Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Toxicol Sci ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38830033

RESUMEN

Emerging epidemiological evidence indicates perfluorooctane sulfonic acid (PFOS) is increasingly associated with asthma and respiratory viral infections. Animal studies suggest PFOS disrupts lung development and immuno-inflammatory responses, but little is known about the potential consequences on respiratory health and disease risk. Importantly, PFOS exposure during the critical stages of lung development may contribute to disease risk later in life. Thus, we hypothesized that developmental PFOS exposure will affect lung inflammation and alveolar/airway development in a sex-dependent manner. To address this knowledge gap, timed pregnant Balb/cJ dams were orally dosed with a PFOS (1.0, or 2.0 mg/kg/d) injected mealworm or a vehicle control daily from gestational day (GD) 0.5 to postnatal day (PND) 21, and offspring were sacrificed at PND 22-23. PFOS exposed male offspring displayed increased alveolar septa thickness. Downregulated protein staining of occludin were also observed in the lungs after PFOS exposure in male mice compared to vehicle controls, indicative of barrier dysfunction. BALF macrophages were significantly elevated at 2.0 mg/kg/d PFOS in both sexes compared to vehicles, while BALF cytokines (TNF-α, IL-6, KC, MIP-1α, MIP-1ß, and MCP-1) were suppressed in PFOS exposed male offspring compared to vehicle controls. Multiplex nucleic acid hybridization assay showed male-specific downregulation of cytokine gene expression in PFOS exposed mice compared to vehicle mice. Overall, these results demonstrate PFOS exposure exhibits male-specific adverse effects on lung development and inflammation in juvenile offspring, possibly predisposing them to later-in-life respiratory disease. Further research is required to elucidate the mechanisms underlying the sex-differentiated pulmonary toxicity of PFOS.

2.
J Control Release ; 370: 152-167, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641020

RESUMEN

Ligand-modified nanocarriers can promote oral or inhalative administration of macromolecular drugs across the intestinal or pulmonary mucosa. However, enhancing the unidirectional transport of the nanocarriers through "apical uptake→intracellular transport→basolateral exocytosis" route remains a hot topic and challenge in current research. Forskolin is a naturally occurring diterpenoid compound extracted from the roots of C. forskohlii. In our studies, we found that forskolin could increase the transcellular transport of butyrate-modified nanoparticles by 1.67-fold and 1.20-fold in Caco-2 intestinal epithelial cell models and Calu-3 lung epithelial cell models, respectively. Further mechanistic studies revealed that forskolin, on the one hand, promoted the cellular uptake of butyrate-modified nanoparticles by upregulating the expression of monocarboxylic acid transporter-1 (MCT-1) on the apical membrane. On the other hand, forskolin facilitated the binding of MCT-1 to caveolae, thereby mediating butyrate-modified nanoparticles hijacking caveolae to promote the basolateral exocytosis of butyrate-modified nanoparticles. Studies in normal mice model showed that forskolin could promote the transmucosal absorption of butyrate-modified nanoparticles by >2-fold, regardless of oral or inhalative administration. Using semaglutide as the model drug, both oral and inhalation delivery approaches demonstrated significant hypoglycemic effects in type 2 diabetes mice model, in which inhalative administration was more effective than oral administration. This study optimized the strategies aimed at enhancing the transmucosal absorption of ligand-modified nanocarriers in the intestinal or pulmonary mucosa.


Asunto(s)
Colforsina , Nanopartículas , Animales , Humanos , Colforsina/administración & dosificación , Administración Oral , Nanopartículas/administración & dosificación , Pulmón/metabolismo , Butiratos/administración & dosificación , Butiratos/farmacocinética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células CACO-2 , Masculino , Simportadores/metabolismo , Ratones , Administración por Inhalación , Sistemas de Liberación de Medicamentos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA