Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.097
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32888494

RESUMEN

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Asunto(s)
Predisposición Genética a la Enfermedad/genética , Herencia Multifactorial/genética , Femenino , Redes Reguladoras de Genes/genética , Estudio de Asociación del Genoma Completo/métodos , Hematopoyesis/genética , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple/genética
2.
Genes Dev ; 34(21-22): 1520-1533, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33060134

RESUMEN

DNA replication is fundamental for cell proliferation in all organisms. Nonetheless, components of the replisome have been implicated in human disease, and here we report PRIM1 encoding the catalytic subunit of DNA primase as a novel disease gene. Using a variant classification agnostic approach, biallelic mutations in PRIM1 were identified in five individuals. PRIM1 protein levels were markedly reduced in patient cells, accompanied by replication fork asymmetry, increased interorigin distances, replication stress, and prolonged S-phase duration. Consequently, cell proliferation was markedly impaired, explaining the patients' extreme growth failure. Notably, phenotypic features distinct from those previously reported with DNA polymerase genes were evident, highlighting differing developmental requirements for this core replisome component that warrant future investigation.


Asunto(s)
ADN Primasa/genética , Enanismo/genética , Retardo del Crecimiento Fetal/genética , ADN Primasa/química , ADN Primasa/deficiencia , Enanismo/diagnóstico por imagen , Enanismo/patología , Femenino , Retardo del Crecimiento Fetal/diagnóstico por imagen , Retardo del Crecimiento Fetal/patología , Variación Genética , Humanos , Lactante , Masculino , Linaje , Síndrome
3.
Trends Genet ; 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39358183

RESUMEN

Two recent papers have identified genetic variants in the noncoding gene RNU4-2 to cause a frequent neurodevelopmental disorder. This work will have a substantial impact on the rare disease community, leading to thousands of diagnoses worldwide. These studies also highlight the untapped diagnostic potential of noncoding regions.

4.
Am J Hum Genet ; 111(7): 1282-1300, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834072

RESUMEN

Transcriptomics is a powerful tool for unraveling the molecular effects of genetic variants and disease diagnosis. Prior studies have demonstrated that choice of genome build impacts variant interpretation and diagnostic yield for genomic analyses. To identify the extent genome build also impacts transcriptomics analyses, we studied the effect of the hg19, hg38, and CHM13 genome builds on expression quantification and outlier detection in 386 rare disease and familial control samples from both the Undiagnosed Diseases Network and Genomics Research to Elucidate the Genetics of Rare Disease Consortium. Across six routinely collected biospecimens, 61% of quantified genes were not influenced by genome build. However, we identified 1,492 genes with build-dependent quantification, 3,377 genes with build-exclusive expression, and 9,077 genes with annotation-specific expression across six routinely collected biospecimens, including 566 clinically relevant and 512 known OMIM genes. Further, we demonstrate that between builds for a given gene, a larger difference in quantification is well correlated with a larger change in expression outlier calling. Combined, we provide a database of genes impacted by build choice and recommend that transcriptomics-guided analyses and diagnoses are cross referenced with these data for robustness.


Asunto(s)
Genoma Humano , RNA-Seq , Humanos , RNA-Seq/métodos , Genómica/métodos , Transcriptoma , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Perfilación de la Expresión Génica/métodos
5.
Am J Hum Genet ; 111(4): 742-760, 2024 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479391

RESUMEN

FRY-like transcription coactivator (FRYL) belongs to a Furry protein family that is evolutionarily conserved from yeast to humans. The functions of FRYL in mammals are largely unknown, and variants in FRYL have not previously been associated with a Mendelian disease. Here, we report fourteen individuals with heterozygous variants in FRYL who present with developmental delay, intellectual disability, dysmorphic features, and other congenital anomalies in multiple systems. The variants are confirmed de novo in all individuals except one. Human genetic data suggest that FRYL is intolerant to loss of function (LoF). We find that the fly FRYL ortholog, furry (fry), is expressed in multiple tissues, including the central nervous system where it is present in neurons but not in glia. Homozygous fry LoF mutation is lethal at various developmental stages, and loss of fry in mutant clones causes defects in wings and compound eyes. We next modeled four out of the five missense variants found in affected individuals using fry knockin alleles. One variant behaves as a severe LoF variant, whereas two others behave as partial LoF variants. One variant does not cause any observable defect in flies, and the corresponding human variant is not confirmed to be de novo, suggesting that this is a variant of uncertain significance. In summary, our findings support that fry is required for proper development in flies and that the LoF variants in FRYL cause a dominant disorder with developmental and neurological symptoms due to haploinsufficiency.


Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/diagnóstico , Discapacidad Intelectual/genética , Mamíferos , Anomalías Musculoesqueléticas/genética , Mutación Missense , Factores de Transcripción/genética , Drosophila
6.
Am J Hum Genet ; 111(9): 1970-1993, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39106866

RESUMEN

The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.


Asunto(s)
Proteína de Replicación C , Humanos , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Masculino , Células HeLa , Femenino , Fenotipo , Replicación del ADN/genética , Adulto , Mutación , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Alelos
7.
Am J Hum Genet ; 111(10): 2190-2202, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39255797

RESUMEN

Phenotype-driven gene prioritization is fundamental to diagnosing rare genetic disorders. While traditional approaches rely on curated knowledge graphs with phenotype-gene relations, recent advancements in large language models (LLMs) promise a streamlined text-to-gene solution. In this study, we evaluated five LLMs, including two generative pre-trained transformers (GPT) series and three Llama2 series, assessing their performance across task completeness, gene prediction accuracy, and adherence to required output structures. We conducted experiments, exploring various combinations of models, prompts, phenotypic input types, and task difficulty levels. Our findings revealed that the best-performed LLM, GPT-4, achieved an average accuracy of 17.0% in identifying diagnosed genes within the top 50 predictions, which still falls behind traditional tools. However, accuracy increased with the model size. Consistent results were observed over time, as shown in the dataset curated after 2023. Advanced techniques such as retrieval-augmented generation (RAG) and few-shot learning did not improve the accuracy. Sophisticated prompts were more likely to enhance task completeness, especially in smaller models. Conversely, complicated prompts tended to decrease output structure compliance rate. LLMs also achieved better-than-random prediction accuracy with free-text input, though performance was slightly lower than with standardized concept input. Bias analysis showed that highly cited genes, such as BRCA1, TP53, and PTEN, are more likely to be predicted. Our study provides valuable insights into integrating LLMs with genomic analysis, contributing to the ongoing discussion on their utilization in clinical workflows.


Asunto(s)
Fenotipo , Enfermedades Raras , Humanos , Enfermedades Raras/genética , Biología Computacional/métodos
8.
Am J Hum Genet ; 111(7): 1271-1281, 2024 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-38843839

RESUMEN

There is mounting evidence of the value of clinical genome sequencing (cGS) in individuals with suspected rare genetic disease (RGD), but cGS performance and impact on clinical care in a diverse population drawn from both high-income countries (HICs) and low- and middle-income countries (LMICs) has not been investigated. The iHope program, a philanthropic cGS initiative, established a network of 24 clinical sites in eight countries through which it provided cGS to individuals with signs or symptoms of an RGD and constrained access to molecular testing. A total of 1,004 individuals (median age, 6.5 years; 53.5% male) with diverse ancestral backgrounds (51.8% non-majority European) were assessed from June 2016 to September 2021. The diagnostic yield of cGS was 41.4% (416/1,004), with individuals from LMIC sites 1.7 times more likely to receive a positive test result compared to HIC sites (LMIC 56.5% [195/345] vs. HIC 33.5% [221/659], OR 2.6, 95% CI 1.9-3.4, p < 0.0001). A change in diagnostic evaluation occurred in 76.9% (514/668) of individuals. Change of management, inclusive of specialty referrals, imaging and testing, therapeutic interventions, and palliative care, was reported in 41.4% (285/694) of individuals, which increased to 69.2% (480/694) when genetic counseling and avoidance of additional testing were also included. Individuals from LMIC sites were as likely as their HIC counterparts to experience a change in diagnostic evaluation (OR 6.1, 95% CI 1.1-∞, p = 0.05) and change of management (OR 0.9, 95% CI 0.5-1.3, p = 0.49). Increased access to genomic testing may support diagnostic equity and the reduction of global health care disparities.


Asunto(s)
Pruebas Genéticas , Enfermedades Raras , Secuenciación Completa del Genoma , Humanos , Masculino , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Femenino , Niño , Pruebas Genéticas/métodos , Preescolar , Adolescente , Adulto , Lactante , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/diagnóstico
9.
Hum Mol Genet ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271101

RESUMEN

Craniofacial anomalies encompassing the orofacial cleft are associated with > 30% of systemic congenital malformations. Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) is a rare genetic disorder attributed to variants in the actin beta (ACTB) or actin gamma genes that are correlated with a range of craniofacial abnormalities, including cleft lip and/or palate. The underlying pathological mechanism of BWCFF remains elusive, and it is necessary to investigate the etiology of orofacial clefts in patients with BWCFF. In this study, we identified a missense variant (c.1043C > T: p.S348L) in the ACTB gene of a patient with BWCFF and concomitant cleft lip and palate. Furthermore, we performed functional assessments of this variant using various disease models such as the MDCK cell line and Xenopus laevis. These models revealed a compromised capacity of mutated ACTB to localize to the epithelial junction, consequently affecting the behavior of epithelial cells. Additionally, we discovered that the mutated ACTB exhibited an impaired ability to bind PROFILIN1, a critical factor in actin polymerization. This defective ability may contribute to the molecular etiology of aberrant epithelial cell adhesion and migration, resulting in orofacial cleft formation in BWCFF.

10.
Am J Hum Genet ; 110(12): 2056-2067, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38006880

RESUMEN

Detection of aberrantly spliced genes is an important step in RNA-seq-based rare-disease diagnostics. We recently developed FRASER, a denoising autoencoder-based method that outperformed alternative methods of detecting aberrant splicing. However, because FRASER's three splice metrics are partially redundant and tend to be sensitive to sequencing depth, we introduce here a more robust intron-excision metric, the intron Jaccard index, that combines the alternative donor, alternative acceptor, and intron-retention signal into a single value. Moreover, we optimized model parameters and filter cutoffs by using candidate rare-splice-disrupting variants as independent evidence. On 16,213 GTEx samples, our improved algorithm, FRASER 2.0, called typically 10 times fewer splicing outliers while increasing the proportion of candidate rare-splice-disrupting variants by 10-fold and substantially decreasing the effect of sequencing depth on the number of reported outliers. To lower the multiple-testing correction burden, we introduce an option to select the genes to be tested for each sample instead of a transcriptome-wide approach. This option can be particularly useful when prior information, such as candidate variants or genes, is available. Application on 303 rare-disease samples confirmed the relative reduction in the number of outlier calls for a slight loss of sensitivity; FRASER 2.0 recovered 22 out of 26 previously identified pathogenic splicing cases with default cutoffs and 24 when multiple-testing correction was limited to OMIM genes containing rare variants. Altogether, these methodological improvements contribute to more effective RNA-seq-based rare diagnostics by drastically reducing the amount of splicing outlier calls per sample at minimal loss of sensitivity.


Asunto(s)
Empalme Alternativo , Empalme del ARN , Humanos , Empalme Alternativo/genética , Intrones/genética , Empalme del ARN/genética , RNA-Seq , Algoritmos
11.
Am J Hum Genet ; 110(12): 2003-2014, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-37924808

RESUMEN

The c.1222C>T (p.Arg408Trp) variant in the phenylalanine hydroxylase gene (PAH) is the most frequent cause of phenylketonuria (PKU), the most common inborn error of metabolism. This autosomal-recessive disorder is characterized by accumulation of blood phenylalanine (Phe) to neurotoxic levels. Using real-world data, we observed that despite dietary and medical interventions, most PKU individuals harboring at least one c.1222C>T variant experience chronic, severe Phe elevations and do not comply with Phe monitoring guidelines. Motivated by these findings, we generated an edited c.1222C>T hepatocyte cell line and humanized c.1222C>T mouse models, with which we demonstrated efficient in vitro and in vivo correction of the variant with prime editing. Delivery via adeno-associated viral (AAV) vectors reproducibly achieved complete normalization of blood Phe levels in PKU mice, with up to 52% whole-liver corrective PAH editing. These studies validate a strategy involving prime editing as a potential treatment for a large proportion of individuals with PKU.


Asunto(s)
Fenilalanina Hidroxilasa , Fenilcetonurias , Ratones , Animales , Fenilcetonurias/genética , Fenilcetonurias/terapia , Fenilalanina Hidroxilasa/genética , Modelos Animales de Enfermedad , Fenilalanina/genética , Edición Génica
12.
Am J Hum Genet ; 110(5): 863-879, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37146589

RESUMEN

Deleterious mutations in the X-linked gene encoding ornithine transcarbamylase (OTC) cause the most common urea cycle disorder, OTC deficiency. This rare but highly actionable disease can present with severe neonatal onset in males or with later onset in either sex. Individuals with neonatal onset appear normal at birth but rapidly develop hyperammonemia, which can progress to cerebral edema, coma, and death, outcomes ameliorated by rapid diagnosis and treatment. Here, we develop a high-throughput functional assay for human OTC and individually measure the impact of 1,570 variants, 84% of all SNV-accessible missense mutations. Comparison to existing clinical significance calls, demonstrated that our assay distinguishes known benign from pathogenic variants and variants with neonatal onset from late-onset disease presentation. This functional stratification allowed us to identify score ranges corresponding to clinically relevant levels of impairment of OTC activity. Examining the results of our assay in the context of protein structure further allowed us to identify a 13 amino acid domain, the SMG loop, whose function appears to be required in human cells but not in yeast. Finally, inclusion of our data as PS3 evidence under the current ACMG guidelines, in a pilot reclassification of 34 variants with complete loss of activity, would change the classification of 22 from variants of unknown significance to clinically actionable likely pathogenic variants. These results illustrate how large-scale functional assays are especially powerful when applied to rare genetic diseases.


Asunto(s)
Hiperamonemia , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa , Ornitina Carbamoiltransferasa , Humanos , Sustitución de Aminoácidos , Hiperamonemia/etiología , Hiperamonemia/genética , Mutación Missense/genética , Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/genética , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/diagnóstico , Enfermedad por Deficiencia de Ornitina Carbamoiltransferasa/terapia
13.
Trends Genet ; 38(12): 1271-1283, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35934592

RESUMEN

A molecular diagnosis from the analysis of sequencing data in rare Mendelian diseases has a huge impact on the management of patients and their families. Numerous patient phenotype-aware variant prioritisation (VP) tools have been developed to help automate this process, and shorten the diagnostic odyssey, but performance statistics on real patient data are limited. Here we identify, assess, and compare the performance of all up-to-date, freely available, and programmatically accessible tools using a whole-exome, retinal disease dataset from 134 individuals with a molecular diagnosis. All tools were able to identify around two-thirds of the genetic diagnoses as the top-ranked candidate, with LIRICAL performing best overall. Finally, we discuss the challenges to overcome most cases remaining undiagnosed after current, state-of-the-art practices.


Asunto(s)
Exoma , Enfermedades Raras , Humanos , Fenotipo , Secuenciación del Exoma , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética
14.
Trends Genet ; 38(4): 317-320, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34702579

RESUMEN

Complex diseases, including ageing, often exhibit sexual dimorphism. These sex differences can obfuscate attribution to causal genes within a target ID campaign. Mendelian randomisation (MR)-inspired analysis provides a natural setting to incorporate X-linked aneuploid populations, resulting in prioritisation of longevity-enhancing drug targets and motivating greater inclusion of said populations in future profiling studies.


Asunto(s)
Longevidad , Enfermedades Raras , Aneuploidia , Femenino , Humanos , Longevidad/genética , Masculino , Análisis de la Aleatorización Mendeliana
15.
Trends Genet ; 38(6): 554-571, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35450748

RESUMEN

The path to completion of the functional annotation of the haploid human genome reference build, exploration of the clan genomics hypothesis, understanding human gene and genome functional biology, and gene genome and organismal evolution, is in reach.


Asunto(s)
Diploidia , Genoma Humano , Dosificación de Gen , Genoma Humano/genética , Medicina Genómica , Genómica , Humanos
16.
Am J Hum Genet ; 109(2): 195-209, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032432

RESUMEN

Whole-genome sequencing resolves many clinical cases where standard diagnostic methods have failed. However, at least half of these cases remain unresolved after whole-genome sequencing. Structural variants (SVs; genomic variants larger than 50 base pairs) of uncertain significance are the genetic cause of a portion of these unresolved cases. As sequencing methods using long or linked reads become more accessible and SV detection algorithms improve, clinicians and researchers are gaining access to thousands of reliable SVs of unknown disease relevance. Methods to predict the pathogenicity of these SVs are required to realize the full diagnostic potential of long-read sequencing. To address this emerging need, we developed StrVCTVRE to distinguish pathogenic SVs from benign SVs that overlap exons. In a random forest classifier, we integrated features that capture gene importance, coding region, conservation, expression, and exon structure. We found that features such as expression and conservation are important but are absent from SV classification guidelines. We leveraged multiple resources to construct a size-matched training set of rare, putatively benign and pathogenic SVs. StrVCTVRE performs accurately across a wide SV size range on independent test sets, which will allow clinicians and researchers to eliminate about half of SVs from consideration while retaining a 90% sensitivity. We anticipate clinicians and researchers will use StrVCTVRE to prioritize SVs in probands where no SV is immediately compelling, empowering deeper investigation into novel SVs to resolve cases and understand new mechanisms of disease. StrVCTVRE runs rapidly and is publicly available.


Asunto(s)
Algoritmos , Genoma Humano , Variación Estructural del Genoma , Programas Informáticos , Aprendizaje Automático Supervisado , Conjuntos de Datos como Asunto , Exones , Genómica/métodos , Humanos , Curva ROC , Secuenciación Completa del Genoma/estadística & datos numéricos
17.
Am J Hum Genet ; 109(9): 1591-1604, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35998640

RESUMEN

Diagnosis for rare genetic diseases often relies on phenotype-driven methods, which hinge on the accuracy and completeness of the rare disease phenotypes in the underlying annotation knowledgebase. Existing knowledgebases are often manually curated with additional annotations found in published case reports. Despite their potential, real-world data such as electronic health records (EHRs) have not been fully exploited to derive rare disease annotations. Here, we present open annotation for rare diseases (OARD), a real-world-data-derived resource with annotation for rare-disease-related phenotypes. This resource is derived from the EHRs of two academic health institutions containing more than 10 million individuals spanning wide age ranges and different disease subgroups. By leveraging ontology mapping and advanced natural-language-processing (NLP) methods, OARD automatically and efficiently extracts concepts for both rare diseases and their phenotypic traits from billing codes and lab tests as well as over 100 million clinical narratives. The rare disease prevalence derived by OARD is highly correlated with those annotated in the original rare disease knowledgebase. By performing association analysis, we identified more than 1 million novel disease-phenotype association pairs that were previously missed by human annotation, and >60% were confirmed true associations via manual review of a list of sampled pairs. Compared to the manual curated annotation, OARD is 100% data driven and its pipeline can be shared across different institutions. By supporting privacy-preserving sharing of aggregated summary statistics, such as term frequencies and disease-phenotype associations, it fills an important gap to facilitate data-driven research in the rare disease community.


Asunto(s)
Procesamiento de Lenguaje Natural , Enfermedades Raras , Registros Electrónicos de Salud , Humanos , Fenotipo , Enfermedades Raras/genética
18.
Brief Bioinform ; 24(5)2023 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-37580177

RESUMEN

Genomic variants affecting pre-messenger RNA splicing and its regulation are known to underlie many rare genetic diseases. However, common workflows for genetic diagnosis and clinical variant interpretation frequently overlook splice-altering variants. To better serve patient populations and advance biomedical knowledge, it has become increasingly important to develop and refine approaches for detecting and interpreting pathogenic splicing variants. In this review, we will summarize a few recent developments and challenges in using RNA sequencing technologies for rare disease investigation. Moreover, we will discuss how recent computational splicing prediction tools have emerged as complementary approaches for revealing disease-causing variants underlying splicing defects. We speculate that continuous improvements to sequencing technologies and predictive modeling will not only expand our understanding of splicing regulation but also bring us closer to filling the diagnostic gap for rare disease patients.


Asunto(s)
Enfermedades Raras , Transcriptoma , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Empalme del ARN , Proteínas , Aprendizaje Automático , Mutación
19.
Hum Genomics ; 18(1): 44, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685113

RESUMEN

BACKGROUND: A major obstacle faced by families with rare diseases is obtaining a genetic diagnosis. The average "diagnostic odyssey" lasts over five years and causal variants are identified in under 50%, even when capturing variants genome-wide. To aid in the interpretation and prioritization of the vast number of variants detected, computational methods are proliferating. Knowing which tools are most effective remains unclear. To evaluate the performance of computational methods, and to encourage innovation in method development, we designed a Critical Assessment of Genome Interpretation (CAGI) community challenge to place variant prioritization models head-to-head in a real-life clinical diagnostic setting. METHODS: We utilized genome sequencing (GS) data from families sequenced in the Rare Genomes Project (RGP), a direct-to-participant research study on the utility of GS for rare disease diagnosis and gene discovery. Challenge predictors were provided with a dataset of variant calls and phenotype terms from 175 RGP individuals (65 families), including 35 solved training set families with causal variants specified, and 30 unlabeled test set families (14 solved, 16 unsolved). We tasked teams to identify causal variants in as many families as possible. Predictors submitted variant predictions with estimated probability of causal relationship (EPCR) values. Model performance was determined by two metrics, a weighted score based on the rank position of causal variants, and the maximum F-measure, based on precision and recall of causal variants across all EPCR values. RESULTS: Sixteen teams submitted predictions from 52 models, some with manual review incorporated. Top performers recalled causal variants in up to 13 of 14 solved families within the top 5 ranked variants. Newly discovered diagnostic variants were returned to two previously unsolved families following confirmatory RNA sequencing, and two novel disease gene candidates were entered into Matchmaker Exchange. In one example, RNA sequencing demonstrated aberrant splicing due to a deep intronic indel in ASNS, identified in trans with a frameshift variant in an unsolved proband with phenotypes consistent with asparagine synthetase deficiency. CONCLUSIONS: Model methodology and performance was highly variable. Models weighing call quality, allele frequency, predicted deleteriousness, segregation, and phenotype were effective in identifying causal variants, and models open to phenotype expansion and non-coding variants were able to capture more difficult diagnoses and discover new diagnoses. Overall, computational models can significantly aid variant prioritization. For use in diagnostics, detailed review and conservative assessment of prioritized variants against established criteria is needed.


Asunto(s)
Enfermedades Raras , Humanos , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Genoma Humano/genética , Variación Genética/genética , Biología Computacional/métodos , Fenotipo
20.
Proc Natl Acad Sci U S A ; 119(46): e2210247119, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36343260

RESUMEN

Genetic variants in SLC22A5, encoding the membrane carnitine transporter OCTN2, cause the rare metabolic disorder Carnitine Transporter Deficiency (CTD). CTD is potentially lethal but actionable if detected early, with confirmatory diagnosis involving sequencing of SLC22A5. Interpretation of missense variants of uncertain significance (VUSs) is a major challenge. In this study, we sought to characterize the largest set to date (n = 150) of OCTN2 variants identified in diverse ancestral populations, with the goals of furthering our understanding of the mechanisms leading to OCTN2 loss-of-function (LOF) and creating a protein-specific variant effect prediction model for OCTN2 function. Uptake assays with 14C-carnitine revealed that 105 variants (70%) significantly reduced transport of carnitine compared to wild-type OCTN2, and 37 variants (25%) severely reduced function to less than 20%. All ancestral populations harbored LOF variants; 62% of green fluorescent protein (GFP)-tagged variants impaired OCTN2 localization to the plasma membrane of human embryonic kidney (HEK293T) cells, and subcellular localization significantly associated with function, revealing a major LOF mechanism of interest for CTD. With these data, we trained a model to classify variants as functional (>20% function) or LOF (<20% function). Our model outperformed existing state-of-the-art methods as evaluated by multiple performance metrics, with mean area under the receiver operating characteristic curve (AUROC) of 0.895 ± 0.025. In summary, in this study we generated a rich dataset of OCTN2 variant function and localization, revealed important disease-causing mechanisms, and improved upon machine learning-based prediction of OCTN2 variant function to aid in variant interpretation in the diagnosis and treatment of CTD.


Asunto(s)
Carnitina , Proteínas de Transporte de Catión Orgánico , Humanos , Miembro 5 de la Familia 22 de Transportadores de Solutos/genética , Miembro 5 de la Familia 22 de Transportadores de Solutos/metabolismo , Proteínas de Transporte de Catión Orgánico/genética , Proteínas de Transporte de Catión Orgánico/metabolismo , Células HEK293 , Carnitina/genética , Carnitina/metabolismo , Genómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA