Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Internet Res ; 26: e50275, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133915

RESUMEN

BACKGROUND: Ecological momentary assessment (EMA) is a measurement methodology that involves the repeated collection of real-time data on participants' behavior and experience in their natural environment. While EMA allows researchers to gain valuable insights into dynamic behavioral processes, the need for frequent self-reporting can be burdensome and disruptive. Compliance with EMA protocols is important for accurate, unbiased sampling; yet, there is no "gold standard" for EMA study design to promote compliance. OBJECTIVE: The purpose of this study was to use a factorial design to identify optimal study design factors, or combinations of factors, for achieving the highest completion rates for smartphone-based EMAs. METHODS: Participants recruited from across the United States were randomized to 1 of 2 levels on each of 5 design factors in a 2×2×2×2×2 design (32 conditions): factor 1-number of questions per EMA survey (15 vs 25); factor 2-number of EMAs per day (2 vs 4); factor 3-EMA prompting schedule (random vs fixed times); factor 4-payment type (US $1 paid per EMA vs payment based on the percentage of EMAs completed); and factor 5-EMA response scale type (ie, slider-type response scale vs Likert-type response scale; this is the only within-person factor; each participant was randomized to complete slider- or Likert-type questions for the first 14 days or second 14 days of the study period). All participants were asked to complete prompted EMAs for 28 days. The effect of each factor on EMA completion was examined, as well as the effects of factor interactions on EMA completion. Finally, relations between demographic and socioenvironmental factors and EMA completion were examined. RESULTS: Participants (N=411) were aged 48.4 (SD 12.1) years; 75.7% (311/411) were female, 72.5% (298/411) were White, 18.0% (74/411) were Black or African American, 2.7% (11/411) were Asian, 1.5% (6/411) were American Indian or Alaska Native, 5.4% (22/411) belonged to more than one race, and 9.6% (38/396) were Hispanic/Latino. On average, participants completed 83.8% (28,948/34,552) of scheduled EMAs, and 96.6% (397/411) of participants completed the follow-up survey. Results indicated that there were no significant main effects of the design factors on compliance and no significant interactions. Analyses also indicated that older adults, those without a history of substance use problems, and those without current depression tended to complete more EMAs than their counterparts. No other demographic or socioenvironmental factors were related to EMA completion rates. Finally, the app was well liked (ie, system usability scale score=82.7), and there was a statistically significant positive association between liking the app and EMA compliance. CONCLUSIONS: Study results have broad implications for developing best practices guidelines for future studies that use EMA methodologies. TRIAL REGISTRATION: ClinicalTrials.gov number NCT05194228; https://clinicaltrials.gov/study/NCT05194228.


Asunto(s)
Evaluación Ecológica Momentánea , Humanos , Femenino , Masculino , Adulto , Estados Unidos , Persona de Mediana Edad , Teléfono Inteligente , Adulto Joven , Encuestas y Cuestionarios
2.
Sensors (Basel) ; 24(18)2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39338793

RESUMEN

Real-time data transmission and reliable operation are essential for a tsunami monitoring system to provide effective data. In this study, a novel real-time tsunami monitoring system is designed based on a submersible mooring system. This system is equipped with a data acquisition and tsunami wave identification algorithm, which can collect the measured data of the pressure sensor and detect a tsunami wave in real time. It adopts the combination design of underwater inductive coupling transmission and a redundant BeiDou communication device on the water surface to ensure the reliability of real-time data transmission. Compared with traditional tsunami monitoring buoys, it has the advantages of reliable communication, good concealment, high security, and convenient deployment, recovery, and maintenance. The results of laboratory and sea tests show that the system has high reliability of data transmission, stable overall operation of the system, and good application prospects in the field of real-time tsunami monitoring and early warning.

3.
Sensors (Basel) ; 24(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400203

RESUMEN

Icebergs and ice islands (large, tabular icebergs) present a significant hazard to marine vessels and infrastructure at a time when demand for access to Arctic waters is increasing. There is a growing demand for in situ iceberg tracking data to monitor their drift trajectories and improve models used for operational forecasting of ice hazards, yet the high cost of commercial tracking devices often prevents monitoring at optimal spatial and temporal resolutions. Here, we provide a detailed description of the Cryologger Ice Tracking Beacon (ITB), a low-cost, robust, and user-friendly data logger and telemeter for tracking icebergs and ice islands based on the Arduino open-source electronics platform. Designed for deployments of at least 2 years with an hourly sampling interval that is remotely modifiable by the end user, the Cryologger ITB provides long-term measurements of position, temperature, pressure, pitch, roll, heading, and battery voltage. Data are transmitted via the Iridium satellite network at user-specified intervals. We present the results of field campaigns in 2018 and 2019, which saw the deployment of 16 ITBs along the coasts of Greenland and Ellesmere and Baffin islands. The overall success of these ITB deployments has demonstrated that inexpensive, open-source hardware and software can provide a reliable and cost-effective method of monitoring icebergs and ice islands in the polar regions.

4.
Sensors (Basel) ; 24(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339667

RESUMEN

Maritime emissions contribute significantly to global pollution, necessitating accurate and efficient monitoring methods. Traditional methods for tracking ship emissions often face limitations in real-time data accuracy, with wind measurement being a critical yet challenging aspect. This paper introduces an innovative mission planner module for unmanned aerial vehicles (UAVs) that leverages onboard wind sensing capabilities to enhance maritime emission monitoring. The module's primary objective is to assist operators in making informed decisions by providing real-time wind data overlays, thus optimizing flight paths and data collection efficiency. Our experimental setup involves the testing of the module in simulated maritime environments, demonstrating its efficacy in varying wind conditions. The real-time wind data overlays provided by the module enable UAV operators to adjust their flight paths dynamically, reducing unnecessary power expenditure and mitigating the risks associated with low-battery scenarios, especially in challenging maritime conditions. This paper presents the implementation of real-time wind data overlays on an open-source state-of-the-art mission planner as a C# plugin that is seamlessly integrated into the user interface. The factors that affect performance, in terms of communication overheads and real-time operation, are identified and discussed. The operation of the module is evaluated in terms of functional integration and real-time visual representation of wind measurements, and the enhanced situational awareness that it can offer to mission controllers is demonstrated. Beyond presenting a novel application of UAV technology in environmental monitoring, we also provide an extensive discussion of how this work will be extended in the context of complete aerial environmental inspection missions and the future directions in research within the field that can potentially lead to the modernization of maritime emission monitoring practices.

5.
Sensors (Basel) ; 24(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38894257

RESUMEN

In the face of rising population, erratic climate, resource depletion, and increased exposure to natural hazards, environmental monitoring is increasingly important. Satellite data form most of our observations of Earth. On-the-ground observations based on in situ sensor systems are crucial for these remote measurements to be dependable. Providing open-source options to rapidly prototype environmental datalogging systems allows quick advancement of research and monitoring programs. This paper introduces Loom, a development environment for low-power Arduino-programmable microcontrollers. Loom accommodates a range of integrated components including sensors, various datalogging formats, internet connectivity (including Wi-Fi and 4G Long Term Evolution (LTE)), radio telemetry, timing mechanisms, debugging information, and power conservation functions. Additionally, Loom includes unique applications for science, technology, engineering, and mathematics (STEM) education. By establishing modular, reconfigurable, and extensible functionality across components, Loom reduces development time for prototyping new systems. Bug fixes and optimizations achieved in one project benefit all projects that use Loom, enhancing efficiency. Although not a one-size-fits-all solution, this approach has empowered a small group of developers to support larger multidisciplinary teams designing diverse environmental sensing applications for water, soil, atmosphere, agriculture, environmental hazards, scientific monitoring, and education. This paper not only outlines the system design but also discusses alternative approaches explored and key decision points in Loom's development.

6.
Biotechnol Bioeng ; 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37458361

RESUMEN

The methodology for production of biologics is going through a paradigm shift from batch-wise operation to continuous production. Lot of efforts are focused on integration, intensification, and continuous operation for decreased foot-print, material, equipment, and increased productivity and product quality. These integrated continuous processes with on-line analytics become complex processes, which requires automation, monitoring, and control of the operation, even unmanned or remote, which means bioprocesses with high level of automation or even autonomous capabilities. The development of these digital solutions becomes an important part of the process development and needs to be assessed early in the development chain. This work discusses a platform that allows fast development, advanced studies, and validation of digital solutions for integrated continuous downstream processes. It uses an open, flexible, and extendable real-time supervisory controller, called Orbit, developed in Python. Orbit makes it possible to communicate with a set of different physical setups and on the same time perform real-time execution. Integrated continuous processing often implies parallel operation of several setups and network of Orbit controllers makes it possible to synchronize complex process system. Data handling, storage, and analysis are important properties for handling heterogeneous and asynchronous data generated in complex downstream systems. Digital twin applications, such as advanced model-based and plant-wide monitoring and control, are exemplified using computational extensions in Orbit, exploiting data and models. Examples of novel digital solutions in integrated downstream processes are automatic operation parameter optimization, Kalman filter monitoring, and model-based batch-to-batch control.

7.
Sensors (Basel) ; 23(24)2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38139538

RESUMEN

In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has introduced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data streams in real time. In order to manage Massive IoT data streams, we utilize analytical database software such as Apache Druid version 28.0.0 that excels in real-time data processing. Our approach relies on a publish/subscribe mechanism, where device-generated data are relayed to a dedicated broker, effectively functioning as a separate server. This broker enables any application to subscribe to the dataset, promoting a dynamic and responsive data ecosystem. At the core of our data transmission infrastructure lies Apache Kafka version 3.6.1, renowned for its exceptional data flow management performance. Kafka efficiently bridges the gap between MIoT sensors and brokers, enabling parallel clusters of brokers that lead to more scalability. In our pursuit of uninterrupted connectivity, we incorporate a fail-safe mechanism with two Software-Defined Radios (SDR) called Nutaq PicoLTE Release 1.5 within our model. This strategic redundancy enhances data transmission availability, safeguarding against connectivity disruptions. Furthermore, to enhance the data repository security, we utilize blockchain technology, specifically Hyperledger Fabric, known for its high-performance attributes, ensuring data integrity, immutability, and security. Our latency results demonstrate that our platform effectively reduces latency for 100,000 devices, qualifying as an MIoT, to less than 25 milliseconds. Furthermore, our findings on blockchain performance underscore our model as a secure platform, achieving over 800 Transactions Per Second in a dataset comprising 14,000 transactions, thereby demonstrating its high efficiency.

8.
J Therm Biol ; 113: 103405, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37055098

RESUMEN

Exposure to extreme temperatures in workplaces implies serious physical hazards to workers. In addition, a poorly acclimatized worker can have reduced performance and alertness. It may therefore be more vulnerable to the risk of accidents and injuries. Due to the incompatibility of standards and regulations with some work environments and a lack of thermal exchange in many personal protective equipment, heat stress remains among the most common physical risks in many industrial sectors. Furthermore, conventional methods of measuring physiological parameters in order to calculate personal thermophysiological constraints are not practical to use during work tasks. However, the emergence of wearable technologies can contribute to real-time measurement of body temperature and the biometric signals needed to assess thermophysiological constraints while actively working. Thus, the present study was carried out in order to scrutinize the current knowledge of these types of technologies by analyzing the available systems and the advances made in previous studies, as well as to discuss the efforts required to develop devices for the prevention of the occurrence of heat stress in real time.


Asunto(s)
Trastornos de Estrés por Calor , Dispositivos Electrónicos Vestibles , Humanos , Temperatura Corporal , Calor , Lugar de Trabajo , Trastornos de Estrés por Calor/prevención & control
9.
J Environ Manage ; 340: 117973, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37119626

RESUMEN

This paper is to discuss the impact of green mergers and acquisitions (GMA) on illegal pollution discharge (ILP). The diurnal difference pollution data of the nearest monitoring station around heavy polluting enterprises are used to measure ILP. Results show that: (1) Compared with polluting firms that have not conducted GMA, GMA can reduce ILP by 2.9%. (2) Large scale, strong industrial correlation and cash payment of GMA is more conducive to controlling ILP. GMA in the same city is easier to inhibit ILP. (3) Impact paths of GMA on ILP mainly include cost effect, technology effect and responsibility effect. GMA aggravates ILP by increasing management costs and risk control risks. GMA inhibits ILP by increasing green innovation, environmental protection investment, social responsibility performance and environmental information disclosure. (4) GMA has a greater inhibition effect on ILP in state-owned firms, technology-intensive firms and eastern firms. (5) The industrial spillover effect of GMA is more obvious than that of the same city. This paper provides implications for curbing ILP from the perspective of GMA.


Asunto(s)
Revelación , Contaminación Ambiental , Industrias , Inversiones en Salud , Tecnología , China , Conservación de los Recursos Naturales
10.
Entropy (Basel) ; 25(5)2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37238544

RESUMEN

In order to solve the high-precision motion control problem of the n-degree-of-freedom (n-DOF) manipulator driven by large amount of real-time data, a motion control algorithm based on self-organizing interval type-2 fuzzy neural network error compensation (SOT2-FNNEC) is proposed. The proposed control framework can effectively suppress various types of interference such as base jitter, signal interference, time delay, etc., during the movement of the manipulator. The fuzzy neural network structure and self-organization method are used to realize the online self-organization of fuzzy rules based on control data. The stability of the closed-loop control systems are proved by Lyapunov stability theory. Simulations show that the algorithm is superior to a self-organizing fuzzy error compensation network and conventional sliding mode variable structure control methods in control performance.

11.
Sensors (Basel) ; 22(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35890854

RESUMEN

A precise prediction of the health status of industrial equipment is of significant importance to determine its reliability and lifespan. This prediction provides users information that is useful in determining when to service, repair, or replace the unhealthy equipment's components. In the last decades, many works have been conducted on data-driven prognostic models to estimate the asset's remaining useful life. These models require updates on the novel happenings from regular diagnostics, otherwise, failure may happen before the estimated time due to different facts that may oblige rapid maintenance actions, including unexpected replacement. Adding to offline prognostic models, the continuous monitoring and prediction of remaining useful life can prevent failures, increase the useful lifespan through on-time maintenance actions, and reduce the unnecessary preventive maintenance and associated costs. This paper presents the ability of the two real-time tiny predictive analytics models: tiny long short-term memory (TinyLSTM) and sequential dense neural network (DNN). The model (TinyModel) from Edge Impulse is used to predict the remaining useful life of the equipment by considering the status of its different components. The equipment degradation insights were assessed through the real-time data gathered from operating equipment. To label our dataset, fuzzy logic based on the maintainer's expertise is used to generate maintenance priorities, which are later used to compute the actual remaining useful life. The predictive analytic models were developed and performed well, with an evaluation loss of 0.01 and 0.11, respectively, for the LSTM and model from Edge Impulse. Both models were converted into TinyModels for on-device deployment. Unseen data were used to simulate the deployment of both TinyModels. Conferring to the evaluation and deployment results, both TinyLSTM and TinyModel from Edge Impulse are powerful in real-time predictive maintenance, but the model from Edge Impulse is much easier in terms of development, conversion to Tiny version, and deployment.


Asunto(s)
Lógica Difusa , Redes Neurales de la Computación , Reproducibilidad de los Resultados
12.
Sensors (Basel) ; 22(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684810

RESUMEN

A seismograph was designed based on Raspberry Pi. Although comprising 8 channels, the seismograph can be expanded to 16, 24, or 32 channels by using a USB interfacing with a microcontroller. In addition, by clustering more than one Raspberry Pi, the number of possible channels can be extended beyond 32. In this study, we also explored the computational intelligence of Raspberry Pi for running real-time systems and multithreaded algorithms to process raw seismic data. Also integrated into the seismograph is a Huawei MH5000-31 5G module, which provided high-speed internet real-time operations. Other hardware peripherals included a 24 bit ADS1251 analog-to-digital converter (ADC) and a STM32F407 microcontroller. Real-time data were acquired in the field for ambient noise tomography. An analysis tool called spatial autocorrelation (SPAC) was used to analyze the data, followed by inversion, which revealed the subsurface velocity of the site location. The proposed seismograph is prospective for small, medium, or commercial data acquisition. In accordance with the processing power and stability of Raspberry Pi, which were confirmed in this study, the proposed seismograph is also recommended as a template for developing high-performance computing applications, such as artificial intelligence (AI) in seismology and other related disciplines.

13.
Sensors (Basel) ; 22(24)2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-36560054

RESUMEN

Dynamic data (including environmental, traffic, and sensor data) were recently recognized as an important part of Open Government Data (OGD). Although these data are of vital importance in the development of data intelligence applications, such as business applications that exploit traffic data to predict traffic demand, they are prone to data quality errors produced by, e.g., failures of sensors and network faults. This paper explores the quality of Dynamic Open Government Data. To that end, a single case is studied using traffic data from the official Greek OGD portal. The portal uses an Application Programming Interface (API), which is essential for effective dynamic data dissemination. Our research approach includes assessing data quality using statistical and machine learning methods to detect missing values and anomalies. Traffic flow-speed correlation analysis, seasonal-trend decomposition, and unsupervised isolation Forest (iForest) are used to detect anomalies. iForest anomalies are classified as sensor faults and unusual traffic conditions. The iForest algorithm is also trained on additional features, and the model is explained using explainable artificial intelligence. There are 20.16% missing traffic observations, and 50% of the sensors have 15.5% to 33.43% missing values. The average percent of anomalies per sensor is 71.1%, with only a few sensors having less than 10% anomalies. Seasonal-trend decomposition detected 12.6% anomalies in the data of these sensors, and iForest 11.6%, with very few overlaps. To the authors' knowledge, this is the first time a study has explored the quality of dynamic OGD.


Asunto(s)
Inteligencia Artificial , Aprendizaje Automático , Algoritmos , Gobierno
14.
Environ Monit Assess ; 194(2): 133, 2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089424

RESUMEN

Water is a basic and primary resource which is required for sustenance of life on the Earth. The importance of water quality is increasing with the ascending water pollution owing to industrialization and depletion of fresh water sources. The countries having low control on reducing water pollution are likely to retain poor public health. Additionally, the methods being used in most developing countries are not effective and are based more on human intervention than on technological and automated solutions. Typically, most of the water samples and related data are monitored and tested in laboratories, which eventually consumes time and effort at the expense of producing fewer reliable results. In view of the above, there is an imperative need to devise a proper and systematic system to regularly monitor and manage the quality of water resources to arrest the related issues. Towards such ends, Internet of Things (IoT) is a great alternative to such traditional approaches which are complex and ineffective and it allows taking remote measurements in real-time with minimal human involvement. The proposed system consists of various water quality measuring nodes encompassing various sensors including dissolved oxygen, turbidity, pH level, water temperature, and total dissolved solids. These sensors nodes deployed at various sites of the study area transmit data to the server for processing and analysis using GSM modules. The data collected over months is used for water quality classification using water quality indices and for bacterial prediction by employing machine learning algorithms. For data visualization, a Web portal is developed which consists of a dashboard of Web services to display the heat maps and other related info-graphics. The real-time water quality data is collected using IoT nodes and the historic data is acquired from the Rawal Lake Filtration Plant. Several machine learning algorithms including neural networks (NN), convolutional neural networks (CNN), ridge regression (RR), support vector machines (SVM), decision tree regression (DTR), Bayesian regression (BR), and an ensemble of all models are trained for fecal coliform bacterial prediction, where SVM and Bayesian regression models have shown the optimal performance with mean squared error (MSE) of 0.35575 and 0.39566 respectively. The proposed system provides an alternative and more convenient solution for bacterial prediction, which otherwise is done manually in labs and is an expensive and time-consuming approach. In addition to this, it offers several other advantages including remote monitoring, ease of scalability, real-time status of water quality, and a portable hardware.


Asunto(s)
Internet de las Cosas , Teorema de Bayes , Monitoreo del Ambiente , Humanos , Aprendizaje Automático , Calidad del Agua
15.
J Med Internet Res ; 23(7): e26548, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34309576

RESUMEN

BACKGROUND: Ecological momentary assessment (EMA) tools appear to be useful interventions for collecting real-time data on patients' behavior and functioning. However, concerns have been voiced regarding the acceptability of EMA among patients with schizophrenia and the factors influencing EMA acceptability. OBJECTIVE: The aim of this study was to investigate the acceptability of a passive smartphone-based EMA app, evidence-based behavior (eB2), among patients with schizophrenia spectrum disorders and the putative variables underlying their acceptance. METHODS: The participants in this study were from an ongoing randomized controlled trial (RCT) of metacognitive training, consisting of outpatients with schizophrenia spectrum disorders (F20-29 of 10th revision of the International Statistical Classification of Diseases and Related Health Problems), aged 18-64 years, none of whom received any financial compensation. Those who consented to installation of the eB2 app (users) were compared with those who did not (nonusers) in sociodemographic, clinical, premorbid adjustment, neurocognitive, psychopathological, insight, and metacognitive variables. A multivariable binary logistic regression tested the influence of the above (independent) variables on "being user versus nonuser" (acceptability), which was the main outcome measure. RESULTS: Out of the 77 RCT participants, 24 (31%) consented to installing eB2, which remained installed till the end of the study (median follow-up 14.50 weeks) in 14 participants (70%). Users were younger and had a higher education level, better premorbid adjustment, better executive function (according to the Trail Making Test), and higher cognitive insight levels (measured with the Beck Cognitive Insight Scale) than nonusers (univariate analyses) although only age (OR 0.93, 95% CI 0.86-0.99; P=.048) and early adolescence premorbid adjustment (OR 0.75, 95% CI 0.61-0.93; P=.01) survived the multivariable regression model, thus predicting eB2 acceptability. CONCLUSIONS: Acceptability of a passive smartphone-based EMA app among participants with schizophrenia spectrum disorders in this RCT where no participant received financial compensation was, as expected, relatively low, and linked with being young and good premorbid adjustment. Further research should examine how to increase EMA acceptability in patients with schizophrenia spectrum disorders, in particular, older participants and those with poor premorbid adjustment. TRIAL REGISTRATION: ClinicalTrials.gov NCT04104347; https://clinicaltrials.gov/ct2/show/NCT04104347.


Asunto(s)
Aplicaciones Móviles , Esquizofrenia , Adolescente , Evaluación Ecológica Momentánea , Humanos , Esquizofrenia/terapia , Teléfono Inteligente
16.
J Dairy Sci ; 103(4): 3774-3785, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32063376

RESUMEN

The objective of this study was to develop a model application to systematize nutritional grouping (NG) management in commercial dairy farms. The model has 4 sub-sections: (1) real-time data stream integration, (2) calculation of nutritional parameters, (3) grouping algorithm, and (4) output reports. A simulation study on a commercial Wisconsin dairy farm was used to evaluate our NG model. On this dairy farm, lactating cows (n = 2,374 ± 185) are regrouped weekly in 14 pens according to their parity and lactation stage, for which 9 diets are provided. Diets are seldom reformulated and nutritional requirements are not factored to allocate cows to pens. The same 14 pens were used to simulate the implementation of NG using our model, closely following the current farm criteria but also including predicted nutritional requirements (net energy for lactation and metabolizable protein; NEL and MP) and milk yield in an attempt to generate more homogeneous groups of cows for improved diet accuracy. The goal of the simulation study was to implement a continuous weekly system for cows' pen allocation and diet formulation. The predicted MP and NEL requirements from the NG were used to formulate the diets using commercial diet formulation software and the same feed ingredients, feed prices, and other criteria as the current farm diets. Diet MP and NEL densities were adjusted to the nutritional group requirements. Results from the simulation study indicated that the NG model facilitates the implementation of an NG strategy and improves diet accuracy. The theoretical diet cost and predicted nitrogen supply with NG decreased for low-nutritional-requirement groups and increased for high-nutritional-requirement groups compared with current farm groups. The overall average N supply in diets for NG management was 15.14 g/cow per day less than the current farm grouping management. The average diet cost was $3,250/cow per year for current farm management and $3,219/cow per year for NG, which resulted in a theoretical $31/cow per year diet cost savings.


Asunto(s)
Bovinos/fisiología , Industria Lechera/organización & administración , Granjas/organización & administración , Lactancia/fisiología , Alimentación Animal/análisis , Alimentación Animal/economía , Animales , Simulación por Computador , Industria Lechera/métodos , Dieta/veterinaria , Femenino , Leche/metabolismo , Modelos Biológicos , Nitrógeno/metabolismo , Necesidades Nutricionales , Paridad , Embarazo , Wisconsin
17.
Sensors (Basel) ; 20(5)2020 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-32106576

RESUMEN

Meltwater runoff from the Greenland Ice Sheet changes water levels in glacial lakes and can lead to glacial lake outburst flooding (GLOF) events that threaten lives and property. Icebergs produced at Greenland's marine terminating glaciers drift into Baffin Bay and the North Atlantic, where they can threaten shipping and offshore installations. Thus, monitoring glacial lake water levels and the drift of icebergs can enhance safety and aid in the scientific studies of glacial hydrology and iceberg-ocean interactions. The Maker Buoy was originally designed as a low-cost and open source sensor to monitor surface ocean currents. The open source framework, low-cost components, rugged construction and affordable satellite data transmission capabilities make it easy to customize for environmental monitoring in remote areas and under harsh conditions. Here, we present two such Maker Buoy variants that were developed to monitor water level in an ice-infested glacial lake in southern Greenland and to track drifting icebergs and moorings in the Vaigat Strait (Northwest Greenland). We describe the construction of each design variant, methods to access data in the field without an internet connection, and deployments in Greenland in summer 2019. The successful deployments of each Maker Buoy variant suggest that they may also be useful in operational iceberg management strategies and in GLOF monitoring programs.

18.
Sensors (Basel) ; 20(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348733

RESUMEN

The prediction of partial discharges in hydrogenerators depends on data collected by sensors and prediction models based on artificial intelligence. However, forecasting models are trained with a set of historical data that is not automatically updated due to the high cost to collect sensors' data and insufficient real-time data analysis. This article proposes a method to update the forecasting model, aiming to improve its accuracy. The method is based on a distributed data platform with the lambda architecture, which combines real-time and batch processing techniques. The results show that the proposed system enables real-time updates to be made to the forecasting model, allowing partial discharge forecasts to be improved with each update with increasing accuracy.

19.
Ecotoxicol Environ Saf ; 171: 518-522, 2019 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-30641312

RESUMEN

Portable monitors such as MicroPEM can accurately characterize personal exposure of pollutants, which is critical for linking exposure and health effects of air pollution. The RTI (RTI International, Research Triangle Park, NC, USA) MicroPEM V3.2A provides both real-time fine particulate matter (PM2.5) concentrations and time-integrated PM samples collected onto Teflon filters that can be used to correct real-time data as well as allow further lab chemical analysis of species on filters (e.g., metal, black carbon). Due to the optical reflectivity of local PM sources can be very different from available standard reference particles used for calibration by RTI, there is a need for gravimetric correction and validation at each study location. However, assessments of MicroPEM have been limited in locations with severe air pollution, such as Beijing. We selected a variety of weather and air quality conditions, including both clear and hazy days in Beijing, to compare PM2.5 data among MicroPEMs as well as between MicroPEM and other types of samplers. We also compared MicroPEM real-time PM2.5 concentrations with data from nearby fixed-sites. The results show MicroPEM performed well across a wide range of PM2.5 concentrations (6-461 µg/m3) and MicroPEM data, after gravimetric correction, were consistent with those from moderate-volume samplers. Good agreement was also found between real-time data from MicroPEM and fixed-site data. The present study covered a wide range of pollution levels in actual environments and validated the usage of MicroPEM as a PM2.5 monitor in locations with elevated PM2.5 levels.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminación del Aire/análisis , Beijing , Ciudades , Monitoreo del Ambiente , Humanos , Reproducibilidad de los Resultados
20.
Sensors (Basel) ; 19(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614654

RESUMEN

Hyperconnectivity via modern Internet of Things (IoT) technologies has recently driven us to envision "digital twin", in which physical attributes are all embedded, and their latest updates are synchronized on digital spaces in a timely fashion. From the point of view of cyberphysical system (CPS) architectures, the goals of digital twin include providing common programming abstraction on the same level of databases, thereby facilitating seamless integration of real-world physical objects and digital assets at several different system layers. However, the inherent limitations of sampling and observing physical attributes often pose issues related to data uncertainty in practice. In this paper, we propose a learning-based data management scheme where the implementation is layered between sensors attached to physical attributes and domain-specific applications, thereby mitigating the data uncertainty between them. To do so, we present a sensor data management framework, namely D2WIN, which adopts reinforcement learning (RL) techniques to manage the data quality for CPS applications and autonomous systems. To deal with the scale issue incurred by many physical attributes and sensor streams when adopting RL, we propose an action embedding strategy that exploits their distance-based similarity in the physical space coordination. We introduce two embedding methods, i.e., a user-defined function and a generative model, for different conditions. Through experiments, we demonstrate that the D2WIN framework with the action embedding outperforms several known heuristics in terms of achievable data quality under certain resource restrictions. We also test the framework with an autonomous driving simulator, clearly showing its benefit. For example, with only 30% of updates selectively applied by the learned policy, the driving agent maintains its performance about 96.2%, as compared to the ideal condition with full updates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA