirmed the effect of ß-I in increasing the resistance to this pathogen in crop plants. Moreover, we observed reduced susceptibility to B.c. in fruits of transgenic tomato plants overexpressing LYCOPENE ß-CYCLASE, which contains elevated levels of endogenous ß-I, providing a further evidence for its effect on B.c. infestation. Our work unraveled ß-I as a further carotenoid-derived regulatory metabolite and indicates the possibility of establishing this natural volatile as an environmentally friendly bio-fungicide to control B.c.


Asunto(s)
Arabidopsis , Norisoprenoides , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Arabidopsis/metabolismo , Resistencia a la Enfermedad/genética , Transcriptoma , Ácido Abscísico , Botrytis/metabolismo , Plantas Modificadas Genéticamente/genética , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
6.
Plant J ; 117(2): 616-631, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37910396

RESUMEN

The membrane-bound heterotrimeric G-proteins in plants play a crucial role in defending against a broad range of pathogens. This study emphasizes the significance of Extra-large Gα protein 2 (XLG2), a plant-specific G-protein, in mediating the plant response to Sclerotinia sclerotiorum, which infects over 600 plant species worldwide. Our analysis of Arabidopsis G-protein mutants showed that loss of XLG2 function increased susceptibility to S. sclerotiorum, accompanied by compromised accumulation of jasmonic acid (JA) during pathogen infection. Overexpression of the XLG2 gene in xlg2 mutant plants resulted in higher resistance and increased JA accumulation during S. sclerotiorum infection. Co-immunoprecipitation (co-IP) analysis on S. sclerotiorum infected Col-0 samples, using two different approaches, identified 201 XLG2-interacting proteins. The identified JA-biosynthetic and JA-responsive proteins had compromised transcript expression in the xlg2 mutant during pathogen infection. XLG2 was found to interact physically with a JA-responsive protein, Coronatine induced 1 (CORI3) in Co-IP, and confirmed using split firefly luciferase complementation and bimolecular fluorescent complementation assays. Additionally, genetic analysis revealed an additive effect of XLG2 and CORI3 on resistance against S. sclerotiorum, JA accumulation, and expression of the defense marker genes. Overall, our study reveals two independent pathways involving XLG2 and CORI3 in contributing resistance against S. sclerotiorum.


Asunto(s)
Aminoácidos , Proteínas de Arabidopsis , Arabidopsis , Ascomicetos , Proteínas de Unión al GTP Heterotriméricas , Indenos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Enfermedades de las Plantas/genética
7.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35012977

RESUMEN

Small RNAs (sRNAs) are known to regulate pathogenic plant-microbe interactions. Emerging evidence from the study of these model systems suggests that microRNAs (miRNAs) can be translocated between microbes and plants to facilitate symbiosis. The roles of sRNAs in mutualistic mycorrhizal fungal interactions, however, are largely unknown. In this study, we characterized miRNAs encoded by the ectomycorrhizal fungus Pisolithus microcarpus and investigated their expression during mutualistic interaction with Eucalyptus grandis. Using sRNA sequencing data and in situ miRNA detection, a novel fungal miRNA, Pmic_miR-8, was found to be transported into E. grandis roots after interaction with P. microcarpus Further characterization experiments demonstrate that inhibition of Pmic_miR-8 negatively impacts the maintenance of mycorrhizal roots in E. grandis, while supplementation of Pmic_miR-8 led to deeper integration of the fungus into plant tissues. Target prediction and experimental testing suggest that Pmic_miR-8 may target the host NB-ARC domain containing transcripts, suggesting a potential role for this miRNA in subverting host signaling to stabilize the symbiotic interaction. Altogether, we provide evidence of previously undescribed cross-kingdom sRNA transfer from ectomycorrhizal fungi to plant roots, shedding light onto the involvement of miRNAs during the developmental process of mutualistic symbioses.


Asunto(s)
Basidiomycota/genética , Silenciador del Gen , MicroARNs/metabolismo , Micorrizas/genética , Simbiosis/genética , Secuencia de Bases , Basidiomycota/crecimiento & desarrollo , Recuento de Colonia Microbiana , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , MicroARNs/genética , Raíces de Plantas/microbiología , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
BMC Biol ; 22(1): 38, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38360697

RESUMEN

BACKGROUND: Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree crop Theobroma cacao L., as well as four non-cacao Theobroma species, with the goal of identifying genetic elements essential for protection against the oomycete pathogen Phytophthora palmivora. RESULTS: We began by creating a new, highly contiguous genome assembly for the P. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k-900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao's defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor of Phytophthora spp. CONCLUSIONS: Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance to P. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.


Asunto(s)
Cacao , Phytophthora , Ácido Shikímico/análogos & derivados , Humanos , Cacao/genética , Phytophthora/fisiología , Fitomejoramiento , Enfermedades de las Plantas/genética
9.
Plant J ; 116(1): 100-111, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37344990

RESUMEN

Exo70B1 is a protein subunit of the exocyst complex with a crucial role in a variety of cell mechanisms, including immune responses against pathogens. The calcium-dependent kinase 5 (CPK5) of Arabidopsis thaliana (hereafter Arabidopsis), phosphorylates AtExo70B1 upon functional disruption. We previously reported that, the Xanthomonas campestris pv. campestris effector XopP compromises AtExo70B1, while bypassing the host's hypersensitive response, in a way that is still unclear. Herein we designed an experimental approach, which includes biophysical, biochemical, and molecular assays and is based on structural and functional predictions, utilizing AplhaFold and DALI online servers, respectively, in order to characterize the in vivo XccXopP function. The interaction between AtExo70B1 and XccXopP was found very stable in high temperatures, while AtExo70B1 appeared to be phosphorylated at XccXopP-expressing transgenic Arabidopsis. XccXopP revealed similarities with known mammalian kinases and phosphorylated AtExo70B1 at Ser107, Ser111, Ser248, Thr309, and Thr364. Moreover, XccXopP protected AtExo70B1 from AtCPK5 phosphorylation. Together these findings show that XccXopP is an effector, which not only functions as a novel serine/threonine kinase upon its host target AtExo70B1 but also protects the latter from the innate AtCPK5 phosphorylation, in order to bypass the host's immune responses. Data are available via ProteomeXchange with the identifier PXD041405.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Xanthomonas campestris , Xanthomonas campestris/metabolismo , Arabidopsis/metabolismo , Fosforilación , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Enfermedades de las Plantas , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
10.
Mol Plant Microbe Interact ; 37(2): 112-126, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37903461

RESUMEN

Several elicitors of plant defense have been identified and numerous efforts to use them in the field have been made. Exogenous elicitor treatments mimic the in planta activation of pattern-triggered immunity (PTI), which relies on the perception of pathogen-associated molecular patterns (PAMPs) such as bacterial flg22 or fungal chitins. Early transcriptional responses to distinct PAMPs are mostly overlapping, regardless of the elicitor being used. However, it remains poorly known if the same patterns are observed for metabolites and proteins produced later during PTI. In addition, little is known about the impact of a combination of elicitors on PTI and the level of induced resistance to pathogens. Here, we monitored Arabidopsis thaliana resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pto DC3000) following application of flg22 and chitosan elicitors, used individually or in combination. A slight, but not statistically significant increase in induced resistance was observed when the elicitors were applied together when compared with individual treatments. We investigated the effect of these treatments on the metabolome by using an untargeted analysis. We found that the combination of flg22 and chitosan impacted a higher number of metabolites and deregulated specific metabolic pathways compared with the elicitors individually. These results contribute to a better understanding of plant responses to elicitors, which might help better rationalize their use in the field. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Quitosano , Arabidopsis/microbiología , Inmunidad de la Planta , Quitosano/farmacología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Metaboloma , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/microbiología , Regulación de la Expresión Génica de las Plantas
11.
Mol Plant Microbe Interact ; 37(2): 98-111, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38051229

RESUMEN

The phloem-feeding insect Bemisia tabaci is an important pest, responsible for the transmission of several crop-threatening virus species. While feeding, the insect secretes a cocktail of effectors to modulate plant defense responses. Here, we present a set of proteins identified in an artificial diet on which B. tabaci was salivating. We subsequently studied whether these candidate effectors can play a role in plant immune suppression. Effector G4 was the most robust suppressor of an induced- reactive oxygen species (ROS) response in Nicotiana benthamiana. In addition, G4 was able to suppress ROS production in Solanum lycopersicum (tomato) and Capsicum annuum (pepper). G4 localized predominantly in the endoplasmic reticulum in N. benthamiana leaves and colocalized with two identified target proteins in tomato: REF-like stress related protein 1 (RSP1) and meloidogyne-induced giant cell protein DB141 (MIPDB141). Silencing of MIPDB141 in tomato reduced whitefly fecundity up to 40%, demonstrating that the protein is involved in susceptibility to B. tabaci. Together, our data demonstrate that effector G4 impairs tomato immunity to whiteflies by interfering with ROS production and via an interaction with tomato susceptibility protein MIPDB141. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Capsicum , Hemípteros , Solanum lycopersicum , Animales , Hemípteros/fisiología , Especies Reactivas de Oxígeno
12.
Mol Plant Microbe Interact ; 37(4): 380-395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38114195

RESUMEN

Bemisia tabaci (whitefly) is a polyphagous agroeconomic pest species complex. Two members of this species complex, Mediterranean (MED) and Middle-East-Asia Minor 1 (MEAM1), have a worldwide distribution and have been shown to manipulate plant defenses through effectors. In this study, we used three different strategies to identify three MEAM1 proteins that can act as effectors. Effector B1 was identified using a bioinformatics-driven effector-mining strategy, whereas effectors S1 and P1 were identified in the saliva of whiteflies collected from artificial diet and in phloem exudate of tomato on which nymphs were feeding, respectively. These three effectors were B. tabaci specific and able to increase whitefly fecundity when transiently expressed in tobacco plants (Nicotiana tabacum). Moreover, they reduced growth of Pseudomonas syringae pv. tabaci in Nicotiana benthamiana. All three effectors changed gene expression in planta, and B1 and S1 also changed phytohormone levels. Gene ontology and KEGG pathway enrichment analysis pinpointed plant-pathogen interaction and photosynthesis as the main enriched pathways for all three effectors. Our data thus show the discovery and validation of three new B. tabaci MEAM1 effectors that increase whitefly fecundity and modulate plant immunity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Hemípteros , Nicotiana , Animales , Nicotiana/genética , Nicotiana/microbiología , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/microbiología , Solanum lycopersicum/parasitología , Pseudomonas syringae/fisiología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Fertilidad/genética
13.
Mol Plant Microbe Interact ; 37(5): 445-458, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38240660

RESUMEN

Mountain pine beetle (MPB; Dendroctonus ponderosae Hopkins) is a devastating forest insect pest that has killed millions of hectares of pines in western North America over the past two decades. Like other bark beetles, MPB vectors ophiostomatoid fungal species, some of which are pathogenic to host pine species. The phytopathogenicity of these fungal symbionts has sparked considerable debate regarding their role in facilitating MPB attack success. We tested the hypothesis that MPB ophiostomatoid fungal associates like Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield contribute to overwhelming host defenses during MPB mass attack. We compared responses of mature lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) trees growing in natural stands that were mass attacked by MPB with those inoculated with G. clavigera by examining host defense hormones, secondary metabolites, and gene expression profiles. The jasmonate and ethylene signatures of necrotrophic pathogen-triggered response were identified in G. clavigera-inoculated trees, but only the jasmonate signature of a herbivore-triggered response was measured in MPB-attacked trees. Several G. clavigera-induced changes in pine phenolic metabolite profiles and phenolic biosynthesis gene expression patterns were absent in MPB-attacked pines. These findings indicate that ophiostomatoid fungi like G. clavigera are not a major factor in overwhelming host defenses during MPB mass attack. Instead, fungal pathogenicity likely is more important in aiding MPB colonization and development within the host tree. Phenolics appear to play a larger role in the host response to G. clavigera than to MPB, although phenolics may also influence MPB feeding and behavior. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Escarabajos , Ophiostomatales , Pinus , Simbiosis , Pinus/parasitología , Pinus/microbiología , Animales , Ophiostomatales/fisiología , Escarabajos/microbiología , Escarabajos/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/parasitología , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Metabolismo Secundario , Regulación de la Expresión Génica de las Plantas
14.
BMC Genomics ; 25(1): 436, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38698332

RESUMEN

BACKGROUND: Cassava mosaic disease (CMD), caused by Sri Lankan cassava mosaic virus (SLCMV) infection, has been identified as a major pernicious disease in Manihot esculenta Crantz (cassava) plantations. It is widespread in Southeast Asia, especially in Thailand, which is one of the main cassava supplier countries. With the aim of restricting the spread of SLCMV, we explored the gene expression of a tolerant cassava cultivar vs. a susceptible cassava cultivar from the perspective of transcriptional regulation and the mechanisms underlying plant immunity and adaptation. RESULTS: Transcriptomic analysis of SLCMV-infected tolerant (Kasetsart 50 [KU 50]) and susceptible (Rayong 11 [R 11]) cultivars at three infection stages-that is, at 21 days post-inoculation (dpi) (early/asymptomatic), 32 dpi (middle/recovery), and 67 dpi (late infection/late recovery)-identified 55,699 expressed genes. Differentially expressed genes (DEGs) between SLCMV-infected KU 50 and R 11 cultivars at (i) 21 dpi to 32 dpi (the early to middle stage), and (ii) 32 dpi to 67 dpi (the middle stage to late stage) were then identified and validated by real-time quantitative PCR (RT-qPCR). DEGs among different infection stages represent genes that respond to and regulate the viral infection during specific stages. The transcriptomic comparison between the tolerant and susceptible cultivars highlighted the role of gene expression regulation in tolerant and susceptible phenotypes. CONCLUSIONS: This study identified genes involved in epigenetic modification, transcription and transcription factor activities, plant defense and oxidative stress response, gene expression, hormone- and metabolite-related pathways, and translation and translational initiation activities, particularly in KU 50 which represented the tolerant cultivar in this study.


Asunto(s)
Manihot , Virus del Mosaico , Manihot/clasificación , Manihot/genética , Manihot/inmunología , Manihot/virología , Virus del Mosaico/fisiología , Inmunidad de la Planta , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento , ARN de Planta , Análisis de Secuencia de ARN
15.
Plant Cell Physiol ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38877965

RESUMEN

Plants and insects have co-existed for almost 400 million years and their interactions can be beneficial or harmful, thus reflecting their intricate co-evolutionary dynamics. Many herbivorous arthropods cause tremendous crop loss, impacting the agro-economy worldwide. Plants possess an arsenal of chemical defenses that comprise diverse secondary metabolites that help protect against harmful herbivorous arthropods. In response, the strategies that herbivores use to cope with plant defenses can be behavioral, or molecular and/or biochemical of which salivary secretions are a key determinant. Insect salivary secretions/oral secretions (OSs) play a crucial role in plant immunity as they contain several biologically active elicitors and effector proteins that modulate plants' defense responses. Using this oral secretion cocktail, insects overcome plant natural defenses to allow successful feeding. However, a lack of knowledge of the nature of the signals present in oral secretion cocktails has resulted in reduced mechanistic knowledge of their cellular perception. In this review, we discuss the latest knowledge on herbivore oral secretion derived elicitors and effectors and various mechanisms involved in plant defense modulation. Identification of novel herbivore-released molecules and their plant targets should pave the way for understanding the intricate strategies employed by both herbivorous arthropods and plants in their interactions.

16.
Plant Cell Physiol ; 65(3): 447-459, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38174432

RESUMEN

Tomato torrado virus (ToTV) is a type member of the Torradovirus genus in the Secoviridae family known to cause severe necrosis in susceptible tomato varieties. ToTV also infects other Solanaceae plants, including Nicotiana benthamiana, where it induces distinctive disease symptoms: plant growth drop with the emergence of spoon-like malformed systemic leaves. Virus-induced post-transcriptional gene silencing (PTGS) is significant among plant defense mechanisms activated upon virus invasion. The PTGS, however, can be counteracted by suppressors of RNA silencing commonly found in viruses, which efficiently disrupt the antiviral defense of their host. Here, we addressed the question of PTGS antiviral activity and its suppression in N. benthamiana during ToTV infection-a phenomenon not described for any representative from the Torradovirus genus so far. First, we showed that neither the Vp26-a necrosis-inducing pathogenicity determinant of ToTV-nor other structural viral proteins limited the locally induced PTGS similar to p19, a well-characterized potent suppressor of RNA silencing of tombusviruses. Moreover, by employing wild-type and transgenic lines of N. benthamiana with suppressed Dicer-like 2 (DCL2), Dicer-like 4 (DCL4), Argonaute 2 and RNA-dependent RNA polymerase 6 (RDR6) proteins, we proved their involvement in anti-ToTV defense. Additionally, we identified DCL4 as the major processor of ToTV-derived siRNA. More importantly, our results indicate the essential role of the Suppressor of Gene Silencing 3 (SGS3)/RDR6 pathway in anti-ToTV defense. Finally, we conclude that ToTV might not require a potent RNA silencing suppressor during infection of the model plant N. benthamiana.


Asunto(s)
Nicotiana , Secoviridae , Nicotiana/genética , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Plantas/metabolismo , Secoviridae/metabolismo , Interferencia de ARN , Necrosis/genética , Antivirales , Enfermedades de las Plantas
17.
BMC Plant Biol ; 24(1): 393, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741080

RESUMEN

BACKGROUND: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and changes in the transcriptome were recorded until 5 days post infiltration. RESULTS: The RNA-seq analysis revealed that presence of SAP11CaPm in leaves leads to downregulation of genes involved in defense response and related to photosynthetic processes, while expression of genes involved in energy production was enhanced. CONCLUSIONS: The results indicate that early SAP11CaPm expression might be important for the colonization of the host plant since phytoplasmas lack many metabolic genes and are thus dependent on metabolites from their host plant.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Nicotiana , Fotosíntesis , Phytoplasma , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Metabolismo Energético/genética , Nicotiana/genética , Nicotiana/microbiología , Fotosíntesis/genética , Phytoplasma/fisiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Hojas de la Planta/microbiología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
18.
BMC Plant Biol ; 24(1): 175, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38443788

RESUMEN

In the natural environment, plants face constant exposure to biotic stress caused by fungal attacks. The plant's response to various biotic stresses relies heavily on its ability to rapidly adjust the transcriptome. External signals are transmitted to the nucleus, leading to activation of transcription factors that subsequently enhance the expression of specific defense-related genes. Epigenetic mechanisms, including histone modifications and DNA methylation, which are closely linked to chromatin states, regulate gene expression associated with defense against biotic stress. Additionally, chromatin remodelers and non-coding RNA play a significant role in plant defense against stressors. These molecular modifications enable plants to exhibit enhanced resistance and productivity under diverse environmental conditions. Epigenetic mechanisms also contribute to stress-induced environmental epigenetic memory and priming in plants, enabling them to recall past molecular experiences and utilize this stored information for adaptation to new conditions. In the arms race between fungi and plants, a significant aspect is the cross-kingdom RNAi mechanism, whereby sRNAs can traverse organismal boundaries. Fungi utilize sRNA as an effector molecule to silence plant resistance genes, while plants transport sRNA, primarily through extracellular vesicles, to pathogens in order to suppress virulence-related genes. In this review, we summarize contemporary knowledge on epigenetic mechanisms of plant defense against attack by pathogenic fungi. The role of epigenetic mechanisms during plant-fungus symbiotic interactions is also considered.


Asunto(s)
Genes de Plantas , ARN Pequeño no Traducido , Cromatina , Metilación de ADN , Epigénesis Genética
19.
BMC Plant Biol ; 24(1): 8, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38163903

RESUMEN

Patchoulol, a valuable compound belonging to the sesquiterpenoid family, is the primary component of patchouli oil produced by Pogostemon cablin (P. cablin). It has a variety of pharmacological and biological activities and is widely used in the medical and cosmetic industries. However, despite its significance, there is a lack of research on the transcriptional modulation of patchoulol biosynthesis.Salicylic acid (SA), is a vital plant hormone that serves as a critical signal molecule and plays an essential role in plant growth and defense. However, to date, no studies have explored the modulation of patchoulol biosynthesis by SA. In our study, we discovered that the application of SA can enhance the production of patchoulol. Utilizing transcriptome analysis of SA-treated P. cablin, we identified a crucial downstream transcription factor, PatWRKY71. The transcription level of PatWRKY71 was significantly increased with the use of SA. Furthermore, our research has revealed that PatWRKY71 was capable of binding to the promoter of PatPTS, ultimately leading to an increase in its expression. When PatWRKY71 was silenced by a virus, the expression of both PatWRKY71 and PatPTS was reduced, resulting in the down-regulation of patchoulol production. Through our studies, we discovered that heterologous expression of PatWRKY71 leads to an increase in the sensitivity of Arabidopsis to salt and Cd, as well as an outbreak of reactive oxygen species (ROS). Additionally, we uncovered the regulatory role of PatWRKY71 in both patchoulol biosynthesis and plant defense response. This discovery provided a theoretical basis for the improvement of the content of patchoulol and the resistance of P. cablin through genetic engineering.


Asunto(s)
Arabidopsis , Pogostemon , Sesquiterpenos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Plantas/metabolismo , Pogostemon/genética , Sesquiterpenos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
20.
Planta ; 259(5): 113, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581452

RESUMEN

MAIN CONCLUSION: Carbohydrates are hydrolyzed by a family of carbohydrate-active enzymes (CAZymes) called glycosidases or glycosyl hydrolases. Here, we have summarized the roles of various plant defense glycosidases that possess different substrate specificities. We have also highlighted the open questions in this research field. Glycosidases or glycosyl hydrolases (GHs) are a family of carbohydrate-active enzymes (CAZymes) that hydrolyze glycosidic bonds in carbohydrates and glycoconjugates. Compared to those of all other sequenced organisms, plant genomes contain a remarkable diversity of glycosidases. Plant glycosidases exhibit activities on various substrates and have been shown to play important roles during pathogen infections. Plant glycosidases from different GH families have been shown to act upon pathogen components, host cell walls, host apoplastic sugars, host secondary metabolites, and host N-glycans to mediate immunity against invading pathogens. We could classify the activities of these plant defense GHs under eleven different mechanisms through which they operate during pathogen infections. Here, we have provided comprehensive information on the catalytic activities, GH family classification, subcellular localization, domain structure, functional roles, and microbial strategies to regulate the activities of defense-related plant GHs. We have also emphasized the research gaps and potential investigations needed to advance this topic of research.


Asunto(s)
Glicósido Hidrolasas , Polisacáridos , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Carbohidratos , Plantas/metabolismo , Glicósidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA