Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
J Biol Chem ; 298(5): 101907, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398093

RESUMEN

The fat mass and obesity-associated FTO protein catalyzes demethylation of the N6-methyladenosine, an epigenetic mark that controls several metabolic pathways by modulating the transcription, translation, and cellular localization of RNA molecules. Since the discovery that its overexpression links to the development of obesity and cancer, FTO was the target of screening campaigns and structure-based drug design efforts. Although several FTO inhibitors were generated, these often lack potency or selectivity. Herein, we investigate the structure and dynamics of human FTO in solution. We show that the structure of the catalytic N-terminal domain is unstable in the absence of the C-terminal domain, which explains why the isolated N-terminal domain is incompetent for catalysis and suggests that the domain interaction represents a target for the development of specific inhibitors. Then, by using NMR relaxation measurements, we show that the interface between the FTO structural domains, the active site, and several peripheral loops undergo conformational dynamics on both the picosecond-nanosecond and microsecond-millisecond timescales. Consistent with this, we found that the backbone amide residual dipolar couplings measured for FTO in phage pf1 are inconsistent with the static crystal structure of the enzyme. Finally, we generated a conformational ensemble for apo FTO that satisfies the solution NMR data by combining the experimental residual dipolar couplings with accelerated molecular dynamics simulations. Altogether, the structural ensemble reported in this work provides an atomic-resolution model of apo FTO and reveals transient surface pockets at the domain interface that represent potential targets for the design of allosteric inhibitors.


Asunto(s)
Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/química , Diseño de Fármacos , Simulación de Dinámica Molecular , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/antagonistas & inhibidores , Dominio Catalítico , Humanos , Espectroscopía de Resonancia Magnética , Obesidad/genética
2.
J Biol Chem ; 298(8): 102235, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35798142

RESUMEN

FtsQBL is a transmembrane protein complex in the divisome of Escherichia coli that plays a critical role in regulating cell division. Although extensive efforts have been made to investigate the interactions between the three involved proteins, FtsQ, FtsB, and FtsL, the detailed interaction mechanism is still poorly understood. In this study, we used hydrogen-deuterium exchange mass spectrometry to investigate these full-length proteins and their complexes. We also dissected the structural dynamic changes and the related binding interfaces within the complexes. Our data revealed that FtsB and FtsL interact at both the periplasmic and transmembrane regions to form a stable complex. Furthermore, the periplasmic region of FtsB underwent significant conformational changes. With the help of computational modeling, our results suggest that FtsBL complexation may bring the respective constriction control domains (CCDs) in close proximity. We show that when FtsBL adopts a coiled-coil structure, the CCDs are fixed at a vertical position relative to the membrane surface; thus, this conformational change may be essential for FtsBL's interaction with other divisome proteins. In the FtsQBL complex, intriguingly, we show only FtsB interacts with FtsQ at its C-terminal region, which stiffens a large area of the ß-domain of FtsQ. Consistent with this, we found the connection between the α- and ß-domains in FtsQ is also strengthened in the complex. Overall, the present study provides important experimental evidence detailing the local interactions between the full-length FtsB, FtsL, and FtsQ protein, as well as valuable insights into the roles of FtsQBL complexation in regulating divisome activity.


Asunto(s)
Proteínas de Ciclo Celular , Proteínas de Escherichia coli , Escherichia coli , Proteínas de la Membrana , Proteínas de Ciclo Celular/metabolismo , División Celular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Conformación Proteica
3.
J Biol Chem ; 298(8): 102145, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35716775

RESUMEN

Class I WW domains are present in many proteins of various functions and mediate protein interactions by binding to short linear PPxY motifs. Tandem WW domains often bind peptides with multiple PPxY motifs, but the interplay of WW-peptide interactions is not always intuitive. The WW domain-containing oxidoreductase (WWOX) harbors two WW domains: an unstable WW1 capable of PPxY binding and stable WW2 that cannot bind PPxY. The WW2 domain has been suggested to act as a WW1 domain chaperone, but the underlying mechanism of its chaperone activity remains to be revealed. Here, we combined NMR, isothermal calorimetry, and structural modeling to elucidate the roles of both WW domains in WWOX binding to its PPxY-containing substrate ErbB4. Using NMR, we identified an interaction surface between these two domains that supports a WWOX conformation compatible with peptide substrate binding. Isothermal calorimetry and NMR measurements also indicated that while binding affinity to a single PPxY motif is marginally increased in the presence of WW2, affinity to a dual-motif peptide increases 10-fold. Furthermore, we found WW2 can directly bind double-motif peptides using its canonical binding site. Finally, differential binding of peptides in mutagenesis experiments was consistent with a parallel N- to C-terminal PPxY tandem motif orientation in binding to the WW1-WW2 tandem domain, validating structural models of the interaction. Taken together, our results reveal the complex nature of tandem WW-domain organization and substrate binding, highlighting the contribution of WWOX WW2 to both protein stability and target binding.


Asunto(s)
Péptidos , Oxidorreductasa que Contiene Dominios WW , Dominios WW , Secuencias de Aminoácidos , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Oxidorreductasa que Contiene Dominios WW/química
4.
J Biol Chem ; 298(6): 101963, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452682

RESUMEN

Formation of transcription factor (TF)-coregulator complexes is a key step in transcriptional regulation, with coregulators having essential functions as hub nodes in molecular networks. How specificity and selectivity are maintained in these nodes remain open questions. In this work, we addressed specificity in transcriptional networks using complexes formed between TFs and αα-hubs, which are defined by a common αα-hairpin secondary structure motif, as a model. Using NMR spectroscopy and binding thermodynamics, we analyzed the structure, dynamics, stability, and ligand-binding properties of the Arabidopsis thaliana RST domains from TAF4 and known binding partner RCD1, and the TAFH domain from human TAF4, allowing comparison across species, functions, and architectural contexts. While these αα-hubs shared the αα-hairpin motif, they differed in length and orientation of accessory helices as well as in their thermodynamic profiles of ligand binding. Whereas biologically relevant RCD1-ligand pairs displayed high affinity driven by enthalpy, TAF4-ligand interactions were entropy driven and exhibited less binding-induced structuring. We in addition identified a thermal unfolding state with a structured core for all three domains, although the temperature sensitivity differed. Thermal stability studies suggested that initial unfolding of the RCD1-RST domain localized around helix 1, lending this region structural malleability, while effects in TAF4-RST were more stochastic, suggesting variability in structural adaptability upon binding. Collectively, our results support a model in which hub structure, flexibility, and binding thermodynamics contribute to αα-hub-TF binding specificity, a finding of general relevance to the understanding of coregulator-ligand interactions and interactome sizes.


Asunto(s)
Proteínas de Arabidopsis/química , Factores Asociados con la Proteína de Unión a TATA/química , Factor de Transcripción TFIID/química , Factores de Transcripción TFII/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Humanos , Ligandos , Proteínas Nucleares/metabolismo , Unión Proteica , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción TFII/metabolismo
5.
Proteomics ; 22(9): e2100265, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35094488

RESUMEN

Pluripotent stem cells (PSC) endocrine differentiation at a large scale allows sampling of transcriptome and proteome with phosphoproteome (proteoform) at specific time points. We describe the dynamic time course of changes in cells undergoing directed beta-cell differentiation and show target proteins or previously unknown phosphorylation of critical proteins in pancreas development, NKX6-1, and Chromogranin A (CHGA). We describe fluctuations in the correlation between gene expression, protein abundance, and phosphorylation, following differentiation protocol perturbations at all stages to identify proteoform profiles. Our modeling recognizes outliers on a phenomic landscape of endocrine differentiation, and we describe new biological pathways involved. We have validated our proteomic data by analyzing independent single-cell RNAseq datasets for in-vitro pancreatic islet production and corroborated our findings for several proteins suggestive as targets for future research. The single-cell analysis combined with proteoform data places new protein targets within the specific time point and at the specific pancreatic lineage of differentiating stem cells. We suggest that non-correlating proteins abundances or new phosphorylation motifs of NKX6.1 and CHGA point to new signaling pathways that may play an essential role in beta-cell development. We present our findings for the research community's use to improve endocrine differentiation protocols and developmental studies.


Asunto(s)
Células Madre Embrionarias Humanas , Células Madre Pluripotentes , Diferenciación Celular/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes/metabolismo , Proteómica
6.
Int J Mol Sci ; 23(14)2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35887069

RESUMEN

Flaviviruses are single-stranded RNA viruses that have emerged in recent decades and infect up to 400 million people annually, causing a variety of potentially severe pathophysiological processes including hepatitis, encephalitis, hemorrhagic fever, tissues and capillaries damage. The Flaviviridae family is represented by four genera comprising 89 known virus species. There are no effective therapies available against many pathogenic flaviviruses. One of the promising strategies for flavivirus infections prevention and therapy is the use of neutralizing antibodies (NAb) that can disable the virus particles from infecting the host cells. The envelope protein (E protein) of flaviviruses is a three-domain structure that mediates the fusion of viral and host membranes delivering the infectious material. We previously developed and characterized 10H10 mAb which interacts with the E protein of the tick-borne encephalitis virus (TBEV) and many other flaviviruses' E proteins. The aim of this work was to analyze the structure of E protein binding sites recognized by the 10H10 antibody, which is reactive with different flavivirus species. Here, we present experimental data and 3D modeling indicating that the 10H10 antibody recognizes the amino acid sequence between the two cysteines C92-C116 of the fusion loop (FL) region of flaviviruses' E proteins. Overall, our results indicate that the antibody-antigen complex can form a rigid or dynamic structure that provides antibody cross reactivity and efficient interaction with the fusion loop of E protein.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Infecciones por Flavivirus , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Reacciones Cruzadas , Humanos
7.
J Biol Chem ; 295(15): 4912-4922, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32139510

RESUMEN

Dynein light chain 8 (LC8) interacts with intrinsically disordered proteins (IDPs) and influences a wide range of biological processes. It is becoming apparent that among the numerous IDPs that interact with LC8, many contain multiple LC8-binding sites. Although it is established that LC8 forms parallel IDP duplexes with some partners, such as nucleoporin Nup159 and dynein intermediate chain, the molecular details of these interactions and LC8's interactions with other diverse partners remain largely uncharacterized. LC8 dimers could bind in either a paired "in-register" or a heterogeneous off-register manner to any of the available sites on a multivalent partner. Here, using NMR chemical shift perturbation, analytical ultracentrifugation, and native electrospray ionization MS, we show that LC8 forms a predominantly in-register complex when bound to an IDP domain of the multivalent regulatory protein ASCIZ. Using saturation transfer difference NMR, we demonstrate that at substoichiometric LC8 concentrations, the IDP domain preferentially binds to one of the three LC8 recognition motifs. Further, the differential dynamic behavior for the three sites and the size of the fully bound complex confirmed an in-register complex. Dynamics measurements also revealed that coupling between sites depends on the linker length separating these sites. These results identify linker length and motif specificity as drivers of in-register binding in the multivalent LC8-IDP complex assembly and the degree of compositional and conformational heterogeneity as a promising emerging mechanism for tuning of binding and regulation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Dineínas/química , Dineínas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Conformación Proteica , Homología de Secuencia , Factores de Transcripción/química , Factores de Transcripción/genética
8.
J Biol Chem ; 295(21): 7529-7543, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32253235

RESUMEN

The global incidence of the sexually transmitted disease gonorrhea is expected to rise due to the spread of Neisseria gonorrhoeae strains with decreased susceptibility to extended-spectrum cephalosporins (ESCs). ESC resistance is conferred by mosaic variants of penicillin-binding protein 2 (PBP2) that have diminished capacity to form acylated adducts with cephalosporins. To elucidate the molecular mechanisms of ESC resistance, we conducted a biochemical and high-resolution structural analysis of PBP2 variants derived from the decreased-susceptibility N. gonorrhoeae strain 35/02 and ESC-resistant strain H041. Our data reveal that mutations both lower affinity of PBP2 for ceftriaxone and restrict conformational changes that normally accompany acylation. Specifically, we observe that a G545S substitution hinders rotation of the ß3 strand necessary to form the oxyanion hole for acylation and also traps ceftriaxone in a noncanonical configuration. In addition, F504L and N512Y substitutions appear to prevent bending of the ß3-ß4 loop that is required to contact the R1 group of ceftriaxone in the active site. Other mutations also appear to act by reducing flexibility in the protein. Overall, our findings reveal that restriction of protein dynamics in PBP2 underpins the ESC resistance of N. gonorrhoeae.


Asunto(s)
Proteínas Bacterianas/metabolismo , Resistencia a las Cefalosporinas , Neisseria gonorrhoeae/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Acetilación/efectos de los fármacos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Ceftriaxona/farmacología , Mutación Missense , Neisseria gonorrhoeae/genética , Estructura Secundaria de Proteína , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/genética
9.
J Biol Chem ; 295(7): 2068-2083, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31915245

RESUMEN

Many secretory proteins are activated by cleavage at specific sites. The proprotein convertases (PCs) form a family of nine secretory subtilisin-like serine proteases, seven of which cleave at specific basic residues within the trans-Golgi network, granules, or at the cell surface/endosomes. The seventh member, PC7, is a type-I transmembrane (TM) protein with a 97-residue-long cytosolic tail (CT). PC7 sheds human transferrin receptor 1 (hTfR1) into soluble shTfR1 in endosomes. To better understand the physiological roles of PC7, here we focused on the relationship between the CT-regulated trafficking of PC7 and its ability to shed hTfR1. Deletion of the TMCT resulted in soluble PC7 and loss of its hTfR1 shedding activity. Extensive CT deletions and mutagenesis analyses helped us zoom in on three residues in the CT, namely Glu-719, Glu-721, and Leu-725, that are part of a novel motif, EXEXXXL725, critical for PC7 activity on hTfR1. NMR studies of two 14-mer peptides mimicking this region of the CT and its Ala variants revealed that the three exposed residues are on the same side of the molecule. This led to the identification of adaptor protein 2 (AP-2) as a protein that recognizes the EXEXXXL725 motif, thus representing a potentially new regulator of PC7 trafficking and cleavage activity. Immunocytochemistry of the subcellular localization of PC7 and its Ala variants of Leu-725 and Glu-719 and Glu-721 revealed that Leu-725 enhances PC7 localization to early endosomes and that, together with Glu-719 and Glu-721, it increases the endosomal activity of PC7 on hTfR1.


Asunto(s)
Antígenos CD/genética , Citosol/metabolismo , Transporte de Proteínas/genética , Receptores de Transferrina/genética , Subtilisinas/genética , Factor de Transcripción AP-2/genética , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos/genética , Antígenos CD/química , Membrana Celular/genética , Movimiento Celular/genética , Citosol/química , Endosomas/genética , Células HEK293 , Humanos , Receptores de Transferrina/química , Subtilisinas/química , Red trans-Golgi/genética
10.
J Biol Chem ; 295(8): 2506-2519, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31911437

RESUMEN

TAR DNA-binding protein 43 (TDP-43) has emerged as a key player in many neurodegenerative pathologies, including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Hallmarks of both FTLD and ALS are the toxic cytoplasmic inclusions of the prion-like C-terminal fragments of TDP-43 CTD (TDP-43 C-terminal domain), formed upon proteolytic cleavage of full-length TDP-43 in the nucleus and subsequent transport to the cytoplasm. Both full-length TDP-43 and its CTD are also known to form stress granules by coacervating with RNA in the cytoplasm during stress and may be involved in these pathologies. Furthermore, mutations in the PGRN gene, leading to haploinsufficiency and diminished function of progranulin (PGRN) protein, are strongly linked to FTLD and ALS. Recent reports have indicated that proteolytic processing of PGRN to smaller protein modules called granulins (GRNs) contributes to FTLD and ALS progression, with specific GRNs exacerbating TDP-43-induced cytotoxicity. Here we investigated the interactions between the proteolytic products of both TDP-43 and PGRN. Based on structural disorder and charge distributions, we hypothesized that GRN-3 and GRN-5 could interact with the TDP-43 CTD. We show that, under both reducing and oxidizing conditions, GRN-3 and GRN-5 interact with and differentially modulate TDP-43 CTD aggregation and/or liquid-liquid phase separation in vitro GRN-3 promoted insoluble aggregates of the TDP-43 CTD while GRN-5 mediated liquid-liquid phase separation. These results constitute the first observation of an interaction between GRNs and TDP-43, suggesting a mechanism by which attenuated PGRN function could lead to familial FTLD or ALS.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Granulinas/metabolismo , Degeneración Nerviosa/patología , Priones/química , Priones/metabolismo , Agregado de Proteínas , Benzotiazoles/metabolismo , Modelos Biológicos , Oxidación-Reducción , Dominios Proteicos , ARN/metabolismo
11.
J Biol Chem ; 295(49): 16585-16603, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-32963105

RESUMEN

The functional mechanisms of multidomain proteins often exploit interdomain interactions, or "cross-talk." An example is human Pin1, an essential mitotic regulator consisting of a Trp-Trp (WW) domain flexibly tethered to a peptidyl-prolyl isomerase (PPIase) domain, resulting in interdomain interactions important for Pin1 function. Substrate binding to the WW domain alters its transient contacts with the PPIase domain via means that are only partially understood. Accordingly, we have investigated Pin1 interdomain interactions using NMR paramagnetic relaxation enhancement (PRE) and molecular dynamics (MD) simulations. The PREs show that apo-Pin1 samples interdomain contacts beyond the range suggested by previous structural studies. They further show that substrate binding to the WW domain simultaneously alters interdomain separation and the internal conformation of the WW domain. A 4.5-µs all-atom MD simulation of apo-Pin1 suggests that the fluctuations of interdomain distances are correlated with fluctuations of WW domain interresidue contacts involved in substrate binding. Thus, the interdomain/WW domain conformations sampled by apo-Pin1 may already include a range of conformations appropriate for binding Pin1's numerous substrates. The proposed coupling between intra-/interdomain conformational fluctuations is a consequence of the dynamic modular architecture of Pin1. Such modular architecture is common among cell-cycle proteins; thus, the WW-PPIase domain cross-talk mechanisms of Pin1 may be relevant for their mechanisms as well.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA/química , Apoproteínas/química , Apoproteínas/metabolismo , Sitios de Unión , Humanos , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular , Mutagénesis , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Óxidos de Nitrógeno/química , Unión Proteica , Estructura Terciaria de Proteína , Marcadores de Spin , Especificidad por Sustrato , Dominios WW
12.
J Biol Chem ; 295(40): 13829-13837, 2020 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737198

RESUMEN

Protein-tyrosine phosphatase 1B (PTP1B) is the canonical enzyme for investigating how distinct structural elements influence enzyme catalytic activity. Although it is recognized that dynamics are essential for PTP1B function, the data collected thus far have not resolved whether distinct elements are dynamically coordinated or, alternatively, whether they fulfill their respective functions independently. To answer this question, we performed a comprehensive 13C-methyl relaxation study of Ile, Leu, and Val (ILV) residues of PTP1B, which, because of its substantially increased sensitivity, provides a comprehensive understanding of the influence of protein motions on different time scales for enzyme function. We discovered that PTP1B exhibits dynamics at three distinct time scales. First, it undergoes a distinctive slow motion that allows for the dynamic binding and release of its two most N-terminal helices from the catalytic core. Second, we showed that PTP1B 13C-methyl group side chain fast time-scale dynamics and 15N backbone fast time-scale dynamics are fully consistent, demonstrating that fast fluctuations are essential for the allosteric control of PTP1B activity. Third, and most importantly, using 13C ILV constant-time Carr-Purcell-Meiboom-Gill relaxation measurements experiments, we demonstrated that all four catalytically important loops-the WPD, Q, E, and substrate-binding loops-work in dynamic unity throughout the catalytic cycle of PTP1B. Thus, these data show that PTP1B activity is not controlled by a single functional element, but instead all key elements are dynamically coordinated. Together, these data provide the first fully comprehensive picture on how the validated drug target PTP1B functions.


Asunto(s)
Simulación de Dinámica Molecular , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Humanos , Dominios Proteicos , Estructura Secundaria de Proteína , Proteína Tirosina Fosfatasa no Receptora Tipo 1/genética
13.
J Biol Chem ; 295(6): 1637-1645, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-31901079

RESUMEN

Cytochrome P450 family 102 subfamily A member 1 (CYP102A1) is a self-sufficient flavohemeprotein and a highly active bacterial enzyme capable of fatty acid hydroxylation at a >3,000 min-1 turnover rate. The CYP102A1 architecture has been postulated to be responsible for its extraordinary catalytic prowess. However, the structure of a functional full-length CYP102A1 enzyme remains to be determined. Herein, we used a cryo-EM single-particle approach, revealing that full-length CYP102A1 forms a homodimer in which both the heme and FAD domains contact each other. The FMN domain of one monomer was located close to the heme domain of the other monomer, exhibiting a trans configuration. Moreover, full-length CYP102A1 is highly dynamic, existing in multiple conformational states, including open and closed states. In the closed state, the FMN domain closely contacts the FAD domain, whereas in the open state, one of the FMN domains rotates away from its FAD domain and traverses to the heme domain of the other monomer. This structural arrangement and conformational dynamics may facilitate rapid intraflavin and trans FMN-to-heme electron transfers (ETs). Results with a variant having a 12-amino-acid deletion in the CYP102A1 linker region, connecting the catalytic heme and the diflavin reductase domains, further highlighted the importance of conformational dynamics in the ET process. Cryo-EM revealed that the Δ12 variant homodimer is conformationally more stable and incapable of FMN-to-heme ET. We conclude that closed-to-open alternation is crucial for redox partner recognition and formation of an active ET complex for CYP102A1 catalysis.


Asunto(s)
Bacillus megaterium/química , Proteínas Bacterianas/química , Sistema Enzimático del Citocromo P-450/química , NADPH-Ferrihemoproteína Reductasa/química , Proteínas Bacterianas/ultraestructura , Microscopía por Crioelectrón , Sistema Enzimático del Citocromo P-450/ultraestructura , Modelos Moleculares , NADPH-Ferrihemoproteína Reductasa/ultraestructura , Oxidación-Reducción , Conformación Proteica , Multimerización de Proteína
14.
J Biol Chem ; 295(34): 11995-12001, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32587092

RESUMEN

Vif (viral infectivity factor) is a protein that is essential for the replication of the HIV-1 virus. The key function of Vif is to disrupt the antiviral activity of host APOBEC3 (apolipoprotein B mRNA-editing enzyme catalytic subunit 3) proteins, which mutate viral nucleic acids. Inside the cell, Vif binds to the host cell proteins Elongin-C, Elongin-B, and core-binding factor subunit ß, forming a four-protein complex called VCBC. The structure of VCBC-Cullin5 has recently been solved by X-ray crystallography, and, using molecular dynamics simulations, the dynamics of VCBC have been characterized. Here, we applied time-lapse high-speed atomic force microscopy to visualize the conformational changes of the VCBC complex. We determined the three most favorable conformations of this complex, which we identified as the triangle, dumbbell, and globular structures. Moreover, we characterized the dynamics of each of these structures. Our data revealed the very dynamic behavior of all of them, with the triangle and dumbbell structures being the most dynamic. These findings provide insight into the structure and dynamics of the VCBC complex and may support efforts to improve HIV treatment, because Vif is essential for virus survival in the cell.


Asunto(s)
VIH-1/química , Microscopía de Fuerza Atómica , Complejos Multiproteicos/química , Complejos Multiproteicos/ultraestructura , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/química , VIH-1/metabolismo , Humanos , Complejos Multiproteicos/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
15.
Biochem Biophys Res Commun ; 570: 82-88, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34274850

RESUMEN

The lack of a simple, fast and efficient method for protein delivery is limiting the widespread application of in-cell experiments, which are crucial for understanding the cellular function. We present here an innovative strategy to deliver proteins into both prokaryotic and eukaryotic cells, exploiting thermal vesiculation. This method allows to internalize substantial amounts of proteins, with different molecular weight and conformation, without compromising the structural properties and cell viability. Characterizing proteins in a physiological environment is essential as the environment can dramatically affect the conformation and dynamics of biomolecules as shown by in-cell EPR spectra vs those acquired in buffer solution. Considering its versatility, this method opens the possibility to scientists to study proteins directly in living cells through a wide range of techniques.


Asunto(s)
Bioquímica/métodos , Proteínas/administración & dosificación , Bases de Datos de Proteínas , Espectroscopía de Resonancia por Spin del Electrón , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Pichia/metabolismo , Proteínas/química
16.
J Biol Chem ; 294(45): 16846-16854, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31570520

RESUMEN

Cell-collagen interactions are crucial for cell migration and invasion during cancer development and progression. Heat shock protein 47 (HSP47) is an endoplasmic reticulum-resident molecular chaperone that facilitates collagen maturation and deposition. It has been previously shown that HSP47 expression in cancer cells is crucial for cancer invasiveness. However, exogenous collagen cannot rescue cell invasion in HSP47-silenced cancer cells, suggesting that other HSP47 targets contribute to cancer cell invasion. Here, we show that HSP47 expression is required for the stability and cell-surface expression of discoidin domain-containing receptor 2 (DDR2) in breast cancer tissues. HSP47 silencing reduced DDR2 protein stability, accompanied by suppressed cell migration and invasion. Co-immunoprecipitation results revealed that HSP47 binds to the DDR2 ectodomain. Using a photoconvertible technique and total internal reflection fluorescence microscopy, we further demonstrate that HSP47 expression significantly sustains the membrane localization of the DDR2 protein. These results suggest that binding of HSP47 to DDR2 increases DDR2 stability and regulates its membrane dynamics and thereby enhances cancer cell migration and invasion. Given that DDR2 has a crucial role in the epithelial-to-mesenchymal transition and cancer progression, targeting the HSP47-DDR2 interaction might be a potential strategy for inhibiting DDR2-dependent cancer progression.


Asunto(s)
Receptor con Dominio Discoidina 2/metabolismo , Proteínas del Choque Térmico HSP47/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Progresión de la Enfermedad , Humanos , Invasividad Neoplásica , Unión Proteica , Estabilidad Proteica
17.
J Biol Chem ; 294(52): 20054-20069, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31748410

RESUMEN

Aberrant regulation of myocardial force production represents an early biomechanical defect associated with sarcomeric cardiomyopathies, but the molecular mechanisms remain poorly defined. Here, we evaluated the pathogenicity of a previously unreported sarcomeric gene variant identified in a pediatric patient with sporadic dilated cardiomyopathy, and we determined a molecular mechanism. Trio whole-exome sequencing revealed a de novo missense variant in TNNC1 that encodes a p.I4M substitution in the N-terminal helix of cardiac troponin C (cTnC). Reconstitution of this human cTnC variant into permeabilized porcine cardiac muscle preparations significantly decreases the magnitude and rate of isometric force generation at physiological Ca2+-activation levels. Computational modeling suggests that this inhibitory effect can be explained by a decrease in the rates of cross-bridge attachment and detachment. For the first time, we show that cardiac troponin T (cTnT), in part through its intrinsically disordered C terminus, directly binds to WT cTnC, and we find that this cardiomyopathic variant displays tighter binding to cTnT. Steady-state fluorescence and NMR spectroscopy studies suggest that this variant propagates perturbations in cTnC structural dynamics to distal regions of the molecule. We propose that the intrinsically disordered C terminus of cTnT directly interacts with the regulatory N-domain of cTnC to allosterically modulate Ca2+ activation of force, perhaps by controlling the troponin I switching mechanism of striated muscle contraction. Alterations in cTnC-cTnT binding may compromise contractile performance and trigger pathological remodeling of the myocardium.


Asunto(s)
Troponina C/metabolismo , Troponina T/metabolismo , Sitios de Unión , Calcio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología , Femenino , Humanos , Masculino , Mutagénesis Sitio-Dirigida , Contracción Miocárdica , Miocardio/metabolismo , Miofibrillas/fisiología , Resonancia Magnética Nuclear Biomolecular , Linaje , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína , Troponina C/química , Troponina T/química , Troponina T/genética
18.
J Biol Chem ; 294(10): 3577-3587, 2019 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-30602566

RESUMEN

During posttranslational translocation in Escherichia coli, polypeptide substrates are driven across the membrane through the SecYEG protein-conducting channel using the ATPase SecA, which binds to SecYEG and couples nucleotide hydrolysis to polypeptide movement. Recent studies suggest that SecA is a highly dynamic enzyme, able to repeatedly bind and dissociate from SecYEG during substrate translocation, but other studies indicate that these dynamics, here referred to as "SecA processivity," are not a requirement for transport. We employ a SecA mutant (PrlD23) that associates more tightly to membranes than WT SecA, in addition to a SecA-SecYEG cross-linked complex, to demonstrate that SecA-SecYEG binding and dissociation events are important for efficient transport of the periplasmic protein proPhoA. Strikingly however, we find that transport of the precursor of the outer membrane protein proOmpA does not depend on SecA processivity. By exchanging signal sequence and protein domains of similar size between PhoA and OmpA, we find that SecA processivity is not influenced by the sequence of the protein substrate. In contrast, using an extended proOmpA variant and a truncated derivative of proPhoA, we show that SecA processivity is affected by substrate length. These findings underscore the importance of the dynamic nature of SecA-SecYEG interactions as a function of the preprotein substrate, features that have not yet been reported using other biophysical or in vivo methods.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Canales de Translocación SEC/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/química , Dominios Proteicos , Estabilidad Proteica , Transporte de Proteínas , Canales de Translocación SEC/química , Proteína SecA
19.
J Biol Chem ; 294(9): 3192-3206, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30573682

RESUMEN

The role of protein structural disorder in biological functions has gained increasing attention in the past decade. The bacterial acid-resistant chaperone HdeA belongs to a group of "conditionally disordered" proteins, because it is inactive in its well-structured state and becomes activated via an order-to-disorder transition under acid stress. However, the mechanism for unfolding-induced activation remains unclear because of a lack of experimental information on the unfolded state conformation and the chaperone-client interactions. Herein, we used advanced solution NMR methods to characterize the activated-state conformation of HdeA under acidic conditions and identify its client-binding sites. We observed that the structure of activated HdeA becomes largely disordered and exposes two hydrophobic patches essential for client interactions. Furthermore, using the pH-dependent chemical exchange saturation transfer (CEST) NMR method, we identified three acid-sensitive regions that act as structural locks in regulating the exposure of the two client-binding sites during the activation process, revealing a multistep activation mechanism of HdeA's chaperone function at the atomic level. Our results highlight the role of intrinsic protein disorder in chaperone function and the self-inhibitory role of ordered structures under nonstress conditions, offering new insights for improving our understanding of protein structure-function paradigms.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Desplegamiento Proteico , Secuencia de Aminoácidos , Proteínas de Escherichia coli/genética , Concentración de Iones de Hidrógeno , Modelos Moleculares , Chaperonas Moleculares/genética , Mutagénesis Sitio-Dirigida , Conformación Proteica
20.
J Biol Chem ; 294(1): 71-88, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30420425

RESUMEN

Caspases are cysteine-aspartic proteases involved in the regulation of programmed cell death (apoptosis) and a number of other biological processes. Despite overall similarities in structure and active-site composition, caspases show striking selectivity for particular protein substrates. Exosites are emerging as one of the mechanisms by which caspases can recruit, engage, and orient these substrates for proper hydrolysis. Following computational analyses and database searches for candidate exosites, we utilized site-directed mutagenesis to identify a new exosite in caspase-6 at the hinge between the disordered N-terminal domain (NTD), residues 23-45, and core of the caspase-6 structure. We observed that substitutions of the tri-arginine patch Arg-42-Arg-44 or the R44K cancer-associated mutation in caspase-6 markedly alter its rates of protein substrate hydrolysis. Notably, turnover of protein substrates but not of short peptide substrates was affected by these exosite alterations, underscoring the importance of this region for protein substrate recruitment. Hydrogen-deuterium exchange MS-mediated interrogation of the intrinsic dynamics of these enzymes suggested the presence of a substrate-binding platform encompassed by the NTD and the 240's region (containing residues 236-246), which serves as a general exosite for caspase-6-specific substrate recruitment. In summary, we have identified an exosite on caspase-6 that is critical for protein substrate recognition and turnover and therefore highly relevant for diseases such as cancer in which caspase-6-mediated apoptosis is often disrupted, and in neurodegeneration in which caspase-6 plays a central role.


Asunto(s)
Caspasa 6/química , Mutación Missense , Proteínas de Neoplasias/química , Neoplasias/enzimología , Enfermedades Neurodegenerativas/enzimología , Sustitución de Aminoácidos , Arginina/química , Arginina/genética , Arginina/metabolismo , Caspasa 6/genética , Caspasa 6/metabolismo , Humanos , Hidrólisis , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Dominios Proteicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA