Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Ther ; 30(2): 963-974, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34678509

RESUMEN

Small molecule inhibitors have previously been investigated in different studies as possible therapeutics in the treatment of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). In the current drug repurposing study, we identified the leukotriene (D4) receptor antagonist montelukast as a novel agent that simultaneously targets two important drug targets of SARS-CoV-2. We initially demonstrated the dual inhibition profile of montelukast through multiscale molecular modeling studies. Next, we characterized its effect on both targets by different in vitro experiments including the enzyme (main protease) inhibition-based assay, surface plasmon resonance (SPR) spectroscopy, pseudovirus neutralization on HEK293T/hACE2+TMPRSS2, and virus neutralization assay using xCELLigence MP real-time cell analyzer. Our integrated in silico and in vitro results confirmed the dual potential effect of montelukast both on the main protease enzyme inhibition and virus entry into the host cell (spike/ACE2). The virus neutralization assay results showed that SARS-CoV-2 virus activity was delayed with montelukast for 20 h on the infected cells. The rapid use of new small molecules in the pandemic is very important today. Montelukast, whose pharmacokinetic and pharmacodynamic properties are very well characterized and has been widely used in the treatment of asthma since 1998, should urgently be completed in clinical phase studies and, if its effect is proved in clinical phase studies, it should be used against coronavirus disease 2019 (COVID-19).


Asunto(s)
Acetatos/farmacología , Enzima Convertidora de Angiotensina 2/metabolismo , Ciclopropanos/farmacología , Quinolinas/farmacología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Sulfuros/farmacología , Células A549 , Acetatos/química , Enzima Convertidora de Angiotensina 2/química , Animales , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Ciclopropanos/química , Reposicionamiento de Medicamentos , Células HEK293 , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Neutralización , Conformación Proteica , Quinolinas/química , SARS-CoV-2/efectos de los fármacos , Serina Endopeptidasas/química , Sulfuros/química , Células Vero , Internalización del Virus/efectos de los fármacos
2.
Int J Mol Sci ; 24(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37445760

RESUMEN

E. coli-expressed proteins could provide a rapid, cost-effective, and safe antigen for subunit vaccines, provided we can produce them in a properly folded form inducing neutralizing antibodies. Here, we use an E. coli-expressed SARS-CoV-2 receptor-binding domain (RBD) of the spike protein as a model to examine whether it yields neutralizing antisera with effects comparable to those generated by the S1 subunit of the spike protein (S1 or S1 subunit, thereafter) expressed in mammalian cells. We immunized 5-week-old Jcl-ICR female mice by injecting RBD (30 µg) and S1 subunit (5 µg) according to four schemes: two injections 8 weeks apart with RBD (RBD/RBD), two injections with S1 (S1/S1), one injection with RBD, and the second one with S1 (RBD/S1), and vice versa (S1/RBD). Ten weeks after the first injection (two weeks after the second injection), all combinations induced a strong immune response with IgG titer > 105 (S1/RBD < S1/S1 < RBD/S1 < RBD/RBD). In addition, the neutralization effect of the antisera ranked as S1/RBD~RBD/S1 (80%) > S1/S1 (56%) > RBD/RBD (42%). These results indicate that two injections with E. coli-expressed RBD, or mammalian-cell-produced spike S1 subunit alone, can provide some protection against SARS-CoV-2, but a mixed injection scheme yields significantly higher protection.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Ratones , Femenino , SARS-CoV-2 , Anticuerpos Antivirales , Escherichia coli/genética , Glicoproteína de la Espiga del Coronavirus/genética , Ratones Endogámicos ICR , Anticuerpos Neutralizantes , Mamíferos
3.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555383

RESUMEN

A large-scale Escherichia coli (E. coli) production of the receptor-binding domain (RBD) of the SARS-CoV-2 could yield a versatile and low-cost antigen for a subunit vaccine. Appropriately folded antigens can potentially elicit the production of neutralizing antisera providing immune protection against the virus. However, E. coli expression using a standard protocol produces RBDs with aberrant disulfide bonds among the RBD's eight cysteines resulting in the expression of insoluble and non-native RBDs. Here, we evaluate whether E. coli expressing RBD can be used as an antigen candidate for a subunit vaccine. The expressed RBD exhibited native-like structural and biophysical properties as demonstrated by analytical RP-HPLC, circular dichroism, fluorescence, and light scattering. In addition, our E. coli expressed RBD binds to hACE2, the host cell's receptor, with a binding constant of 7.9 × 10-9 M, as indicated by biolayer interferometry analysis. Our E. coli-produced RBD elicited a high IgG titer in Jcl:ICR mice, and the RBD antisera inhibited viral growth, as demonstrated by a pseudovirus-based neutralization assay. Moreover, the increased antibody level was sustained for over 15 weeks after immunization, and a high percentage of effector and central memory T cells were generated. Overall, these results show that E. coli-expressed RBDs can elicit the production of neutralizing antisera and could potentially serve as an antigen for developing an anti-SARS-CoV-2 subunit vaccine.


Asunto(s)
COVID-19 , Vacunas Virales , Animales , Ratones , SARS-CoV-2 , Escherichia coli , Ratones Endogámicos ICR , Vacunas contra la COVID-19 , Vacunas de Subunidad , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Ratones Endogámicos BALB C
4.
J Nanobiotechnology ; 19(1): 33, 2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33514385

RESUMEN

BACKGROUND: The outbreak and pandemic of coronavirus SARS-CoV-2 caused significant threaten to global public health and economic consequences. It is extremely urgent that global people must take actions to develop safe and effective preventions and therapeutics. Nanobodies, which are derived from single­chain camelid antibodies, had shown antiviral properties in various challenge viruses. In this study, multivalent nanobodies with high affinity blocking SARS-CoV-2 spike interaction with ACE2 protein were developed. RESULTS: Totally, four specific nanobodies against spike protein and its RBD domain were screened from a naïve VHH library. Among them, Nb91-hFc and Nb3-hFc demonstrated antiviral activity by neutralizing spike pseudotyped viruses in vitro. Subsequently, multivalent nanobodies were constructed to improve the neutralizing capacity. As a result, heterodimer nanobody Nb91-Nb3-hFc exhibited the strongest RBD-binding affinity and neutralizing ability against SARS-CoV-2 pseudoviruses with an IC50 value at approximately 1.54 nM. CONCLUSIONS: The present study indicated that naïve VHH library could be used as a potential resource for rapid acquisition and exploitation of antiviral nanobodies. Heterodimer nanobody Nb91-Nb3-hFc may serve as a potential therapeutic agent for the treatment of COVID-19.


Asunto(s)
Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Sitios de Unión , Células HEK293 , Humanos , Pruebas de Neutralización , Unión Proteica , Dominios Proteicos , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores
5.
Pathog Immun ; 9(2): 79-93, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39247686

RESUMEN

Background: Anti-SARS-CoV-2 monoclonal antibodies (mAbs) have played a key role as an anti-viral against SARS-CoV-2, but there is a potential for resistance to develop. The interplay between host antibody responses and the development of monoclonal antibody (mAb) resistance is a critical area of investigation. In this study, we assessed host neutralizing antibody (nAb) responses against both ancestral virus and those with treatment-emergent E484K bamlanivimab resistance mutations. Methods: Study participants were enrolled in the ACTIV-2/Advancing Clinical Therapeutics Globally (ACTG) A5401 phase 2 randomized, placebo-controlled trial of bamlanivimab 700 mg mAb therapy (NCT04518410). Anterior nasal and nasopharyngeal swabs were collected for SARS-CoV-2 RNA testing and S gene next-generation sequencing to identify the E484K bamlanivimab resistance mutation. Serum nAb titers were assessed by pseudovirus neutralization assays. Results: Higher baseline (pre-treatment) nAb titers against either ancestral or E484K virus was associated with lower baseline viral load. Participants with emerging resistance had low levels of nAb titers against either ancestral or E484K nAb at the time of study entry. Participants with emergent E484K resistance developed significantly higher levels of E484K-specific nAb titers compared to mAb-treated individuals who did not develop resistance. All participants who developed the E484K mAb resistance mutation were eventually able to clear the virus. Conclusion: Emerging drug resistance after SARS-CoV-2-specific mAb therapy led to a heightened host neutralizing antibody response to the mAb-resistant variant that was associated with eventual viral clearance. This demonstrates the interplay between the antiviral treatment-directed viral evolution and subsequent host immune response in viral clearance.

6.
Heliyon ; 10(10): e31392, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38826759

RESUMEN

Background: The highly infectious nature of SARS-CoV-2 necessitates using bio-containment facilities to study viral pathogenesis and identify potent antivirals. However, the lack of high-level bio-containment laboratories across the world has limited research efforts into SARS-CoV-2 pathogenesis and the discovery of drug candidates. Previous research has reported that non-replicating SARS-CoV-2 Spike-pseudotyped viral particles are effective tools to screen for and identify entry inhibitors and neutralizing antibodies. Methods: To generate SARS-CoV-2 pseudovirus, a lentiviral packaging plasmid p8.91, a luciferase expression plasmid pCSFLW, and SARS-CoV-2 Spike expression plasmids (Wild-type (D614G) or Delta strain) were co-transfected into HEK293 cells to produce a luciferase-expressing non-replicating pseudovirus which expresses SARS-CoV-2 spike protein on the surface. For relative quantitation, HEK293 cells expressing ACE2 (ACE2-HEK293) were infected with the pseudovirus, after which luciferase activity in the cells was measured as a relative luminescence unit. The ACE2-HEK293/Pseudovirus infection system was used to assess the antiviral effects of some compounds and plasma from COVID-19 patients to demonstrate the utility of this assay for drug discovery and neutralizing antibody screening. Results: We successfully produced lentiviral-based SARS-CoV2 pseudoviruses and ACE2-expressing HEK293 cells. The system was used to screen compounds for SARS-CoV-2 entry inhibitors and identified two compounds with potent activity against SARS-CoV-2 pseudovirus entry into cells. The assay was also employed to screen patient plasma for neutralizing antibodies against SARS-CoV-2, as a precursor to live virus screening, using successful hits. Significance: This assay is scalable and can perform medium-to high-throughput screening of antiviral compounds with neither severe biohazard risks nor the need for higher-level containment facilities. Now fully deployed in our resource-limited laboratory, this system can be applied to other highly infectious viruses by swapping out the envelope proteins in the plasmids used in pseudovirus production.

7.
Methods Mol Biol ; 2779: 259-271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38526789

RESUMEN

COVID-19 is a global pandemic caused by the highly infectious SARS-CoV-2 virus. Efforts to combat SARS-CoV-2 infection include mass vaccination and development of monoclonal and convalescent plasma therapeutics that require precise measurements of correlative, functional neutralizing antibodies that prevent virus infection. Developing rapid, safe, easy-to-use, and high-quality neutralization assays are essential for the success of the massive effort. Here, we developed a vesicular stomatitis virus-based neutralization assay that was capable of quantifying varying degrees of neutralization in patient serum samples. This assay has two detection readouts, flow cytometry and live cell imaging. The two readout methods produced consistent values of all 50% neutralization titers, further enhancing measurement confidence on the assay. Moreover, the use of available reference standards such as the World Health Organization International Standard (NIBSC code 20/136) enables quantification and standardization of the pseudovirus neutralization assay with neutralizing antibody titers measured in International Units/mL. Quantitative and standardized neutralization assays are critical for reliable efficacy evaluation and comparison of numerous vaccines and therapeutics.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Sueroterapia para COVID-19 , Pruebas Inmunológicas , Citometría de Flujo , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus
8.
Viruses ; 15(7)2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37515180

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infects many mammals, and SARS-CoV-2 circulation in nonhuman animals may increase the risk of novel variant emergence. Cats are highly susceptible to SARS-CoV-2 infection, and there were cases of virus transmission between cats and humans. The objective of this study was to assess the prevalence of SARS-CoV-2 variant infection of cats in an urban setting. We investigated the prevalence of SARS-CoV-2 variant infections in domestic and community cats in the city of Pittsburgh (n = 272). While no cats tested positive for SARS-CoV-2 viral RNA, 35 cats (12.86%) tested SARS-CoV-2-antibody-positive. Further, we compared a cat-specific experimental lateral flow assay (eLFA) and species-agnostic surrogate virus neutralization assay (sVNT) for SARS-CoV-2 antibody detection in cats (n = 71). The eLFA demonstrated 100% specificity compared to sVNT. The eLFA also showed 100% sensitivity for sera with >90% inhibition and 63.63% sensitivity for sera with 40-89% inhibition in sVNT. Using a variant-specific pseudovirus neutralization assay (pVNT) and antigen cartography, we found the presence of antibodies to pre-Omicron and Omicron SARS-CoV-2 variants. Hence, this approach proves valuable in identifying cat exposure to different SARS-CoV-2 variants. Our results highlight the continued exposure of cats to SARS-CoV-2 and warrant coordinated surveillance efforts.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/veterinaria , Pennsylvania , Prevalencia , Anticuerpos Antivirales , ARN , Anticuerpos Neutralizantes , Mamíferos
9.
Structure ; 31(3): 253-264.e6, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36805129

RESUMEN

The SARS-CoV-2 Omicron variant, with 15 mutations in Spike receptor-binding domain (Spike-RBD), renders virtually all clinical monoclonal antibodies against WT SARS-CoV-2 ineffective. We recently engineered the SARS-CoV-2 host entry receptor, ACE2, to tightly bind WT-RBD and prevent viral entry into host cells ("receptor traps"). Here we determine cryo-EM structures of our receptor traps in complex with stabilized Spike ectodomain. We develop a multi-model pipeline combining Rosetta protein modeling software and cryo-EM to allow interface energy calculations even at limited resolution and identify interface side chains that allow for high-affinity interactions between our ACE2 receptor traps and Spike-RBD. Our structural analysis provides a mechanistic rationale for the high-affinity (0.53-4.2 nM) binding of our ACE2 receptor traps to Omicron-RBD confirmed with biolayer interferometry measurements. Finally, we show that ACE2 receptor traps potently neutralize Omicron and Delta pseudotyped viruses, providing alternative therapeutic routes to combat this evolving virus.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , SARS-CoV-2 , Anticuerpos Monoclonales , Unión Proteica , Anticuerpos Neutralizantes
10.
Front Immunol ; 14: 1107639, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865542

RESUMEN

Neutralizing antibody (NtAb) levels are key indicators in the development and evaluation of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines. Establishing a unified and reliable WHO International Standard (IS) for NtAb is crucial for the calibration and harmonization of NtAb detection assays. National and other WHO secondary standards are key links in the transfer of IS to working standards but are often overlooked. The Chinese National Standard (NS) and WHO IS were developed by China and WHO in September and December 2020, respectively, the application of which prompted and coordinated sero-detection of vaccine and therapy globally. Currently, a second-generation Chinese NS is urgently required owing to the depletion of stocks and need for calibration to the WHO IS. The Chinese National Institutes for Food and Drug Control (NIFDC) developed two candidate NSs (samples 33 and 66-99) traced to the IS according to the WHO manual for the establishment of national secondary standards through a collaborative study of nine experienced labs. Either NS candidate can reduce the systematic error among different laboratories and the difference between the live virus neutralization (Neut) and pseudovirus neutralization (PsN) methods, ensuring the accuracy and comparability of NtAb test results among multiple labs and methods, especially for samples 66-99. At present, samples 66-99 have been approved as the second-generation NS, which is the first NS calibrated tracing to the IS with 580 (460-740) International Units (IU)/mL and 580 (520-640) IU/mL by Neut and PsN, respectively. The use of standards improves the reliability and comparability of NtAb detection, ensuring the continuity of the use of the IS unitage, which effectively promotes the development and application of SARS-CoV-2 vaccines in China.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Calibración , Reproducibilidad de los Resultados , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , China , Organización Mundial de la Salud
11.
Mol Ther Nucleic Acids ; 32: 650-666, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37151990

RESUMEN

The creation of safe and effective vaccines that induce potent cellular and humoral immune responses against SARS-CoV-2 is urgently needed to end the global COVID-19 epidemic. Here, we developed an alphavirus-derived self-replicating RNA (repRNA)-based vaccine platform encoding the receptor-binding domain (RBD) of SARS-CoV-2 spike glycoprotein. The repRNA triggers prolonged antigen expression compared with conventional mRNA due to the replication machinery of repRNA. To improve the delivery and vaccine efficacy of repRNA, we developed a self-assembling liposome-protamine-RNA (LPR) nanoparticle with highly efficient encapsulation and transfection of repRNA. LPR-repRNA vaccines substantially activated type I interferon response and innate immune signaling pathways. Subcutaneous immunization of LPR-repRNA-RBD led to prolonged antigen expression, stimulation of innate immune cells, and induction of germinal center response in draining lymph nodes. LPR-repRNA-RBD induced antigen-specific T cell responses and skewed cellular immunity toward an effector memory CD8+ T cell response. Immunizations with LPR-repRNA-RBD triggered the production of anti-RBD IgG antibodies and induced neutralizing antibody response against SARS-CoV-2 pseudovirus. LPR-repRNA-RBD vaccines reduced SARS-CoV-2 infection and lung inflammation in mice. Altogether, these data suggest that the LPR-repRNA platform can be a promising avenue for COVID-19 vaccine development.

12.
Int J Infect Dis ; 117: 97-102, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35123028

RESUMEN

OBJECTIVES: To determine the status of immune responses after primary and booster immunization for SARS-CoV-2 variants and evaluate the differences in disease resistance based upon titers of neutralizing antibodies (NAbs) against the variants. METHODS: Participants aged 18-59 years received 2 doses of inactivated COVID-19 vaccine, 14 days apart, and a booster dose after 12 months. Blood samples were collected before vaccination (baseline), 1 and 6 months after primary immunization, and at multiple instances within 21 days of the booster dose. NAbs against the spike protein of Wuhan-Hu-1 and 3 variants were measured using pseudovirus neutralization assays. RESULTS: Of 400 enrolled participants, 387 completed visits scheduled within 6 months of the second dose and 346 participants received the booster dose in the follow-up research. After 1 month of primary immunization, geometric mean titers (GMTs) of NAbs peaked for Wuhan-Hu-1, whereas GMTs of other variants were <30. After 6 months of primary immunization, GMTs of NAbs against all strains were <30. After 3 days of booster immunization, GMTs were unaltered, seroconversion rates reached approximately 50% after 7 days, and GMTs of NAbs against all strains peaked at 14 days. CONCLUSION: Two-dose of inactivated COVID-19 vaccine induced the formation of NAbs and memory-associated immune responses, and high titers of NAbs against the variants obtained after booster immunization may further improve the effectiveness of the vaccine.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adolescente , Adulto , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunización Secundaria , Persona de Mediana Edad , Adulto Joven
13.
Vaccine X ; 12: 100211, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36059600

RESUMEN

Background: Heterologous prime-boost SARS-CoV-2 vaccination is a widely accepted strategy during the COVID-19 pandemic, which generated a superior immune response than homologous vaccination strategy. Objective: To describe immunogenicity of heterologous prime-boost vaccination with inactivated vaccine, CoronaVac, followed by BNT162b2 and 5-month booster dose with BNT162b2 in healthy Thai adolescents. Methods: Adolescents aged 12-18 years were randomized 1:1:1:1 to receive CoronaVac (SV) followed by BNT162b2 (PZ) 30 or 20 µg at either 3- or 6-week interval (SV3w/PZ30µg, SV3w/PZ20µg, SV6w/PZ30µg or SV6w/PZ20µg). During the Omicron-predominant period, participants were offered a BNT162b2 booster dose 30, 15, or 10 µg. Immunogenicity was determined using IgG antibody against spike-receptor-binding domain of wild type(anti-S-RBD IgG) and surrogate virus neutralization test(sVNT) against Delta variant at 14 days and 5 months after the 2nd dose. Neutralization tests(sVNT and pseudovirus neutralization test; pVNT) against Omicron strain were tested pre- and 14 days post-booster dose. Results: In October 2021, 76 adolescents with a median age of 14.3 years (IQR 12.7-16.0) were enrolled: 20 in SV3w/PZ30µg; 17 in SV3w/PZ20µg; 20 in SV6w/PZ30µg; 19 in SV6w/PZ20µg. At day 14, the geometric mean(GM) of anti-S-RBD IgG in SV3w/PZ30µg was 4713 (95 %CI 4127-5382) binding-antibody unit (BAU)/ml, while geometric mean ratio(GMR) was 1.28 (1.09-1.51) in SV6w/PZ30µg. The GMs of sVNT against Delta variants at day 14 among participants in SV3w/PZ30µg and SV6wk/PZ30µg arm were 95.3 % and 99.7 %inhibition, respectively. At 5 months, GMs of sVNT against Delta variants in SV3w/PZ30µg were significantly declined to 47.8 % but remained at 89.0 % inhibition among SV6w/PZ30µg arm. In April 2022, 52 adolescents received a BNT162b2 booster dose. Proportion of participants with sVNT against Omicron strain > 80 %inhibition was significantly increased from 3.8 % pre-booster to 67 % post-booster. Proportion of participants with pVNT ID50 > 185 was 42 % at 14 days post 2nd dose and 88 % post booster, respectively. Conclusions: Heterologous prime-boost vaccination with CoronaVac followed by BNT162b2 induced high neutralizing titer against SARS-CoV-2 Delta strain. After 5-month interval, booster with BNT162b2 induced high neutralizing titer against Omicron strain.Thai Clinical Trials Registry (thaiclinicaltrials.org): TCTR20210923012.

14.
J Am Med Dir Assoc ; 22(8): 1593-1598, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34129831

RESUMEN

OBJECTIVE: COVID-19 disproportionately impacts residents in long-term care facilities. Our objective was to quantify the presence and magnitude of antibody response in vaccinated, older adult residents at assisted living, personal care, and independent living communities. DESIGN: A cross-sectional quality improvement study was conducted March 15 - April 1, 2021 in the greater Pittsburgh region. SETTING AND POPULATION: Participants were older adult residents at assisted living, personal care, and independent living communities, who received mRNA-based COVID-19 vaccine. Conditions that impair immune responses were exclusionary criteria. METHODS: Sera were collected to measure IgG anti-SARS-CoV-2 antibody level with reflex to total anti-SARS-CoV-2 immunoglobulin levels, and blinded evaluation of SARS-CoV-2 pseudovirus neutralization titers. Descriptive statistics, Pearson correlation coefficients, and multiple linear regression analysis evaluated relationships between factors potentially associated with antibody levels. Spearman correlations were calculated between antibody levels and neutralization titers. RESULTS: All participants (N = 70) had received two rounds of vaccination and were found to have antibodies with wide variation in relative levels. Antibody levels trended lower in males, advanced age, current use of steroids, and longer length of time from vaccination. Pseudovirus neutralization titer levels were strongly correlated (P < .001) with Beckman Coulter antibody levels [D614 G NT50, rs = 0.91; B.1.1.7 (UK) NT50, rs = 0.91]. CONCLUSIONS AND IMPLICATIONS: Higher functioning, healthier, residential older adults mounted detectable antibody responses when vaccinated with mRNA-based COVID-19 vaccines. Data suggests some degree of immunity is present during the immediate period following vaccination. However, protective effects remain to be determined in larger studies as clinical protection is afforded by ongoing adaptive immunity, which is known to be decreased in older adults. This study provides important preliminary results on level of population risk in older adult residents at assisted living, personal care, and independent living communities to inform reopening strategies, but are not likely to be translatable for residents in nursing homes.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Anciano , Formación de Anticuerpos , Estudios Transversales , Humanos , Masculino , ARN Mensajero , SARS-CoV-2 , Vacunación
15.
MethodsX ; 6: 837-849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31049300

RESUMEN

An ideal vaccine against HIV-1 will specifically elicit bNAbs (broadly neutralizing antibodies) which can cross-neutralize a wide spectrum of circulating viral strains belonging to different clades. The current paradigm for developing such a vaccine is to generate HIV-1 envelope (Env)-based immunogens which can specifically elicit bNAbs. For this purpose, it is necessary to identify Envs, belonging to different clades, suitable for immunogen design. Efficient cleavage of the HIV-1 Env precursor gp160 polypeptide into its constituent subunits determines its ability to selectively bind to bNAbs and poorly to non-NAbs (non-neutralizing antibodies), properties desirable in Env-based immunogens. Thus, efficiently cleaved HIV-1 Envs with desirable antigenic properties can be good candidates for developing immunogens. Here we describe in detail a six step method we have used in our laboratory to identify such efficiently cleaved Envs. Some of these protocols are optimizations of previously reported assays such as FACS-based cell surface antibody binding assay, pseudovirus neutralization assay and gp120 shedding assay. Other protocols like biotinylation-neutravidin-agarose pull-down assay and plasma membrane protein immunoprecipitation assay have been developed by taking inputs from reagent/kit manufacturer's protocols and previous studies. These protocols will help the field in identifying more such Envs which can be used for immunogen development. •Six step process to identify efficiently cleaved, membrane-bound, functional HIV-1 Envs with high degree of repeatability.•Method applicable for characterizing any HIV-1 envelope protein.•New method of immunoprecipitation of plasma membrane fraction to validate efficiently cleaved HIV-1 envelopes.

16.
Eur J Microbiol Immunol (Bp) ; 4(1): 56-64, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24678406

RESUMEN

Human papillomavirus (HPV) is the well-known second most cause of cervical cancer in women worldwide. According to the WHO survey, 70% of the total cervical cancers are associated with types HPV 16 and 18. Presently used prophylactic vaccine for HPV contains mainly capsid protein of L1 virus like particles (VLPs). Correct folding of VLPs and display of neutralizing epitopes are the major constraint for VLP-based vaccines. Further, monoclonal antibodies (mAbs) play a vital role in developing therapeutics and diagnostics. mAbs are also useful for the demonstration of VLP conformation, virus typing and product process assessment as well. In the present study, we have explored the usefulness of mAbs generated against sf-9 expressed HPV 16 VLPs demonstrated as type-specific and conformational dependent against HPV 16 VLPs by ELISA. High affinity and high pseudovirion neutralization titer of mAbs indicated their potential for the development of prophylactic vaccines for HPV. Also, the type-specific and conformational reactivity of the mAbs to HPV 16 VLPs in sf-9 cells by immunofluorescence assay proved their diagnostic potential.

17.
Vaccine ; 32(5): 624-30, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24055350

RESUMEN

We assessed HPV 16 and 18 antibody responses of female subjects enrolled in a 2- vs. 3-dose quadrivalent HPV (Q-HPV) vaccine trial (ClinicalTrials.gov NCT00501137) using the Merck competitive Luminex (cLIA) and total IgG Luminex (TIgG) immunoassays, and a pseudovirus neutralizing antibody (PsV NAb) assay. Subjects were enrolled in one of three groups: (1) 9-13yr, 2 doses of Q-HPV at 0, 6 months (n=259); (2) 9-13yr, 3 doses at 0, 2, 6 months (n=260); and (3) 16-26yr, 3 doses at 0, 2, 6 months (n=305). Sera were collected from all subjects at baseline, months 7 and 24, and from half the subjects at months 18 and 36. High correlation was observed between all three assays. At month 36, HPV 16 antibodies remained detectable in all subjects by all assays, whereas 86.4%, 99.6% and 100% of subjects respectively were HPV 18 cLIA, TIgG and PsV NAb (partial neutralization endpoint) seropositive. The proportion seropositive for HPV 18 by cLIA at 36 months was not significantly different for 2-dose girls vs. 3-dose adults (85.9% vs. 79.4%; p=0.51), whereas the proportion for 3-dose girls was significantly higher than for 3-dose adults (95.3% vs. 79.4%; p<0.01). The HPV 18 seropositive proportions by the TIgG and PsV NAb (partial neutralization endpoint) assays were the same for all subjects. High baseline HPV 16 and HPV 18 seropositivity was observed for the TIgG assay and it is unclear if all the detected TIgG antibodies are type-specific and/or neutralizing. For the PsV NAb assay, 90% and partial neutralization geometric mean titres were consistently 2-8-fold higher than for 100% neutralization, which enabled detection of HPV 18 NAb in subjects who lost detectable cLIA antibodies over time. We conclude that the PsV NAb assay is more sensitive than the cLIA, and likely more specific than the TIgG assay.


Asunto(s)
Anticuerpos Antivirales/sangre , Inmunoensayo/métodos , Vacunas contra Papillomavirus/administración & dosificación , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Niño , Femenino , Papillomavirus Humano 16 , Papillomavirus Humano 18 , Humanos , Esquemas de Inmunización , Pruebas de Neutralización , Infecciones por Papillomavirus/inmunología , Infecciones por Papillomavirus/prevención & control , Sensibilidad y Especificidad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA