Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(7): 4782-4791, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32511931

RESUMEN

Ferromagnetic materials are the widely used source of spin-polarized electrons in spintronic devices, which are controlled by external magnetic fields or spin-transfer torque methods. However, with increasing demand for smaller and faster spintronic components utilization of spin-orbit phenomena provides promising alternatives. New materials with unique spin textures are highly desirable since all-electric creation and control of spin polarization is expected where the strength, as well as an arbitrary orientation of the polarization, can be defined without the use of a magnetic field. In this work, we use a novel spin-orbit crystal BiTeBr for this purpose. Because of its giant Rashba spin splitting, bulk spin polarization is created at room temperature by an electric current. Integrating BiTeBr crystal into graphene-based spin valve devices, we demonstrate for the first time that it acts as a current-controlled spin injector, opening new avenues for future spintronic applications in integrated circuits.

2.
Nanomaterials (Basel) ; 8(8)2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30127317

RESUMEN

High-quality crystalline nanostructured ZnO thin films were grown on sapphire substrates by reactive sputtering. As-grown and post-annealed films (in air) with various grain sizes (2 to 29 nm) were investigated by scanning electron microscopy, X-ray diffraction, and Raman scattering. The electron⁻phonon coupling (EPC) strength, deduced from the ratio of the second- to the first-order Raman scattering intensity, diminished by reducing the ZnO grain size, which mainly relates to the Fröhlich interactions. Our finding suggests that in the spatially quantum-confined system the low polar nature leads to weak EPC. The outcome of this study is important for the development of nanoscale high-performance optoelectronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA