Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Más filtros

Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(21): e2322428121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739795

RESUMEN

Protein evolution is guided by structural, functional, and dynamical constraints ensuring organismal viability. Pseudogenes are genomic sequences identified in many eukaryotes that lack translational activity due to sequence degradation and thus over time have undergone "devolution." Previously pseudogenized genes sometimes regain their protein-coding function, suggesting they may still encode robust folding energy landscapes despite multiple mutations. We study both the physical folding landscapes of protein sequences corresponding to human pseudogenes using the Associative Memory, Water Mediated, Structure and Energy Model, and the evolutionary energy landscapes obtained using direct coupling analysis (DCA) on their parent protein families. We found that generally mutations that have occurred in pseudogene sequences have disrupted their native global network of stabilizing residue interactions, making it harder for them to fold if they were translated. In some cases, however, energetic frustration has apparently decreased when the functional constraints were removed. We analyzed this unexpected situation for Cyclophilin A, Profilin-1, and Small Ubiquitin-like Modifier 2 Protein. Our analysis reveals that when such mutations in the pseudogene ultimately stabilize folding, at the same time, they likely alter the pseudogenes' former biological activity, as estimated by DCA. We localize most of these stabilizing mutations generally to normally frustrated regions required for binding to other partners.


Asunto(s)
Evolución Molecular , Proteínas , Seudogenes , Ciclofilina A/genética , Familia de Multigenes , Pliegue de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Humanos , Modelos Genéticos
2.
BMC Genomics ; 25(1): 87, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253991

RESUMEN

BACKGROUND: Buruli ulcer (BU) disease, caused by Mycobacterium ulcerans (MU), and characterized by necrotic ulcers is still a health problem in Africa and Australia. The genome of the bacterium has several pseudogenes due to recent evolutionary events and environmental pressures. Pseudogenes are genetic elements regarded as nonessential in bacteria, however, they are less studied due to limited available tools to provide understanding of their evolution and roles in MU pathogenicity. RESULTS: This study developed a bioinformatic pipeline to profile the pseudogenomes of sequenced MU clinical isolates from different countries. One hundred and seventy-two MU genomes analyzed revealed that pseudogenomes of African strains corresponded to the two African lineages 1 and 2. Pseudogenomes were lineage and location specific and African lineage 1 was further divided into A and B. Lineage 2 had less relaxation in positive selection than lineage 1 which may signify different evolutionary points. Based on the Gil-Latorre model, African MU strains may be in the latter stages of evolutionary adaption and are adapting to an environment rich in metabolic resources with a lower temperature and decreased UV radiation. The environment fosters oxidative metabolism and MU may be less reliant on some secondary metabolites. In-house pseudogenomes from Ghana and Cote d'Ivoire were different from other African strains, however, they were identified as African strains. CONCLUSION: Our bioinformatic pipeline provides pseudogenomic insights to complement other whole genome analyses, providing a better view of the evolution of the genome of MU and suggest an adaptation model which is important in understanding transmission. MU pseudogene profiles vary based on lineage and country, and an apparent reduction in insertion sequences used for the detection of MU which may adversely affect the sensitivity of diagnosis.


SIGNIFICANCE: Prevention and treatment of Buruli ulcer is still a problem but large whole genome datasets on M. ulcerans are readily available. However, genomic studies fail to thoroughly investigate pseudogenes to probe evolutionary changes in the bacteria, and this can be attributed to the lack of bioinformatic tools. This work studied pseudogenes in Mycobacterium ulcerans (MU) to understand its adapted niche and evolutionary differences across African strains. Our results posit an MU niche-adapted model important in understanding transmission. Also, MU pseudogene profiles vary based on lineage and country, suggesting their influence on pseudogenization patterns in the genome. We further identify a reduction in insertion sequences that are used for the detection of the bacteria which may affect the sensitivity of diagnosis.


Asunto(s)
Úlcera de Buruli , Mycobacterium ulcerans , Humanos , África , Australia , Población Negra , Mycobacterium ulcerans/genética , Seudogenes , Úlcera de Buruli/genética , Úlcera de Buruli/microbiología
3.
BMC Genomics ; 25(1): 135, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38308202

RESUMEN

INTRODUCTION: Pseudogenes have been implicated for their role in regulating cellular differentiation and organismal development. However, their role in promoting cancer-associated differentiation has not been well-studied. This study explores the tumour landscape of oesophageal carcinoma to identify pseudogenes that may regulate events of differentiation to promote oncogenic transformation. MATERIALS AND METHOD: De-regulated differentiation-associated pseudogenes were identified using DeSeq2 followed by 'InteractiVenn' analysis to identify their expression pattern. Gene expression dependent and independent enrichment analyses were performed with GSEA and ShinyGO, respectively, followed by quantification of cellular reprogramming, extent of differentiation and pleiotropy using three unique metrics. Stage-specific gene regulatory networks using Bayesian Network Splitting Average were generated, followed by network topology analysis. MEME, STREME and Tomtom were employed to identify transcription factors and miRNAs that play a regulatory role downstream of pseudogenes to initiate cellular reprogramming and further promote oncogenic transformation. The patient samples were stratified based on the expression pattern of pseudogenes, followed by GSEA, mutation analysis and survival analysis using GSEA, MAF and 'survminer', respectively. RESULTS: Pseudogenes display a unique stage-wise expression pattern that characterizes stage II (SII) ESCA with a high rate of cellular reprogramming, degree of differentiation and pleiotropy. Gene regulatory network and associated topology indicate high robustness, thus validating high pleiotropy observed for SII. Pseudogene-regulated expression of SOX2, FEV, PRRX1 and TFAP2A in SII may modulate cellular reprogramming and promote oncogenesis. Additionally, patient stratification-based mutational analysis in SII signifies APOBEC3A (A3A) as a potential hallmark of homeostatic mutational events of reprogrammed cells which in addition to de-regulated APOBEC3G leads to distinct events of hypermutations. Further enrichment analysis for both cohorts revealed the critical role of combinatorial expression of pseudogenes in cellular reprogramming. Finally, survival analysis reveals distinct genes that promote poor prognosis in SII ESCA and patient-stratified cohorts, thus providing valuable prognostic bio-markers along with markers of differentiation and oncogenesis for distinct landscapes of pseudogene expression. CONCLUSION: Pseudogenes associated with the events of differentiation potentially aid in the initiation of cellular reprogramming to facilitate oncogenic transformation, especially during SII ESCA. Despite a better overall survival of SII, patient stratification reveals combinatorial de-regulation of pseudogenes as a notable marker for a high degree of cellular differentiation with a unique mutational landscape.


Asunto(s)
Carcinoma , Citidina Desaminasa , Neoplasias Esofágicas , Proteínas , Humanos , Seudogenes , Teorema de Bayes , Carcinogénesis/genética , Neoplasias Esofágicas/genética , Reprogramación Celular , Carcinoma/genética , Proteínas de Homeodominio/genética
4.
BMC Genomics ; 25(1): 750, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39090567

RESUMEN

BACKGROUND: Association testing between molecular phenotypes and genomic variants can help to understand how genotype affects phenotype. RNA sequencing provides access to molecular phenotypes such as gene expression and alternative splicing while DNA sequencing or microarray genotyping are the prevailing options to obtain genomic variants. RESULTS: We genotype variants for 74 male Braunvieh cattle from both DNA (~ 13-fold coverage) and deep total RNA sequencing from testis, vas deferens, and epididymis tissue (~ 250 million reads per tissue). We show that RNA sequencing can be used to identify approximately 40% of variants (7-10 million) called from DNA sequencing, with over 80% precision. Within highly expressed coding regions, over 92% of expected variants were called with nearly 98% precision. Allele-specific expression and putative post-transcriptional modifications negatively impact variant genotyping accuracy from RNA sequencing and contribute to RNA-DNA differences. Variants called from RNA sequencing detect roughly 75% of eGenes identified using variants called from DNA sequencing, demonstrating a nearly 2-fold enrichment of eQTL variants. We observe a moderate-to-strong correlation in nominal association p-values (Spearman ρ2 ~ 0.6), although only 9% of eGenes have the same top associated variant. CONCLUSIONS: We find hundreds of thousands of RNA-DNA differences in variants called from RNA and DNA sequencing on the same individuals. We identify several highly significant eQTL when using RNA sequencing variant genotypes which are not found with DNA sequencing variant genotypes, suggesting that using RNA sequencing variant genotypes for association testing results in an increased number of false positives. Our findings demonstrate that caution must be exercised beyond filtering for variant quality or imputation accuracy when analysing or imputing variants called from RNA sequencing.


Asunto(s)
Sitios de Carácter Cuantitativo , Animales , Bovinos/genética , Masculino , ADN/genética , Genotipo , Análisis de Secuencia de ARN , Testículo/metabolismo , Variación Genética , Polimorfismo de Nucleótido Simple , ARN/genética , Análisis de Secuencia de ADN
5.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38060983

RESUMEN

Retrocopies are gene duplicates arising from reverse transcription of mature mRNA transcripts and their insertion back into the genome. While long being regarded as processed pseudogenes, more and more functional retrocopies have been discovered. How the stripped-down retrocopies recover expression capability and become functional paralogs continually intrigues evolutionary biologists. Here, we investigated the function and evolution of retrocopies in the context of 3D genome organization. By mapping retrocopy-parent pairs onto sequencing-based and imaging-based chromatin contact maps in human and mouse cell lines and onto Hi-C interaction maps in 5 other mammals, we found that retrocopies and their parental genes show a higher-than-expected interchromosomal colocalization frequency. The spatial interactions between retrocopies and parental genes occur frequently at loci in active subcompartments and near nuclear speckles. Accordingly, colocalized retrocopies are more actively transcribed and translated and are more evolutionarily conserved than noncolocalized ones. The active transcription of colocalized retrocopies may result from their permissive epigenetic environment and shared regulatory elements with parental genes. Population genetic analysis of retroposed gene copy number variants in human populations revealed that retrocopy insertions are not entirely random in regard to interchromosomal interactions and that colocalized retroposed gene copy number variants are more likely to reach high frequencies, suggesting that both insertion bias and natural selection contribute to the colocalization of retrocopy-parent pairs. Further dissection implies that reduced selection efficacy, rather than positive selection, contributes to the elevated allele frequency of colocalized retroposed gene copy number variants. Overall, our results hint a role of interchromosomal colocalization in the "resurrection" of initially neutral retrocopies.


Asunto(s)
Genoma , Mamíferos , Animales , Ratones , Humanos , Mamíferos/genética , Secuencias Reguladoras de Ácidos Nucleicos , Dosificación de Gen , ARN Mensajero/genética , Evolución Molecular
6.
Electrophoresis ; 45(9-10): 948-957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38326083

RESUMEN

Hemp and marijuana, both derived from Cannabis sativa L. (C. sativa), are subject to divergent legal regulations due to their different Δ9-tetrahydrocannabinol (Δ9-THC) contents. Cannabinoid synthase genes are considered the key enzymes that determine the chemical composition or chemotype of a particular cultivar. However, existing methods for crop type differentiation based on previous synthase gene theories have limitations in terms of precision and specificity, and a wider range of cannabis varieties must be considered when examining cannabis-based genetic markers. A custom next-generation sequencing (NGS) panel was developed targeting all synthase genes, including Δ9-THC acid synthase, cannabidiolic acid synthase, and cannabichromenic acid synthase, as well as the pseudogenes across diverse C. sativa samples, spanning reference hemp and marijuana, commercial hemp derivatives, and seized marijuana extracts. Interpretation of NGS data revealed a relationship between genotypes and underlying chemotypes, with the principal component analysis indicating a clear distinction between hemp and marijuana clusters. This differentiation was attributed to variations in both synthase genes and pseudogene variants. Finally, this study proposes a genetic cannabis classification method using a differentiation flow chart with novel synthase markers. The flow chart successfully differentiated hemp from marijuana with a 1.3% error rate (n = 147).


Asunto(s)
Cannabis , Secuenciación de Nucleótidos de Alto Rendimiento , Cannabis/genética , Cannabis/química , Cannabis/enzimología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Dronabinol/análisis , ADN de Plantas/genética , ADN de Plantas/análisis , Cannabinoides/análisis , Cannabinoides/metabolismo , Oxidorreductasas Intramoleculares
7.
Arterioscler Thromb Vasc Biol ; 43(11): e468-e489, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37767704

RESUMEN

BACKGROUND: Current therapies cannot completely reverse advanced atherosclerosis. High levels of amino acids, induced by Western diet, stimulate mTORC1 (mammalian target of rapamycin complex 1)-autophagy defects in macrophages, accelerating atherosclerotic plaque progression. In addition, autophagy-lysosomal dysfunction contributes to plaque necrotic core enlargement and lipid accumulation. Therefore, it is essential to investigate the novel mechanism and molecules to reverse amino acid-mTORC1-autophagy signaling dysfunction in macrophages of patients with advanced atherosclerosis. METHODS: We observed that Gpr137b-ps (G-protein-coupled receptor 137B, pseudogene) was upregulated in advanced atherosclerotic plaques. The effect of Gpr137b-ps on the progression of atherosclerosis was studied by generating advanced plaques in ApoE-/- mice with cardiac-specific knockout of Gpr137b-ps. Bone marrow-derived macrophages and mouse mononuclear macrophage cell line RAW264.7 cells were subjected to starvation or amino acid stimulation to study amino acid-mTORC1-autophagy signaling. Using both gain- and loss-of-function approaches, we explored the mechanism of Gpr137b-ps-regulated autophagy. RESULTS: Our results demonstrated that Gpr137b-ps deficiency led to enhanced autophagy in macrophages and reduced atherosclerotic lesions, characterized by fewer necrotic cores and less lipid accumulation. Knockdown of Gpr137b-ps increased autophagy and prevented amino acid-induced mTORC1 signaling activation. As the downstream binding protein of Gpr137b-ps, HSC70 (heat shock cognate 70) rescued the impaired autophagy induced by Gpr137b-ps. Furthermore, Gpr137b-ps interfered with the HSC70 binding to G3BP (Ras GTPase-activating protein-binding protein), which tethers the TSC (tuberous sclerosis complex) complex to lysosomes and suppresses mTORC1 signaling. In addition to verifying that the NTF2 (nuclear transport factor 2) domain of G3BP binds to HSC70 by in vitro protein synthesis, we further demonstrated that HSC70 binds to the NTF2 domain of G3BP through its W90-F92 motif by using computational modeling. CONCLUSIONS: These findings reveal that Gpr137b-ps plays an essential role in the regulation of macrophage autophagy, which is crucial for the progression of advanced atherosclerosis. Gpr137b-ps impairs the interaction of HSC70 with G3BP to regulate amino acid-mTORC1-autophagy signaling, and these results provide a new potential therapeutic direction for the treatment of advanced atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , ARN Largo no Codificante , Humanos , Ratones , Animales , ARN Largo no Codificante/metabolismo , Aterosclerosis/patología , Placa Aterosclerótica/patología , Macrófagos/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Autofagia/fisiología , Aminoácidos/metabolismo , Lípidos , Mamíferos/genética
8.
RNA Biol ; 21(1): 1-11, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38626213

RESUMEN

Small nucleolar RNAs (snoRNAs) are a class of conserved noncoding RNAs forming complexes with proteins to catalyse site-specific modifications on ribosomal RNA. Besides this canonical role, several snoRNAs are now known to regulate diverse levels of gene expression. While these functions are carried out in trans by mature snoRNAs, evidence has also been emerging of regulatory roles of snoRNAs in cis, either within their genomic locus or as longer transcription intermediates during their maturation. Herein, we review recent findings that snoRNAs can interact in cis with their intron to regulate the expression of their host gene. We also explore the ever-growing diversity of longer host-derived snoRNA extensions and their functional impact across the transcriptome. Finally, we discuss the role of snoRNA duplications into forging these new layers of snoRNA-mediated regulation, as well as their involvement in the genomic imprinting of their host locus.


Asunto(s)
ARN Nucleolar Pequeño , ARN no Traducido , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN no Traducido/genética , ARN Ribosómico/genética , Intrones
9.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35099534

RESUMEN

Histones and their posttranslational modifications facilitate diverse chromatin functions in eukaryotes. Core histones (H2A, H2B, H3, and H4) package genomes after DNA replication. In contrast, variant histones promote specialized chromatin functions, including DNA repair, genome stability, and epigenetic inheritance. Previous studies have identified only a few H2B variants in animals; their roles and evolutionary origins remain largely unknown. Here, using phylogenomic analyses, we reveal the presence of five H2B variants broadly present in mammalian genomes. Three of these variants have been previously described: H2B.1, H2B.L (also called subH2B), and H2B.W. In addition, we identify and describe two new variants: H2B.K and H2B.N. Four of these variants originated in mammals, whereas H2B.K arose prior to the last common ancestor of bony vertebrates. We find that though H2B variants are subject to high gene turnover, most are broadly retained in mammals, including humans. Despite an overall signature of purifying selection, H2B variants evolve more rapidly than core H2B with considerable divergence in sequence and length. All five H2B variants are expressed in the germline. H2B.K and H2B.N are predominantly expressed in oocytes, an atypical expression site for mammalian histone variants. Our findings suggest that H2B variants likely encode potentially redundant but vital functions via unusual chromatin packaging or nonchromatin functions in mammalian germline cells. Our discovery of novel histone variants highlights the advantages of comprehensive phylogenomic analyses and provides unique opportunities to study how innovations in chromatin function evolve.


Asunto(s)
Cromatina , Histonas , Animales , Cromatina/genética , Células Germinativas/metabolismo , Histonas/genética , Histonas/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Filogenia
10.
Proc Biol Sci ; 290(2011): 20231932, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-38018114

RESUMEN

Sirenians are a well-known example of morphological adaptation to a shallow-water grazing diet characterized by a modified feeding apparatus and orofacial morphology. Such adaptations were accompanied by an anterior tooth reduction associated with the development of keratinized pads, the evolution of which remains elusive. Among sirenians, the recently extinct Steller's sea cow represents a special case for being completely toothless. Here, we used µ-CT scans of sirenian crania to understand how motor-sensor systems associated with tooth innervation responded to innovations such as keratinized pads and continuous dental replacement. In addition, we surveyed nine genes associated with dental reduction for signatures of loss of function. Our results reveal how patterns of innervation changed with modifications of the dental formula, especially continuous replacement in manatees. Both our morphological and genomic data show that dental development was not completely lost in the edentulous Steller's sea cows. By tracing the phylogenetic history of tooth innervation, we illustrate the role of development in promoting the innervation of keratinized pads, similar to the secondary use of dental canals for innervating neomorphic keratinized structures in other tetrapod groups.


Asunto(s)
Pérdida de Diente , Diente , Animales , Femenino , Bovinos , Filogenia , Queratinas , Citoesqueleto
11.
Mol Biol Rep ; 51(1): 36, 2023 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-38157080

RESUMEN

BACKGROUND: Ellobius talpinus is a subterranean rodent representing an attractive model in population ecology studies due to its highly special lifestyle and sociality. In such studies, mitochondrial DNA (mtDNA) is widely used. However, if nuclear copies of mtDNA, aka NUMTs, are present, they may co-amplify with the target mtDNA fragment, generating misleading results. The aim of this study was to determine whether NUMTs are present in E. talpinus. METHODS AND RESULTS: PCR amplification of the putative mtDNA CytB-D-loop fragment using 'universal' primers from 56 E. talpinus samples produced multiple double peaks in 90% of the sequencing chromatograms. To reveal NUMTs, molecular cloning and sequencing of PCR products of three specimens was conducted, followed by phylogenetic analysis. The pseudogene nature of three out of the seven detected haplotypes was confirmed by their basal positions in relation to other Ellobius haplotypes in the phylogenetic tree. Additionally, 'haplotype B' was basal in relation to other E. talpinus haplotypes and found present in very distant sampling sites. BLASTN search revealed 195 NUMTs in the E. talpinus nuclear genome, including fragments of all four PCR amplified pseudogenes. Although the majority of the NUMTs studied were short, the entire mtDNA had copies in the nuclear genome. The most numerous NUMTs were found for rrnL, COXI, and D-loop. CONCLUSIONS: Numerous NUMTs are present in E. talpinus and can be difficult to discriminate against mtDNA sequences. Thus, in future population or phylogenetic studies in E. talpinus, the possibility of cryptic NUMTs amplification should always be taken into account.


Asunto(s)
ADN Mitocondrial , Genoma Mitocondrial , Animales , ADN Mitocondrial/genética , Filogenia , Genoma , Mitocondrias/genética , Arvicolinae/genética , Análisis de Secuencia de ADN , Genoma Mitocondrial/genética
12.
J Phycol ; 59(5): 950-962, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37638497

RESUMEN

Parasitic red algae are an interesting system for investigating the genetic changes that occur in parasites. These parasites have evolved independently multiple times within the red algae. The functional loss of plastid genomes can be investigated in these multiple independent examples, and fine-scale patterns may be discerned. The only plastid genomes from red algal parasites known so far are highly reduced and missing almost all photosynthetic genes. Our study assembled and annotated plastid genomes from the parasites Janczewskia tasmanica and its two Laurencia host species (Laurencia elata and one unidentified Laurencia sp. A25) from Australia and Janczewskia verruciformis, its host species (Laurencia catarinensis), and the closest known free-living relative (Laurencia obtusa) from the Canary Islands (Spain). For the first time we show parasitic red algal plastid genomes that are similar in size and gene content to free-living host species without any gene loss or genome reduction. The only exception was two pseudogenes (moeB and ycf46) found in the plastid genome of both isolates of J. tasmanica, indicating potential for future loss of these genes. Further comparative analyses with the three highly reduced plastid genomes showed possible gene loss patterns, in which photosynthetic gene categories were lost followed by other gene categories. Phylogenetic analyses did not confirm monophyly of Janczewskia, and the genus was subsumed into Laurencia. Further investigations will determine if any convergent small-scale patterns of gene loss exist in parasitic red algae and how these are applicable to other parasitic systems.


Asunto(s)
Genoma de Plastidios , Laurencia , Parásitos , Rhodophyta , Animales , Laurencia/genética , Filogenia , Parásitos/genética , Evolución Molecular , Rhodophyta/genética , Plastidios/genética
13.
BMC Biol ; 20(1): 44, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35172813

RESUMEN

BACKGROUND: Naked mole-rats (Heterocephalus glaber, NMRs) and blind mole-rats (Spalax galili, BMRs) are representative subterranean rodents that have evolved many extraordinary traits, including hypoxia tolerance, longevity, and cancer resistance. Although multiple candidate loci responsible for these traits have been uncovered by genomic studies, many of them are limited to functional changes to amino acid sequence and little is known about the contributions of other genetic events. To address this issue, we focused on gene losses (unitary pseudogenes) and systematically analyzed gene losses in NMRs and BMRs, aiming to elucidate the potential roles of pseudogenes in their adaptation to subterranean lifestyle. RESULTS: We obtained the pseudogene repertoires in NMRs and BMRs, as well as their respective aboveground relatives, guinea pigs and rats, on a genome-wide scale. As a result, 167, 139, 341, and 112 pseudogenes were identified in NMRs, BMRs, guinea pigs, and rats, respectively. Functional enrichment analysis identified 4 shared and 2 species-specific enriched functional groups (EFGs) in subterranean lineages. Notably, the pseudogenes in these EFGs might be associated with either regressive (e.g., visual system) or adaptive (e.g., altered DNA damage response) traits. In addition, several pseudogenes including TNNI3K and PDE5A might be associated with specific cardiac features observed in subterranean lineages. Interestingly, we observed 20 convergent gene losses in NMRs and BMRs. Given that the functional investigations of these genes are generally scarce, we provided functional evidence that independent loss of TRIM17 in NMRs and BMRs might be beneficial for neuronal survival under hypoxia, supporting the positive role of eliminating TRIM17 function in hypoxia adaptation. Our results also suggested that pseudogenes, together with positively selected genes, reinforced subterranean adaptations cooperatively. CONCLUSIONS: Our study provides new insights into the molecular underpinnings of subterranean adaptations and highlights the importance of gene losses in mammalian evolution.


Asunto(s)
Adaptación Fisiológica , Ratas Topo , Adaptación Fisiológica/genética , Animales , Genoma , Cobayas , Hipoxia/genética , Longevidad/genética , Ratas Topo/genética
14.
Genomics ; 114(4): 110421, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35779786

RESUMEN

Estrogen drives key transcriptional changes in breast cancer and stimulates breast cancer cells' growth with multiple mechanisms to coordinate transcription and translation. In addition to protein-coding transcripts, estrogen can regulate long non-coding RNA (lncRNA) transcripts, plus diverse non-coding RNAs including antisense, enhancer, and intergenic. LncRNA genes comprise the majority of human genes. The accidental, or regulated, translation of their short open reading frames by ribosomes remains a controversial topic. Here we report for the first time an integrated analysis of RNA abundance and ribosome occupancy level, using Ribo-seq combined with RNA-Seq, in the estrogen-responsive, estrogen receptor α positive, human breast cancer cell model MCF7, before and after hormone treatment. Translational profiling can determine, in an unbiased manner, which fraction of the genome is actually translated into proteins, as well as resolving whether transcription and translation respond concurrently, or differentially, to estrogen treatment. Our data showed specific transcripts more robustly detected in RNA-Seq than in the ribosome-profiling data, and vice versa, suggesting distinct gene-specific estrogen responses at the transcriptional and the translational level, respectively. Here, we showed that estrogen stimulation affects the expression levels of numerous lncRNAs, but not their association with ribosomes, and that most lncRNAs are not ribosome-bound. For the first time, we also demonstrated the transcriptional and translational response of expressed pseudogenes to estrogen, pointing to new perspectives for drug-target development in breast cancer in the future.


Asunto(s)
Neoplasias de la Mama , ARN Largo no Codificante , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Estrógenos/metabolismo , Estrógenos/farmacología , Femenino , Humanos , Seudogenes , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ribosomas/genética
15.
BMC Bioinformatics ; 23(1): 59, 2022 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-35114952

RESUMEN

BACKGROUND: Processed pseudogenes (PΨgs) are disabled gene copies that are transcribed and may affect expression of paralogous genes. Moreover, their insertion in the genome can disrupt the structure or the regulatory region of a gene, affecting its expression level. These events have been identified as occurring mutations during cancer development, thus being able to identify PΨgs and their location will improve their impact on diagnostic testing, not only in cancer but also in inherited disorders. RESULTS: We have implemented PΨFinder (P-psy-finder), a tool that identifies PΨgs, annotates known ones and predicts their insertion site(s) in the genome. The tool screens alignment files and provides user-friendly summary reports and visualizations. To demonstrate its applicability, we scanned 218 DNA samples from patients screened for hereditary colorectal cancer. We detected 423 PΨgs distributed in 96% of the samples, comprising 7 different parent genes. Among these, we confirmed the well-known insertion site of the SMAD4-PΨg within the last intron of the SCAI gene in one sample. While for the ubiquitous CBX3-PΨg, present in 82.6% of the samples, we found it reversed inserted in the second intron of the C15ORF57 gene. CONCLUSIONS: PΨFinder is a tool that can automatically identify novel PΨgs from DNA sequencing data and determine their location in the genome with high sensitivity (95.92%). It generates high quality figures and tables that facilitate the interpretation of the results and can guide the experimental validation. PΨFinder is a complementary analysis to any mutational screening in the identification of disease-causing mutations within cancer and other diseases.


Asunto(s)
Seudogenes , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Proteínas Cromosómicas no Histona/genética , Neoplasias Colorrectales/genética , ADN , Humanos , Seudogenes/genética , Proteína Smad4/genética
16.
Plant J ; 108(2): 492-508, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34382706

RESUMEN

Oryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR). Using lrrprofiler, a pipeline that we developed to annotate and classify these proteins, we compared three publicly available annotations of the rice Nipponbare reference genome. The extended discrepancies that we observed for LRR-CR gene models led us to perform an in-depth manual curation of their annotations while paying special attention to nonsense mutations. We then transferred this manually curated annotation to Kitaake, a cultivar that is closely related to Nipponbare, using an optimized strategy. Here, we discuss the breakthrough achieved by manual curation when comparing genomes and, in addition to 'functional' and 'structural' annotations, we propose that the community adopts this approach, which we call 'comprehensive' annotation. The resulting data are crucial for further studies on the natural variability and evolution of LRR-CR genes in order to promote their use in breeding future resilient varieties.


Asunto(s)
Anotación de Secuencia Molecular , Oryza/genética , Proteínas de Plantas/genética , Secuencias Repetitivas de Aminoácido , Genoma de Planta , Genotipo , Anotación de Secuencia Molecular/métodos , Oryza/química , Proteínas de Plantas/química
17.
Expert Rev Mol Med ; 24: e27, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35748050

RESUMEN

Colorectal cancer (CRC) is a common type of cancer and the second leading cause of cancer-related deaths worldwide. Competing endogenous RNAs (ceRNAs) that contain microRNA response elements (MREs) are involved in CRC progression. They can compete with microRNAs (miRNAs) via their MREs, which can combine non-coding and coding RNAs via complex ceRNA networks. This molecular interaction has the potential to affect a wide variety of biological processes, and many cancers can occur as a result of an imbalanced ceRNA network. Recent research indicates that numerous dysregulated RNAs in CRC may function as ceRNAs, regulating multiple biological functions of the tumour, including proliferation, apoptosis, metastasis, invasion and migration. In this review, we discuss the role of protein-coding and non-coding RNAs, such as long non-coding RNAs, circular RNAs and pseudogenes, in the occurrence of ceRNA networks in CRC, and their function in cancer-related pathways, such as Wnt/ß-catenin, mitogen-activated protein kinase and transforming growth factor-ß signalling pathways. Additionally, we discuss validated ceRNAs associated with CRC biological functions and their potential role as novel prognostic and diagnostic biomarkers. Examining the role of ceRNAs in CRC sheds new light on cancer treatment and pathogenesis.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo
18.
Mol Phylogenet Evol ; 171: 107463, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358696

RESUMEN

The loss of teeth and evolution of baleen racks in Mysticeti was a profound transformation that permitted baleen whales to radiate and diversify into a previously underutilized ecological niche of bulk filter-feeding on zooplankton and other small prey. Ancestral state reconstructions suggest that postnatal teeth were lost in the common ancestor of crown Mysticeti. Genomic studies provide some support for this hypothesis and suggest that the genetic toolkit for enamel production was inactivated in the common ancestor of living baleen whales. However, molecular studies to date have not provided direct evidence for the complete loss of teeth, including their dentin component, on the stem mysticete branch. Given these results, several questions remain unanswered: (1) Were teeth lost in a single step or did enamel loss precede dentin loss? (2) Was enamel lost early or late on the stem mysticete branch? (3) If enamel and dentin/tooth loss were decoupled in the ancestry of baleen whales, did dentin loss occur on the stem mysticete branch or independently in different crown mysticete lineages? To address these outstanding questions, we compiled and analyzed complete protein-coding sequences for nine tooth-related genes from cetaceans with available genome data. Seven of these genes are associated with enamel formation (ACP4, AMBN, AMELX, AMTN, ENAM, KLK4, MMP20) whereas two other genes are either dentin-specific (DSPP) or tooth-specific (ODAPH) but not enamel-specific. Molecular evolutionary analyses indicate that all seven enamel-specific genes have inactivating mutations that are scattered across branches of the mysticete tree. Three of the enamel genes (ACP4, KLK4, MMP20) have inactivating mutations that are shared by all mysticetes. The two genes that are dentin-specific (DSPP) or tooth-specific (ODAPH) do not have any inactivating mutations that are shared by all mysticetes, but there are shared mutations in Balaenidae as well as in Plicogulae (Neobalaenidae + Balaenopteroidea). These shared mutations suggest that teeth were lost at most two times. Shared inactivating mutations and dN/dS analyses, in combination with cetacean divergence times, were used to estimate inactivation times of genes and by proxy enamel and tooth phenotypes at ancestral nodes. The results of these analyses are most compatible with a two-step model for the loss of teeth in the ancestry of living baleen whales: enamel was lost very early on the stem Mysticeti branch followed by the independent loss of dentin (and teeth) in the common ancestors of Balaenidae and Plicogulae, respectively. These results imply that some stem mysticetes, and even early crown mysticetes, may have had vestigial teeth comprised of dentin with no enamel. Our results also demonstrate that all odontocete species (in our study) with absent or degenerative enamel have inactivating mutations in one or more of their enamel genes.


Asunto(s)
Evolución Biológica , Metaloproteinasa 20 de la Matriz , Animales , Esmalte Dental , Metaloproteinasa 20 de la Matriz/genética , Filogenia , Ballenas/genética
19.
Hematol Oncol ; 40(1): 2-10, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34637548

RESUMEN

The high mobility group A (HMGA) protein family is composed of three non-histone chromatin remodeling proteins that act as architectural transcriptional factors. Indeed, although HMGA proteins lack transcriptional activity per se, they bind the minor groove of DNA at AT-rich sequences, and, interacting with the transcription machinery, are able to modify chromatin modeling, thus regulating the expression of several genes. HMGA proteins have been deeply involved in embryogenesis process, and a large volume of studies has pointed out their key role in human cancer. Here, we review the studies on the role of the HMGA proteins in human hematological malignancies: they are overexpressed in most of the cases and their expression correlates with a reduced survival. In some cases, such as in acute lymphoblastic leukemia and acute myelogenous leukemia, HMGA2 gene rearrangements have been also described. Finally, recent studies evidence a synergism between HMGA and EZH2 in diffuse B-cell lymphomas, suggesting an innovative therapy for this disease based on the inhibition of the function of both these proteins.


Asunto(s)
Reordenamiento Génico , Proteínas HMGB/metabolismo , Neoplasias Hematológicas/patología , Animales , Proteínas HMGB/genética , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/metabolismo , Humanos
20.
Mol Cell Biochem ; 477(6): 1817-1828, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35332394

RESUMEN

CRC is the third most common cancer occurring worldwide and the second leading cause of cancer deaths. In the year 2020, 1,931,590 new cases of CRC and 935,173 deaths were reported. The last two decades have witnessed an intensive study of noncoding RNAs and their implications in various pathological conditions including cancer. Noncoding RNAs such as miRNAs, tsRNAs, piRNAs, lncRNAs, pseudogenes, and circRNAs have emerged as promising prognostic and diagnostic biomarkers in preclinical studies of cancer. Some of these noncoding RNAs have also been shown as promising therapeutic targets for cancer treatment. In this review, we have discussed the emerging roles of various types of noncoding RNAs in CRC and their future implications in colorectal cancer management and research.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , ARN Largo no Codificante , Biomarcadores de Tumor/genética , Neoplasias Colorrectales/tratamiento farmacológico , Humanos , ARN Largo no Codificante/genética , ARN no Traducido/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA