Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2304562120, 2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695890

RESUMEN

High-valent iron-oxo species (FeIV=O) has been a long-sought-after oxygen transfer reagent in biological and catalytic chemistry but suffers from a giant challenge in its gentle and selective synthesis. Herein, we propose a new strategy to synthesize surface FeIV=O (≡FeIV=O) on nanoscale zero-valent iron (nZVI) using chlorite (ClO2-) as the oxidant, which possesses an impressive ≡FeIV=O selectivity of 99%. ≡FeIV=O can be energetically formed from the ferrous (FeII) sites on nZVI through heterolytic Cl-O bond dissociation of ClO2- via a synergistic effect between electron-donating surface ≡FeII and proximal electron-withdrawing H2O, where H2O serves as a hydrogen-bond donor to the terminal O atom of the adsorbed ClO2- thereby prompting the polarization and cleavage of Cl-O bond for the oxidation of ≡FeII toward the final formation of ≡FeIV=O. With methyl phenyl sulfoxide (PMS16O) as the probe molecule, the isotopic labeling experiment manifests an exclusive 18O transfer from Cl18O2- to PMS16O18O mediated by ≡FeIV=18O. We then showcase the versatility of ≡FeIV=O as the oxygen transfer reagent in activating the C-H bond of methane for methanol production and facilitating selective triphenylphosphine oxide synthesis with triphenylphosphine. We believe that this new ≡FeIV=O synthesis strategy possesses great potential to drive oxygen transfer for efficient high-value-added chemical synthesis.

2.
Small ; 20(9): e2305556, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37849043

RESUMEN

Metal nanoclusters with precisely modulated structures at the nanoscale give us the opportunity to synthesize and investigate 1D nanomaterials at the atomic level. Herein, it realizes selective 1D growth of building block nanocluster "Au13 Cd2 " into three structurally different nanoclusters: "hand-in-hand" (Au13 Cd2 )2 O, "head-to-head" Au25 , and "shoulder-to-shoulder" Au33 . Detailed studies further reveals the growth mechanism and the growth-related tunable properties. This work provides new hints for the predictable structural transformation of nanoclusters and atomically precise construction of 1D nanomaterials.

3.
Small ; 20(21): e2308823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38102099

RESUMEN

The chemical inertness of CO2 molecules makes their adsorption and activation on a catalyst surface one of the key challenges in recycling CO2 into chemical fuels. However, the traditional template synthesis and chemical modification strategies used to tackle this problem face severe structural collapse and modifier deactivation issues during the often-needed post-processing procedure. Herein, a CO2 self-selective hydrothermal growth strategy is proposed for the synthesis of CeO2 octahedral nanocrystals that participate in strong physicochemical interactions with CO2 molecules. The intense affinity for CO2 molecules persists during successive high-temperature treatments required for Ni deposition. This demonstrates the excellent structural heredity of the CO2 self-selective CeO2 nanocrystals, which leads to an outstanding photothermal CH4 productivity exceeding 9 mmol h-1 mcat -2 and an impressive selectivity of >99%. The excellent performance is correlated with the abundant oxygen vacancies and hydroxyl species on the CeO2 surface, which create many frustrated Lewis-pair active sites, and the strong interaction between Ni and CeO2 that promotes the dissociation of H2 molecules and the spillover of H atoms, thereby greatly benefitting the photothermal CO2 methanation reaction. This self-selective hydrothermal growth strategy represents a new pathway for the development of effective catalysts for targeted chemical reactions.

4.
Chemistry ; 30(40): e202401011, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757219

RESUMEN

The room temperature metal-free cascade electrophilic addition/cyclization/oxidation reactions of (3-phenoxyprop-1-yn-1-yl)benzenes to divergently synthesize various brominated benzopyran derivatives (3-bromo-2H-chromenes, 3-bromo-2H-chromen-2-ols and 3-bromo coumarins) by tuning the amount of Br2 and H2O have been developed. The method exhibited high selectivity, mild reaction conditions, broad substrate scope, high efficiency, and the applicability for derivatization of the brominated products. The importance of the strategies provides a great advantage for selective synthesis of brominated benzopyran derivatives.

5.
Chem Biodivers ; 21(8): e202400719, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38958461

RESUMEN

A versatile and efficient chemo selective synthesis of 4-aryl-3-formyl-2H-chromenes (AFC) was undertaken using Pd-catalyzed cross-coupling conditions. The key oxidative transmetalation was successfully applied to a significant range of substitutions on the chromene moiety and aryl ring in Ar(BOH)3, accommodating both electron-rich and electron-deficient groups. These π-extended scaffolds exhibited green-yellow fluorescence with a large Stokes shift and high quantum yield. Measurement of photophysical properties revealed that the compound with methoxy substitution in the chromene ring, 3t, caused a significant bathochromic shift. The AFCs obtained from this method can be transformed into biologically active 4-aryl-3-iminoantipyrine-2H-chromenes (AAC) through functionalization of the formyl chromenes. The AFCs and AACs with methoxy substitutions (3t and 4e) were docked against AChE inhibition, and compound 4e had the lowest binding energy of -11.20 kcal/mol. DFT calculations performed on representative compounds revealed that compound 4e is more reactive than 3t, which is in accordance with the docking studies.


Asunto(s)
Benzopiranos , Inhibidores de la Colinesterasa , Teoría Funcional de la Densidad , Paladio , Paladio/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Benzopiranos/química , Benzopiranos/síntesis química , Benzopiranos/farmacología , Catálisis , Acetilcolinesterasa/metabolismo , Estructura Molecular , Simulación del Acoplamiento Molecular , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Relación Estructura-Actividad
6.
Angew Chem Int Ed Engl ; 63(13): e202317433, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38086770

RESUMEN

Transition metal-catalyzed annulations of four-membered rings via C-C activation are powerful tools to construct complex fused and bridged ring systems. Despite significant progress in (4+1), (4+2) and (4+4) annulations, the (4+3) annulation remains unexplored. Herein, we develop an asymmetric Rh-catalyzed intramolecular (4+3) annulation of α-arylalkene-tethered benzocyclobutenols for the synthesis of dihydrofuran-annulated dibenzocycloheptanols with two discontinuous chiral carbon centers via a C-C and C-H activation cascade. The reaction features excellent diastereo- and enantioselectivities and 100 % atom economy, and is applicable to late-stage modification of complex molecules.

7.
Angew Chem Int Ed Engl ; 63(26): e202404515, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38637293

RESUMEN

Reductive amination of carbonyl compounds and nitro compounds represents a straightforward way to attain imines or secondary amines, but it is difficult to control the product selectivity. Herein, we report the selective formation of C-N or C=N bond readily manipulated through a solvent-induced hydrogen bond bridge, facilitating the swift photocatalytic reductive coupling process. The reductive-coupling of nitro compounds with carbonyl compounds using formic acid and sodium formate as the hydrogen donors over CdS nanosheets selectively generates imines with C=N bonds in acetonitrile solvent; while taking methanol as solvent, the C=N bonds are readily hydrogenated to the C-N bonds via hydrogen-bonding activation. Experimental and theoretical study reveals that the building of the hydrogen-bond bridge between the hydroxyl groups in methanol and the N atoms of the C=N motifs in imines facilitates the transfer of hydrogen atoms from CdS surface to the N atoms in imines upon illumination, resulting in the rapid hydrogenation of the C=N bonds to give rise to the secondary amines with C-N bonds. Our method provides a simple way to control product selectivity by altering the solvents in photocatalytic organic transformations.

8.
Small ; 19(49): e2304181, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37563822

RESUMEN

Amorphous/crystalline (a/c) hetero-phase structures are considered as a class of efficient electrocatalysts for hydrogen evolution reaction (HER), but it remains a substantial challenge to obtain the specific phase by phase-selective synthesis. In this work, a general route for the preparation of various heterogeneous aerogels (RuB, PtB, PdB, and RhB) consisting of amorphous and crystalline phases is presented through a controlled NaBH4 reduction method. The prepared a/c-RuB aerogel exhibits better HER performance due to their desirable compositional and structural advantages such as more exposed active sites, optimized electronic structure, and interfacial synergistic effects. It requires only a low overpotential of 39 mV to reach a density of 10 mA cm-2 and also exhibits excellent stability. This work provides a new phase-selective synthesis strategy for the design and development of advanced hetero-phase electrocatalysts.

9.
Mol Divers ; 27(2): 873-887, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35718840

RESUMEN

Herein, we developed a convenient and efficient method via protonation of p-toluenesulfonic acid promoted cyclocondensation of o-phenylenediamine and aldehydes for selectively synthesizing 1,2-disubstituted benzimidazoles. This method displayed broad substrate adaptability and afforded the desired products in moderate to excellent yield in short reaction time. The effect of different substituents on the yield was investigated by extending optimum reaction conditions, which was further confirmed by theoretical calculations. It suggested that the surface electrostatic potential of oxygen atom and nitrogen atom on the substrates played important role in the synthesis of 1,2-disubstituted benzimidazoles. Besides, the crystal structure of compound 2t in the orthorhombic space group P2(1)/c was presented. Also, the anti-mycolicibacterium smegmatis (MC2155) activity was evaluated using rifampicin as a positive control. The products (2a, 2b, 2c, 2i, 2j, 2k, 2m) showed good antibacterial activities which were comparable to rifampicin.


Asunto(s)
Bencimidazoles , Rifampin , Bencimidazoles/química , Rifampin/farmacología , Antibacterianos/química , Catálisis
10.
Bioprocess Biosyst Eng ; 46(2): 207-225, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36463332

RESUMEN

Transaminases capable of carrying out chiral selective transamination of 1-(3-methylphenyl)ethan-1-one to (1R)-(3-methylphenyl)ethan-1-amine were screened, and ATA-025 was the best enzyme, while dimethylsulfoxide (10% V/V) was the best co-solvent for said bioconversion. The variables such as enzyme loading, substrate loading, temperature, and pH for development of process displaying maximum conversion with good product formation and higher yield were optimized. The ambient processing conditions were 10% enzyme loading/50 g/L substrate loading/45 °C/pH 8.0, and 5% enzyme loading/36.78 g/L substrate loading/42.66 °C/pH 8.2 displaying maximum conversion 99.01 ± 2.47% and 96.115 ± 1.97%, and 76.93 ± 1.05% and 73.12 ± 1.04% yield with one factor at a time approach and numerical optimization with Box Behnken Design, respectively. In the final optimized reaction, ATA-025 showed the highest 99.22 ± 2.61% conversion, 49.55 g/L product formation, with an actual product recovery of 38.16 g corresponding to a product yield 77.03 ± 1.01% with respect to the product formed after reaction. The purity of recovered product (1R)-(3-methylphenyl)ethan-1-amine formed was ≥ 99% (RP-HPLC), and chiral purity ≥ 98.5% (Chiral-GC), and it was also confirmed and characterized with instrumental methods using boiling point, LC-MS, ATR-FTIR, and 1H NMR. The findings of 'What If' studies performed by investigating timely progress of reaction on gram scale by drastically changing the process parameters revealed a substantial modification in process variables to achieve desired results. (1R)-(3-methylphenyl)ethan-1-amine synthesized by green, facile and novel enzymatic approach with an optimized process could be used for synthesis of different active pharma entities.


Asunto(s)
Aminas , Transaminasas , Aminas/química , Transaminasas/química , Estereoisomerismo , Biocatálisis , Temperatura
11.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770633

RESUMEN

We describe a method to synthesize a new class of hetarylaminomethylidene derivatives of furan-2(3H)-ones. The method uses 5-(4-chlorophenyl)furan-2(3H)-one, triethyl orthoformate, and heterocyclic amines with different ring sizes and heteroatoms under refluxing in absolute isopropyl alcohol. The obtained enamines exist in an equilibrium of E- and Z-isomers, whose configurations relative to the double exocyclic C=C bond were confirmed with a set of NMR spectroscopy data. The E-/Z-equilibrium of the synthesized compounds is affected by the configuration of the intermediate, the volume of its substituents, the site of enolate attack, the presence of intramolecular interactions of amino components, the time of the transformation, the order of mixing of the initial reagents, and the use of polar solvents in the NMR experiment. The advantages of the method are that the reaction time is short, the product yield is high, and product purification is easy.

12.
Small ; 18(20): e2200242, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35434924

RESUMEN

Hydrazine-assisted hybrid water electrolysis is an energy-saving approach to produce high-purity hydrogen, whereas the development of pH-universal bifunctional catalysts encounters a grand challenge. Herein, a phase-selective synthesis of ruthenium phosphide compounds hybrid with carbon forming pancake-like particles (denoted as Rux P/C-PAN, x = 1 or 2) is presented. The obtained RuP/C-PAN exhibits the highest catalytic activity among the control samples, delivering ultralow cell voltages of 0.03, 0.27, and 0.65 V to drive 10 mA cm-2 using hybrid water electrolysis corresponding to pH values of 14, 7, and 0, respectively. Theoretical calculation deciphers that the RuP phase displays optimized free energy for hydrogen adsorption and reduced energy barrier for hydrazine dehydrogenation. This work may not only open up a new avenue in exploring universally compatible catalyst to transcend the limitation on the pH value of electrolytes, but also push forward the development of an energy-saving hydrogen generation technique based on emerging hybrid water electrolysis.


Asunto(s)
Rutenio , Agua , Electrólisis , Hidrazinas , Hidrógeno , Concentración de Iones de Hidrógeno
13.
Angew Chem Int Ed Engl ; 61(44): e202209433, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35965238

RESUMEN

Anisotropy plays a unique role in the structural regulation of metal-organic frameworks (MOFs) and their composites, especially at the micro- and nanoscale. However, there is a lack of a understanding of MOF micro/nanoparticles (MNPs) from the perspective of morphological anisotropy. In this Minireview, recent advances in anisotropic MOF MNPs are summarized, with a focus on how morphological anisotropy leads to innovative structures and modulates properties. First, anisotropic pristine MOF MNPs with diverse morphologies are introduced and classified by their morphology-dependent and morphology-independent anisotropy. Secondly, the anisotropy-enabled site-selective higher-order construction of MOF-based materials is highlighted. Finally, challenges and prospects for anisotropic MOFs are discussed, aiming to provide inspiration for further developments in this interesting research field.


Asunto(s)
Estructuras Metalorgánicas , Nanopartículas , Nanoestructuras , Estructuras Metalorgánicas/química , Anisotropía , Nanoestructuras/química , Nanopartículas/química
14.
Small ; 17(33): e2101616, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34270865

RESUMEN

Phase controllable synthesis of 2D materials is of significance for tuning related electrical, optical, and magnetic properties. Herein, the phase-controllable synthesis of tetragonal and hexagonal FeTe nanoplates has been realized by a rational control of the Fe/Te ratio in a chemical vapor deposition system. Using density functional theory calculations, it has been revealed that with the change of the Fe/Te ratio, the formation energy of active clusters changes, causing the phase-controllable synthesis of FeTe nanoplates. The thickness of the obtained FeTe nanoplates can be tuned down to the 2D limit (2.8 nm for tetragonal and 1.4 nm for hexagonal FeTe). X-ray diffraction pattern, transmission electron microscopy, and high resolution scanning transmission electron microscope analyses exhibit the high crystallinity of the as-grown FeTe nanoplates. The two kinds of FeTe nanoflakes show metallic behavior and good electrical conductivity, featuring 8.44 × 104 S m-1 for 9.8 nm-thick tetragonal FeTe and 5.45 × 104 S m-1 for 7.6 nm-thick hexagonal FeTe. The study provides an efficient and convenient route for tailoring the phases of FeTe nanoplates, which benefits to study phase-sensitive properties, and may pave the way for the synthesis of other multiphase 2D nanosheets with controllable phases.

15.
Small ; 17(7): e2006860, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33480477

RESUMEN

2D metal phosphide loop-sheet heterostructures are controllably synthesized by edge-topological regulation, where Ni2 P nanosheets are edge-confined by the N-doped carbon loop, containing ultrafine NiFeP nanocrystals (denoted as NiFeP@NC/Ni2 P). This loop-sheet feature with lifted-edges prevents the stacking of nanosheets and induces accessible open channels for catalytic site exposure and gas bubble release. Importantly, these NiFeP@NC/Ni2 P hybrids exhibit a remarkable oxygen evolution activity with an overpotential of 223 mV at 20 mA cm-2 and a Tafel slope of 46.1 mV dec-1 , constituting the record-high performance among reported metal phosphide electrocatalysts. The NiFeP@NC/Ni2 P hybrids are also employed as both anode and cathode to achieve an alkaline electrolyzer for overall water splitting, delivering a current density of 10 mA cm-2 with a voltage of 1.57 V, comparable to that of the commercial Pt/C||RuO2 couple (1.56 V). Moreover, a photovoltaic-electrolysis coupling system can as well be effectively established for robust overall water splitting. Evidently, this ingenious protocol would expand the toolbox for designing efficient 2D nanomaterials for practical applications.

16.
Chemistry ; 27(70): 17713-17721, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34664751

RESUMEN

A new route to synthesis of various mono-N-substituted hydrazines and hydrazides by involving in a new C-N bond formation by using N-amino-1,8-naphthalimide as a regenerated precursor was invented. Aniline and phenylhydrazines are reproduced upon reacting these individually with 1,8-naphthalic anhydride followed by hydrazinolysis. The practicality and simplicity of this C-N dihalo alkanes; developed a synthon for bond formation protocol was exemplified to various hydrazines and hydrazides. N-amino-1,8-naphthalimide is suitable synthon for transformation for selective formation of mono-substituted hydrazine and hydrazide derivatives. Those are selective mono-amidation of hydrazine with acid halides; mono-N-substituted hydrazones from aldehydes; synthesis of N-aminoazacycloalkanes from acetohydrazide scaffold and inserted to hydroxy derivatives; distinct synthesis of N,N-dibenzylhydrazines and N-benzylhydrazines from benzyl halides; synthesis of N-amino-amino acids from α-halo esters. Ecofriendly reagent N-amino-1,8-naphthalimide was regenerated with good yields by the hydrazinolysis in all procedures.


Asunto(s)
Hidrazinas , Naftalimidas , Aminoácidos , Ésteres , Hidrazonas
17.
Nano Lett ; 20(2): 1280-1285, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31904971

RESUMEN

Elemental phosphorus nanostructures are notorious for a large number of allotropes, which limits their usefulness as semiconductors. To limit this structural diversity, we synthesize selectively quasi-1D phosphorus nanostructures inside carbon nanotubes (CNTs) that act both as stable templates and nanoreactors. Whereas zigzag phosphorus nanoribbons form preferably in CNTs with an inner diameter exceeding 1.4 nm, a previously unknown square columnar structure of phosphorus is observed to form inside narrower nanotubes. Our findings are supported by electron microscopy and Raman spectroscopy observations as well as ab initio density functional theory calculations. Our computational results suggest that square columnar structures form preferably in CNTs with an inner diameter around 1.0 nm, whereas black phosphorus nanoribbons form preferably inside CNTs with a 4.1 nm inner diameter, with zigzag nanoribbons energetically favored over armchair nanoribbons. Our theoretical predictions agree with the experimental findings.

18.
Int J Mol Sci ; 21(15)2020 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-32731373

RESUMEN

Fe(II)/2-ketoglutarate-dependent dioxygenase (Fe(II)/2-KG DO)-mediated hydroxylation is a critical type of C-H bond functionalization for synthesizing hydroxy amino acids used as pharmaceutical raw materials and precursors. However, DO activity requires 2-ketoglutarate (2-KG), lack of which reduces the efficiency of Fe(II)/2-KG DO-mediated hydroxylation. Here, we conducted multi-enzymatic syntheses of hydroxy amino acids. Using (2s,3r,4s)-4-hydroxyisoleucine (4-HIL) as a model product, we coupled regio- and stereo-selective hydroxylation of l-Ile by the dioxygenase IDO with 2-KG generation from readily available l-Glu by l-glutamate oxidase (LGOX) and catalase (CAT). In the one-pot system, H2O2 significantly inhibited IDO activity and elevated Fe2+ concentrations of severely repressed LGOX. A sequential cascade reaction was preferable to a single-step process as CAT in the former system hydrolyzed H2O2. We obtained 465 mM 4-HIL at 93% yield in the two-step system. Moreover, this process facilitated C-H hydroxylation of several hydrophobic aliphatic amino acids to produce hydroxy amino acids, and C-H sulfoxidation of sulfur-containing l-amino acids to yield l-amino acid sulfoxides. Thus, we constructed an efficient cascade reaction to produce 4-HIL by providing prerequisite 2-KG from cheap and plentiful l-Glu and developed a strategy for creating enzymatic systems catalyzing 2-KG-dependent reactions in sustainable bioprocesses that synthesize other functional compounds.


Asunto(s)
Dioxigenasas/química , Hierro/química , Isoleucina/análogos & derivados , Ácidos Cetoglutáricos/química , Aminoácido Oxidorreductasas/química , Catalasa/química , Sistema Libre de Células/química , Peróxido de Hidrógeno/química , Isoleucina/síntesis química , Isoleucina/química
19.
Chemistry ; 25(6): 1466-1471, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30417449

RESUMEN

Pyridazine derivatives are privileged structures because of their potential biological and optical properties. Traditional synthetic methods usually require acid or base as a catalyst under reflux conditions with reaction times ranging from hours to a few days or require microwave assistance to induce the reaction. Herein, this work presents the accelerated synthesis of a pyridazine derivative, 2-phenyl-2,3-dihydrophthalazine-1,4-dione (PDHP), in electrosprayed microdroplets containing an equimolar mixture of phenyl hydrazine and phthalic anhydride or phthalic acid. This reaction occurred on the submillisecond timescale with good yield (over 90 % with the choice of solvent) without using an external catalyst at room temperature. In sharp contrast to the bulk reaction of obtaining a mixture of two products, the reaction in confined microdroplets yields only the important six-membered heterocyclic product PDHP. Results indicated that surface reactions in microdroplets with low pH values cause selectivity, acceleration, and high yields.

20.
Int J Mol Sci ; 20(14)2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31311103

RESUMEN

Amyrins are the immediate precursors of many pharmaceutically important pentacyclic triterpenoids. Although various amyrin synthases have been identified, little is known about the relationship between protein structures and the constituent and content of the products. IaAS1 and IaAS2 identified from Ilex asprella in our previous work belong to multifunctional oxidosqualene cyclases and can produce α-amyrin and ß-amyrin at different ratios. More than 80% of total production of IaAS1 is α-amyrin; while IaAS2 mainly produces ß-amyrin with a yield of 95%. Here, we present a molecular modeling approach to explore the underlying mechanism for selective synthesis. The structures of IaAS1 and IaAS2 were constructed by homology modeling, and were evaluated by Ramachandran Plot and Verify 3D program. The enzyme-product conformations generated by molecular docking indicated that ASP484 residue plays an important role in the catalytic process; and TRP611 residue of IaAS2 had interaction with ß-amyrin through π-σ interaction. MM/GBSA binding free energy calculations and free energy decomposition after 50 ns molecular dynamics simulations were performed. The binding affinity between the main product and corresponding enzyme was higher than that of the by-product. Conserved amino acid residues such as TRP257; TYR259; PHE47; TRP534; TRP612; and TYR728 for IaAS1 (TRP257; TYR259; PHE473; TRP533; TRP611; and TYR727 for IaAS2) had strong interactions with both products. GLN450 and LYS372 had negative contribution to binding affinity between α-amyrin or ß-amyrin and IaAS1. LYS372 and ARG261 had strong repulsive effects for the binding of α-amyrin with IaAS2. The importance of Lys372 and TRP612 of IaAS1, and Lys372 and TRP611 of IaAS2, for synthesizing amyrins were confirmed by site-directed mutagenesis. The different patterns of residue-product interactions is the cause for the difference in the yields of two products.


Asunto(s)
Transferasas Intramoleculares/química , Simulación del Acoplamiento Molecular , Ácido Oleanólico/análogos & derivados , Triterpenos Pentacíclicos/metabolismo , Proteínas de Plantas/química , Sitios de Unión , Ilex/enzimología , Ilex/metabolismo , Transferasas Intramoleculares/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/metabolismo , Triterpenos Pentacíclicos/química , Proteínas de Plantas/metabolismo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA