Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37240222

RESUMEN

To investigate how different species or ploidy level of pollen donors affects the fruit quality of kiwifruit, flowers of 'Hayward' kiwifruit (a hexaploid Actinidia deliciosa cultivar, 6x) were hand-pollinated with pollen from ten different male donors. Kiwifruit plants pollinated with four distant species-M7 (2x, A. kolomikta), M8 (4x, A. arguta), M9 (4x, A. melanandra), and M10 (2x, A. eriantha)-had a low fruit-setting rate and therefore were not investigated further. Of the other six treatments, kiwifruit plants pollinated with M4 (4x, A. chinensis), M5 (6x, A. deliciosa) M6 (6x, A. deliciosa) had a larger fruit size and weight than those pollinated with M1 (2x, A. chinensis) and M2 (2x, A. chinensis). However, pollination with M1 (2x) and M2 (2x) resulted in seedless fruits, having few small and aborted seeds. Notably, these seedless fruits had higher fructose, glucose, and total sugar and lower citric acid content. This resulted in a higher sugar to acid ratio compared to fruits from plants pollinated with M3 (4x, A. chinensis), M4 (4x), M5 (6x), and M6 (6x). Most volatile compounds increased in the M1 (2x)- and M2 (2x)-pollinated fruit. A combination of principal component analysis (PCA), electronic tongue, and electronic nose suggested that the different pollen donors significantly affected the kiwifruit's overall taste and volatiles. Specifically, two diploid donors had the most positive contribution. This was in agreement with the findings from the sensory evaluation. In conclusion, the present study showed that the pollen donor affected the seed development, taste, and flavor quality of 'Hayward' kiwifruit. This provides useful information for improving the fruit quality and breeding of seedless kiwifruit.


Asunto(s)
Actinidia , Frutas , Gusto , Fitomejoramiento , Semillas , Polen
2.
J Am Oil Chem Soc ; 99(12): 1103-1111, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36589259

RESUMEN

Rice bran oil (RBO) has been a popular choice of cooking oil in several Asian countries for decades, and the interest in RBO is fast growing in Western countries due to the high levels of hearty unsaturated fats and other components beneficial to health. Further knowledge of unsaturated fatty acid content and composition in rice lines will assist in improving the quality of rice bran processing by allowing robust extraction of rice bran for oil production. The studies focused on the RBO composition of rice lines with beneficial genotypes are scarce. Accordingly, we investigated the total bran lipid content and composition of three of the most abundant, healthy, unsaturated fatty acids that freely exist in RBO: oleic, linoleic, and α-linolenic acids in nine parental lines (two male sterile lines and seven male lines) and seven hybrid rice lines, by utilizing an efficacious organic extraction to collect RBO and by developing a user-friendly reverse-phase high-performance liquid chromatography (HPLC) methodology. Our results showed that the hybrid lines had the highest oil content (F ratio = 7.2017, p value = 0.0019), while the male lines had the highest levels of two of the three free unsaturated fatty acids analyzed (linoleic acid, x ¯ = 212.801 mg and oleic acid, x ¯ = 48.132 mg). Oil weight was negatively correlated with α-linolenic acid (r = -0.6535, p value <0.0001). All three free unsaturated fatty acids were positively correlated. Our samples' natural variation in lipid content suggests that some rice lines are more suitable for oil production.

3.
Am J Bot ; 103(2): 246-59, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26872492

RESUMEN

PREMISE OF THE STUDY: Homoploid hybrid speciation is receiving growing attention due the increasing recognition of its role in speciation. We investigate if individuals intermediate in morphology between the two species of the conifer genus Athrotaxis represent a homoploid hybrid species, A. laxifolia, or are spontaneous F1 hybrids. METHODS: A total of 1055 individuals of Athrotaxis cupressoides and A. selaginoides, morphologically intermediate individuals, and two putative hybrid swarms were sampled across the range of the genus and genotyped with 13 microsatellites. We used simulations to test the power of our data to identify the pure species, F1s, F2s, and backcross generations. KEY RESULTS: We found that Athrotaxis cupressoides and A. selaginoides are likely the most divergent congeneric conifers known, but the intermediates are F1 hybrids, sharing one allele each from A. cupressoides and A. selaginoides at six loci with completely species specific alleles. The hybrid swarms contain wide genetic variation with stronger affinities to the locally dominant species, A. selaginoides and A. selaginoides backcrosses outnumbering A. cupressoides backcrosses. In addition, we observed evidence for isolated advanced generation backcrosses within the range of the pure species. CONCLUSIONS: We conclude that, even though they can be large and long-lived, Athrotaxis hybrid swarms are on a trajectory of decline and will eventually be reabsorbed by the parental species. However, this process may take millennia and fossil evidence suggests that such events have occurred repeatedly since the early Quaternary. Given this timeline, our study highlights the many obstacles to homoploid hybrid speciation.


Asunto(s)
Cupressaceae/genética , Especiación Genética , Variación Genética , Hibridación Genética , ADN de Plantas/genética , Etiquetas de Secuencia Expresada , Repeticiones de Microsatélite , Ploidias , Análisis de Secuencia de ADN , Tasmania
4.
Evol Appl ; 14(4): 983-995, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33897815

RESUMEN

Self-incompatibility (SI) in flowering plants potentially represents a major obstacle for sexual reproduction, especially when the number of S-alleles is low. The situation is extreme in the commercially important olive tree, where in vitro pollination assays suggested the existence of a diallelic SI (DSI) system involving only two groups (G1 and G2). Varieties belonging to the same SI group cannot fertilize each other, such that successful fruit production is predicted to require pollination between varieties of different groups. To test this prediction, we explored the extent to which the DSI system determines fertilization patterns under field conditions. One hundred and seventeen olive cultivars were first genotyped using 10 highly polymorphic dinucleotide Simple Sequence Repeat (SSR) markers to ascertain varietal identity. Cultivars were then phenotyped through controlled pollination tests to assign each of them to one of the two SI groups. We then collected and genotyped 1440 open pollinated embryos from five different orchards constituted of seven local cultivars with known group of incompatibility groups. Embryos genotype information were used: (i) to assign embryos to the most likely pollen donor genotype in the neighbourhood using paternity analysis, and (ii) to compare the composition of the pollen cloud genetic among recipient trees in the five sites. The paternity analysis showed that the DSI system is the main determinant of fertilization success under field open pollination conditions: G1 cultivars sired seeds exclusively on G2 cultivars, and reciprocally. No self-fertilization events were observed. Our results demonstrate that DSI is a potent force determining pollination success among varieties within olive orchards used for production. They have the potential to improve management practices by guiding the selection of compatible varieties to avoid planting orchards containing sets of varieties with strongly unbalanced SI groups, as these would lead to suboptimal olive production.

5.
Ecol Evol ; 11(10): 5646-5656, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34026036

RESUMEN

Floral gender in angiosperms often varies within and among populations. We conducted a field survey to test how predispersal seed predation affects sex allocation in an andromonoecious alpine herb Peucedanum multivittatum. We compared plant size, male and perfect flower production, fruit set, and seed predation rate over three years among nine populations inhabiting diverse snowmelt conditions in alpine meadows. Flowering period of individual populations varied from mid-July to late August reflecting the snowmelt time. Although perfect flower and fruit productions increased with plant size, size dependency of male flower production was less clear. The number of male flowers was larger in the early-flowering populations, while the number of perfect flowers increased in the late-flowering populations. Thus, male-biased sex allocation was common in the early-flowering populations. Fruit-set rates varied among populations and between years, irrespective of flowering period. Fruit-set success of individual plants increased with perfect flower number, but independent of male flower number. Seed predation by lepidopteran larvae was intense in the early-flowering populations, whereas predation damage was absent in the late-flowering populations, reflecting the extent of phenological matching between flowering time of host plants and oviposition period of predator moths. Seed predation rate was independent of male and perfect flower numbers of individual plants. Thus, seed predation is a stochastic event in each population. There was a clear correlation between the proportion of male flowers and the intensity of seed predation among populations. These results suggest that male-biased sex allocation could be a strategy to reduce seed predation damage but maintain the effort as a pollen donor under intensive seed predation.

6.
Oecologia ; 101(3): 343-352, 1995 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28307056

RESUMEN

The goal of this study was to elucidate the sources of seed size variation in Hydrophyllum appendiculatum, an outcrossing, biennial plant. The genetic basis of seed size variation was examined with a diallel breeding design. The analysis did not reveal any evidence for additive genetic variance, suggesting that seed size could not evolve in response to natural selection. A series of greenhouse experiments was conducted to determine the sensitivity of seed weight to a number of ecological variables. Seed weight was affected by inbreeding depression: seeds produced by self-pollinations were significantly lighter that outcrossed seeds. Maternal plants did not differentially provision seeds that were the result of crosses between subpopulations (separated by 300 m) or between populations (separated by 1.7 km). Mean seed size was independent of the number of outcrossed pollen donors (one vs. many) that sired seeds on an inflorescence; however, the variance was greater on inflorescences pollinated by multiple donors. Direct manipulations of the abiotic environment showed that seed size was greater on plants growing under full sunlight compared to shaded plants. Seed size was unaffected by soil type, fertilizer addition, or defoliation. Finally, I determined the effect of varying pollination intensity at the level of a single inflorescence, and at the whole plant level. Seed weight was greatest on plants that had only 1 and 5 inflorescences pollinated, and least on those that had 10 and 20 pollinated. At the inflorescence level, seed weights were greatest on those where all flowers were pollinated, compared to inflorescences where only half of the flowers were pollinated. Perhaps the greatest contributor to variance in seed size in this species was the temporal decline within plants through the flowering season. These results indicate that maternal plants are not capable of producing uniform seed crops. Rather, the final distribution of seed size produced by plants within a population will necessarily vary and be the result of pollination effects, heterogeneity in the abiotic environment, and developmental constraints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA