Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
New Phytol ; 242(4): 1704-1716, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38273466

RESUMEN

Root-associated fungi (RAF) and root traits regulate plant acquisition of nitrogen (N), which is limiting to growth in Arctic ecosystems. With anthropogenic warming, a new N source from thawing permafrost has the potential to change vegetation composition and increase productivity, influencing climate feedbacks. Yet, the impact of warming on tundra plant root traits, RAF, and access to permafrost N is uncertain. We investigated the relationships between RAF, species-specific root traits, and uptake of N from the permafrost boundary by tundra plants experimentally warmed for nearly three decades at Toolik Lake, Alaska. Warming increased acquisitive root traits of nonmycorrhizal and mycorrhizal plants. RAF community composition of ericoid (ERM) but not ectomycorrhizal (ECM) shrubs was impacted by warming and correlated with root traits. RAF taxa in the dark septate endophyte, ERM, and ECM guilds strongly correlated with permafrost N uptake for ECM and ERM shrubs. Overall, a greater proportion of variation in permafrost N uptake was related to root traits than RAF. Our findings suggest that warming Arctic ecosystems will result in interactions between roots, RAF, and newly thawed permafrost that may strongly impact feedbacks to the climate system through mechanisms of carbon and N cycling.


Asunto(s)
Micorrizas , Nitrógeno , Hielos Perennes , Raíces de Plantas , Tundra , Nitrógeno/metabolismo , Raíces de Plantas/microbiología , Hielos Perennes/microbiología , Micorrizas/fisiología , Hongos/fisiología , Carácter Cuantitativo Heredable , Temperatura , Especificidad de la Especie
2.
Glob Chang Biol ; 30(3): e17245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511487

RESUMEN

The seasonal coupling of plant and soil microbial nutrient demands is crucial for efficient ecosystem nutrient cycling and plant production, especially in strongly seasonal alpine ecosystems. Yet, how these seasonal nutrient cycling processes are modified by climate change and what the consequences are for nutrient loss and retention in alpine ecosystems remain unclear. Here, we explored how two pervasive climate change factors, reduced snow cover and shrub expansion, interactively modify the seasonal coupling of plant and soil microbial nitrogen (N) cycling in alpine grasslands, which are warming at double the rate of the global average. We found that the combination of reduced snow cover and shrub expansion disrupted the seasonal coupling of plant and soil N-cycling, with pronounced effects in spring (shortly after snow melt) and autumn (at the onset of plant senescence). In combination, both climate change factors decreased plant organic N-uptake by 70% and 82%, soil microbial biomass N by 19% and 38% and increased soil denitrifier abundances by 253% and 136% in spring and autumn, respectively. Shrub expansion also individually modified the seasonality of soil microbial community composition and stoichiometry towards more N-limited conditions and slower nutrient cycling in spring and autumn. In winter, snow removal markedly reduced the fungal:bacterial biomass ratio, soil N pools and shifted bacterial community composition. Taken together, our findings suggest that interactions between climate change factors can disrupt the temporal coupling of plant and soil microbial N-cycling processes in alpine grasslands. This could diminish the capacity of these globally widespread alpine ecosystems to retain N and support plant productivity under future climate change.


Asunto(s)
Ecosistema , Suelo , Cambio Climático , Estaciones del Año , Microbiología del Suelo , Nutrientes
3.
J Anim Ecol ; 92(6): 1256-1266, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37150880

RESUMEN

Inferences about the mechanisms of distributional change are often made from simple assessments of variation in the geographical positions of populations. However, direct assessments of species' responses to local habitat change may be necessary for proper understanding of the drivers of distributional dynamics. Amplified climate warming is inducing cascading impacts in boreal-tundra regions including the expansion of conifers and deciduous shrubs (shrubs). In Denali National Park (Denali), Alaska, passerine birds are exhibiting rapid upslope shifts in distribution but the relative roles of conifer and shrub (woody vegetation) expansion in driving these shifts are unknown. Without directly assessing passerine-vegetation dynamics, the assumption has been that the observed upslope shifts are indicative of shrub-adapted passerines tracking the upslope expansion of shrubs. Here, we jointly investigate the processes of conifer and shrub expansion and their relationship to changes in passerine abundance in Denali. We used a remotely sensed vegetation cover timeseries (1985-2020) to assess the topographic and edaphic correlates of conifer and shrub expansion. We then assessed the impacts of changes in shrub and conifer cover on the relative abundance of 12 passerine species (1995-2020). Shrub and conifer colonization rates were highest at intermediate elevations near treeline. However, forest- and shrub-adapted passerines differed in terms of the location in which their response was concentrated relative to treeline. The population growth rates of forest-adapted passerines exhibited stronger effects of woody vegetation expansion at sites that were initially above treeline (IAT). In contrast, the population growth rates of shrub-adapted passerines exhibited the negative effects of conifer expansion together with the positive effects of shrub expansion at initially below treeline sites. However, they showed a weak response to woody vegetation expansion at sites that were IAT. Below treeline conifer infilling appears to be pushing the elevational distributions of shrub-adapted passerines upslope rather than these species following the pull of modest shrub expansion above treeline, as previously assumed. Overall, our findings illustrate the need for explicitly accommodating heterogeneity in habitat change at small spatial scales to properly view the distributional response, particularly when habitat change is concentrated at ecotones.


Asunto(s)
Passeriformes , Árboles , Animales , Ecosistema , Bosques , Tundra , Cambio Climático
4.
New Phytol ; 234(6): 2044-2056, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34719786

RESUMEN

Bacterial communities form the basis of biogeochemical processes and determine plant growth and health. Mosses harbour diverse bacterial communities that are involved in nitrogen fixation and carbon cycling. Global climate change is causing changes in aboveground plant biomass and shifting species composition in the Arctic, but little is known about the response of moss microbiomes in these environments. Here, we studied the total and potentially active bacterial communities associated with Racomitrium lanuginosum in response to a 20-yr in situ warming in an Icelandic heathland. We evaluated the effect of warming and warming-induced shrub expansion on the moss bacterial community composition and diversity, and nifH gene abundance. Warming changed both the total and the potentially active bacterial community structure, while litter abundance only affected the total bacterial community structure. The abundance of nifH genes was negatively affected by litter abundance. We also found shifts in the potentially nitrogen-fixing community, with Nostoc decreasing and noncyanobacterial diazotrophs increasing in relative abundance. Our data suggest that the moss microbial community and potentially nitrogen fixing taxa will be sensitive to future warming, partly via changes in litter and shrub abundance.


Asunto(s)
Briófitas , Microbiota , Regiones Árticas , Bacterias/genética , Briófitas/genética , Microbiota/genética , Nitrógeno , Fijación del Nitrógeno/genética , Tundra
5.
Glob Chang Biol ; 28(24): 7296-7312, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36083034

RESUMEN

Climate warming is inducing widespread vegetation changes in Arctic tundra ecosystems, with the potential to alter carbon and nutrient dynamics between vegetation and soils. Yet, we lack a detailed understanding of how variation in vegetation and topography influences fine-scale temperatures ("microclimate") that mediate these dynamics, and at what resolution vegetation needs to be sampled to capture these effects. We monitored microclimate at 90 plots across a tundra landscape in western Greenland. Our stratified random study design covered gradients of topography and vegetation, while nested plots (0.8-100 m2 ) enabled comparison across different sampling resolutions. We used Bayesian mixed-effect models to quantify the direct influence of plot-level topography, moisture and vegetation on soil, near-surface and canopy-level temperatures (-6, 2, and 15 cm). During the growing season, colder soils were predicted by shrub cover (-0.24°C per 10% increase), bryophyte cover (-0.35°C per 10% increase), and vegetation height (-0.17°C per 1 cm increase). The same three factors also predicted the magnitude of differences between soil and above-ground temperatures, indicating warmer soils at low cover/height, but colder soils under closed/taller canopies. These findings were consistent across plot sizes, suggesting that spatial predictions of microclimate may be possible at the operational scales of satellite products. During winter, snow cover (+0.75°C per 10 snow-covered days) was the key predictor of soil microclimate. Topography and moisture explained little variation in the measured temperatures. Our results not only underline the close connection of vegetation and snow with microclimate in the Arctic tundra but also point to the need for more studies disentangling their complex interplay across tundra environments and seasons. Future shifts in vegetation cover and height will likely mediate the impact of atmospheric warming on the tundra soil environment, with potential implications for below-ground organisms and ecosystem functioning.


Asunto(s)
Ecosistema , Nieve , Estaciones del Año , Teorema de Bayes , Tundra , Suelo , Regiones Árticas , Cambio Climático
6.
New Phytol ; 231(1): 94-107, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33774820

RESUMEN

Climate warming is driving tundra shrub expansion with implications for ecosystem function and regional climate. Understanding associations between shrub ecophysiological function, distribution and environment is necessary for predicting consequences of expansion. We evaluated the role of topographic gradients on upland shrub productivity to understand potential constraints on shrub expansion. At a low arctic tundra site near Inuvik, Northwest Territories, Canada, we measured sap flow, stem water potential and productivity-related functional traits in green alder, and environmental predictors (water and nutrient availability and seasonal thaw depth) across a toposequence in alder patches. Seasonal thaw reduced stem sap flow whereas topographic position predicted stem water potential and productivity-related functional traits. Upslope shrubs were more water-limited than those downslope. Shrubs in drainage channels had traits associated with greater productivity than those on the tops of slopes. The effect of thaw depth on sap flow has implications for seasonal water-use patterns and warming impacts on tundra ecohydrology. Topographic variation in functional traits corresponds with observed spatial patterns of tundra shrub expansion along floodplains and concave hillslopes rather than in upland areas. Green alder is expanding rapidly across the low arctic tundra in northwestern North America; thus, anticipating the implications of its expansion is essential for predicting tundra function.


Asunto(s)
Ecosistema , Agua , Regiones Árticas , Canadá , Estaciones del Año , Tundra
7.
Glob Chang Biol ; 27(3): 652-663, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33216446

RESUMEN

The expansion of shrubs across the Arctic tundra may fundamentally modify land-atmosphere interactions. However, it remains unclear how shrub expansion pattern is linked with key environmental drivers, such as climate change and fire disturbance. Here we used 40+ years of high-resolution (~1.0 m) aerial and satellite imagery to estimate shrub-cover change in 114 study sites across four burned and unburned upland (ice-poor) and lowland (ice-rich) tundra ecosystems in northern Alaska. Validated with data from four additional upland and lowland tundra fires, our results reveal that summer precipitation was the most important climatic driver (r = 0.67, p < 0.001), responsible for 30.8% of shrub expansion in the upland tundra between 1971 and 2016. Shrub expansion in the uplands was largely enhanced by wildfire (p < 0.001) and it exhibited positive correlation with fire severity (r = 0.83, p < 0.001). Three decades after fire disturbance, the upland shrub cover increased by 1077.2 ± 83.6 m2  ha-1 , ~7 times the amount identified in adjacent unburned upland tundra (155.1 ± 55.4 m2  ha-1 ). In contrast, shrub cover markedly decreased in lowland tundra after fire disturbance, which triggered thermokarst-associated water impounding and resulted in 52.4% loss of shrub cover over three decades. No correlation was found between lowland shrub cover with fire severity (r = 0.01). Mean summer air temperature (MSAT) was the principal factor driving lowland shrub-cover dynamics between 1951 and 2007. Warmer MSAT facilitated shrub expansion in unburned lowlands (r = 0.78, p < 0.001), but accelerated shrub-cover losses in burned lowlands (r = -0.82, p < 0.001). These results highlight divergent pathways of shrub-cover responses to fire disturbance and climate change, depending on near-surface permafrost and drainage conditions. Our study offers new insights into the land-atmosphere interactions as climate warming and burning intensify in high latitudes.


Asunto(s)
Hielos Perennes , Incendios Forestales , Alaska , Regiones Árticas , Cambio Climático , Ecosistema , Tundra
8.
Ann Bot ; 128(4): 407-418, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-33714989

RESUMEN

BACKGROUND AND AIMS: In tundra systems, soil-borne lichens are often the dominant groundcover organisms, and act to buffer microclimate extremes within or at the surface of the soil. However, shrubs are currently expanding across tundra systems, potentially causing major shifts in the microclimate landscape. METHODS: Here, we compared soil temperature and moisture underneath the dwarf birch Betula nana and seven abundant lichen species in sub-alpine Norway. We also examined mixtures of lichens and dwarf birch - an intermediate phase of shrubification - and measured several functional traits relating to microclimate. KEY RESULTS: We found that all lichen species strongly buffered the daily temperature range, on average reducing maximum temperatures by 6.9 °C (± 0.7 s.d.) and increasing minimum temperatures by 1.0 °C (± 0.2 s.d.) during summer. The dwarf birch had a much weaker effect (maximum reduced by 2.4 ±â€…5.0 °C and minimum raised by 0.2 ± 0.9 °C). In species mixtures, the lichen effect predominated, affecting temperature extremes by more than would be expected from their abundance. Lichens also tended to reduce soil moisture, which could be explained by their ability to intercept rainfall. Our trait measurements under laboratory conditions suggest that, on average, lichens can completely absorb a 4.09 mm (± 1.81 s.d.) rainfall event, which might be an underappreciated part of lichen-vascular plant competition in areas where summer rainfall events are small. CONCLUSIONS: In the context of shrubification across tundra systems, our findings suggest that lichens will continue to have a large effect on microclimate until they are fully excluded, at which point microclimate extremes will increase greatly.


Asunto(s)
Betula , Líquenes , Microclima , Suelo , Tundra
9.
New Phytol ; 227(6): 1818-1830, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32248524

RESUMEN

In arctic ecosystems, climate change has increased plant productivity. As arctic carbon (C) stocks predominantly are located belowground, the effects of greater plant productivity on soil C storage will significantly determine the net sink/source potential of these ecosystems, but vegetation controls on soil CO2 efflux remain poorly resolved. In order to identify the role of canopy-forming species in belowground C dynamics, we conducted a girdling experiment with plots distributed across 1 km2 of treeline birch (Betula pubescens) forest and willow (Salix lapponum) patches in northern Sweden and quantified the contribution of canopy vegetation to soil CO2 fluxes and belowground productivity. Girdling birches reduced total soil CO2 efflux in the peak growing season by 53%, which is double the expected amount, given that trees contribute only half of the total leaf area in the forest. Root and mycorrhizal mycelial production also decreased substantially. At peak season, willow shrubs contributed 38% to soil CO2 efflux in their patches. Our findings indicate that C, recently fixed by trees and tall shrubs, makes a substantial contribution to soil respiration. It is critically important that these processes are taken into consideration in the context of a greening arctic because productivity and ecosystem C sequestration are not synonymous.


Asunto(s)
Ecosistema , Suelo , Regiones Árticas , Dióxido de Carbono , Rizosfera , Suecia
10.
Glob Chang Biol ; 26(7): 3809-3820, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32243648

RESUMEN

Habitat connectivity is a key factor influencing species range dynamics. Rapid warming in the Arctic is leading to widespread heterogeneous shrub expansion, but impacts of these habitat changes on range dynamics for large herbivores are not well understood. We use the climate-shrub-moose system of northern Alaska as a case study to examine how shrub habitat will respond to predicted future warming, and how these changes may impact habitat connectivity and the distribution of moose (Alces alces). We used a 19 year moose location dataset, a 568 km transect of field shrub sampling, and forecasted warming scenarios with regional downscaling to map current and projected shrub habitat for moose on the North Slope of Alaska. The tall-shrub habitat for moose exhibited a dendritic spatial configuration correlated with river corridor networks and mean July temperature. Warming scenarios predict that moose habitat will more than double by 2099. Forecasted warming is predicted to increase the spatial cohesion of the habitat network that diminishes effects of fragmentation, which improves overall habitat quality and likely expands the range of moose. These findings demonstrate how climate change may increase habitat connectivity and alter the distributions of shrub herbivores in the Arctic, including creation of novel communities and ecosystems.


Asunto(s)
Ecosistema , Herbivoria , Alaska , Animales , Regiones Árticas , Cambio Climático
11.
Am J Bot ; 107(4): 607-617, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32239494

RESUMEN

PREMISE: Mountain ecosystems are particularly sensitive to climate change. However, only a very small number of studies exist so far using annually resolved records of alpine plant growth spanning the past century. Here we aimed to identify the effects of heat waves and drought, driven by global warming, on annual radial growth of Rhododendron ferrugineum. METHODS: We constructed two century-long shrub ring-width chronologies from R. ferrugineum individuals on two adjacent, north- and west-facing slopes in the southern French Alps. We analyzed available meteorological data (temperature, precipitation and drought) over the period 1960-2016. Climate-growth relationships were evaluated using bootstrapped correlation functions and structural equation models to identify the effects of rising temperature on shrub growth. RESULTS: Analysis of meteorological variables during 1960-2016 revealed a shift in the late 1980s when heat waves and drought increased in intensity and frequency. In response to these extreme climate events, shrubs have experienced significant changes in their main limiting factors. Between 1960 and 1988, radial growth on both slopes was strongly controlled by the sum of growing degree days during the snow free period. Between 1989 and 2016, August temperature and drought have emerged as the most important. CONCLUSIONS: Increasing air temperatures have caused a shift in the growth response of shrubs to climate. The recently observed negative effect of high summer temperature and drought on shrub growth can, however, be buffered by topographic variability, supporting the macro- and microrefugia hypotheses.


Asunto(s)
Sequías , Calor , Cambio Climático , Ecosistema , Temperatura
12.
Glob Chang Biol ; 25(3): 1171-1189, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29808518

RESUMEN

Contemporary climate change in Alaska has resulted in amplified rates of press and pulse disturbances that drive ecosystem change with significant consequences for socio-environmental systems. Despite the vulnerability of Arctic and boreal landscapes to change, little has been done to characterize landscape change and associated drivers across northern high-latitude ecosystems. Here we characterize the historical sensitivity of Alaska's ecosystems to environmental change and anthropogenic disturbances using expert knowledge, remote sensing data, and spatiotemporal analyses and modeling. Time-series analysis of moderate-and high-resolution imagery was used to characterize land- and water-surface dynamics across Alaska. Some 430,000 interpretations of ecological and geomorphological change were made using historical air photos and satellite imagery, and corroborate land-surface greening, browning, and wetness/moisture trend parameters derived from peak-growing season Landsat imagery acquired from 1984 to 2015. The time series of change metrics, together with climatic data and maps of landscape characteristics, were incorporated into a modeling framework for mapping and understanding of drivers of change throughout Alaska. According to our analysis, approximately 13% (~174,000 ± 8700 km2 ) of Alaska has experienced directional change in the last 32 years (±95% confidence intervals). At the ecoregions level, substantial increases in remotely sensed vegetation productivity were most pronounced in western and northern foothills of Alaska, which is explained by vegetation growth associated with increasing air temperatures. Significant browning trends were largely the result of recent wildfires in interior Alaska, but browning trends are also driven by increases in evaporative demand and surface-water gains that have predominately occurred over warming permafrost landscapes. Increased rates of photosynthetic activity are associated with stabilization and recovery processes following wildfire, timber harvesting, insect damage, thermokarst, glacial retreat, and lake infilling and drainage events. Our results fill a critical gap in the understanding of historical and potential future trajectories of change in northern high-latitude regions.


Asunto(s)
Cambio Climático , Ecosistema , Monitoreo del Ambiente/métodos , Tecnología de Sensores Remotos , Alaska , Regiones Árticas , Hielos Perennes , Desarrollo de la Planta , Análisis Espacio-Temporal , Temperatura
13.
Mol Ecol ; 27(10): 2461-2476, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29675967

RESUMEN

Global climate and land use change are altering plant and soil microbial communities worldwide, particularly in arctic and alpine biomes where warming is accelerated. The widespread expansion of woody shrubs into historically herbaceous alpine plant zones is likely to interact with climate to affect soil microbial community structure and function; however, our understanding of alpine soil ecology remains limited. This study aimed to (i) determine whether the diversity and community composition of soil fungi vary across elevation gradients and to (ii) assess the impact of woody shrub expansion on these patterns. In the White Mountains of California, sagebrush (Artemisia rothrockii) shrubs have been expanding upwards into alpine areas since 1960. In this study, we combined observational field data with a manipulative shrub removal experiment along an elevation transect of alpine shrub expansion. We utilized next-generation sequencing of the ITS1 region for fungi and joint distribution modelling to tease apart effects of the environment and intracommunity interactions on soil fungi. We found that soil fungal diversity declines and community composition changes with increasing elevation. Both abiotic factors (primarily soil moisture and soil organic C) and woody sagebrush range expansion had significant effects on these patterns. However, fungal diversity and relative abundance had high spatial variation, overwhelming the predictive power of vegetation type, elevation and abiotic soil conditions at the landscape scale. Finally, we observed positive and negative associations among fungal taxa which may be important in structuring community responses to global change.


Asunto(s)
Artemisia/fisiología , Hongos/genética , Micobioma , Microbiología del Suelo , Altitud , Artemisia/genética , Biodiversidad , California , Cambio Climático , ADN de Hongos/química , Variación Genética , Análisis de Secuencia de ADN
14.
Glob Chang Biol ; 24(10): 4478-4488, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29845698

RESUMEN

Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2 ) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.


Asunto(s)
Roedores/fisiología , Alaska , Animales , Regiones Árticas , Biodiversidad , Ecosistema , Estaciones del Año , Nieve , Temperatura , Tundra
15.
BMC Ecol ; 18(1): 29, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30165832

RESUMEN

BACKGROUND: Shrub cover in arctic and alpine ecosystems has increased in recent decades, and is predicted to further increase with climate change. Changes in shrub abundance may alter ecosystem carbon (C) sequestration and storage, with potential positive feedback on global C cycling. Small and large herbivores may reduce shrub expansion and thereby counteract the positive feedback on C cycling, but herbivore pressures have also changed in the alpine-arctic tundra; the increased shrub cover together with changes in herbivore pressure is leading to unpredictable changes in carbon sequestration and storage. In this study we investigate the importance of herbivory and shrub introduction for carbon sequestration in the short term. We measured standing biomass and daytime mid-growing season carbon fluxes in plots in a full factorial design where we excluded small and large mammalian herbivores and introduced Salix by planting Salix transplants. We used three study sites: one Empetrum-dominated heath, one herb- and cryptogam-dominated meadow, and one Salix-dominated shrub community in the low-alpine zone of the Dovre Mountains, Central Norway. RESULTS: After 2 years, significant treatment effects were recorded in the heath community, but not in the meadow and shrub communities. In the heath community cessation of herbivory increased standing biomass due to increased biomass of dwarf shrubs. Cessation of herbivory also reduced biomass of bryophytes and ecosystem respiration (ER). Except for an increase in biomass of deciduous shrubs caused by the Salix introduction, the only effect of Salix introduction was an increase in biomass of graminoids in the heath. CONCLUSIONS: Our short-term study demonstrated that herbivore exclusion had small but still significant effects on heath vegetation, whereas such effects were not apparent in the herb-and cryptogam-dominated meadow and the Salix-dominated shrub community. Following the treatments over more years is needed to estimate the long-term effects on community structure and the consequences for C sequestration in the three plant communities. Such data are important for predicting the impact of shrub expansion on C budgets from alpine regions.


Asunto(s)
Secuestro de Carbono , Herbivoria , Árboles/fisiología , Tundra , Biomasa , Ciclo del Carbono , Cambio Climático , Noruega , Fenómenos Fisiológicos de las Plantas
16.
Glob Chang Biol ; 23(4): 1552-1563, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27391280

RESUMEN

Nitrogen (N) fixation in moss-associated cyanobacteria is one of the main sources of available N for N-limited ecosystems such as subarctic tundra. Yet, N2 fixation in mosses is strongly influenced by soil moisture and temperature. Thus, temporal scaling up of low-frequency in situ measurements to several weeks, months or even the entire growing season without taking into account changes in abiotic conditions cannot capture the variation in moss-associated N2 fixation. We therefore aimed to estimate moss-associated N2 fixation throughout the snow-free period in subarctic tundra in field experiments simulating climate change: willow (Salix myrsinifolia) and birch (Betula pubescens spp. tortuosa) litter addition, and warming. To achieve this, we established relationships between measured in situ N2 fixation rates and soil moisture and soil temperature and used high-resolution measurements of soil moisture and soil temperature (hourly from May to October) to model N2 fixation. The modelled N2 fixation rates were highest in the warmed (2.8 ± 0.3 kg N ha-1 ) and birch litter addition plots (2.8 ± 0.2 kg N ha-1 ), and lowest in the plots receiving willow litter (1.6 ± 0.2 kg N ha-1 ). The control plots had intermediate rates (2.2 ± 0.2 kg N ha-1 ). Further, N2 fixation was highest during the summer in the warmed plots, but was lowest in the litter addition plots during the same period. The temperature and moisture dependence of N2 fixation was different between the climate change treatments, indicating a shift in the N2 fixer community. Our findings, using a combined empirical and modelling approach, suggest that a longer snow-free period and increased temperatures in a future climate will likely lead to higher N2 fixation rates in mosses. Yet, the consequences of increased litter fall on moss-associated N2 fixation due to shrub expansion in the Arctic will depend on the shrub species' litter traits.


Asunto(s)
Ecosistema , Fijación del Nitrógeno , Tundra , Regiones Árticas , Betula , Cambio Climático , Salix , Nieve
17.
Glob Chang Biol ; 23(10): 4294-4302, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28267242

RESUMEN

The circumpolar expansion of woody deciduous shrubs in arctic tundra alters key ecosystem properties including carbon balance and hydrology. However, landscape-scale patterns and drivers of shrub expansion remain poorly understood, inhibiting accurate incorporation of shrub effects into climate models. Here, we use dendroecology to elucidate the role of soil moisture in modifying the relationship between climate and growth for a dominant deciduous shrub, Salix pulchra, on the North Slope of Alaska, USA. We improve upon previous modeling approaches by using ecological theory to guide model selection for the relationship between climate and shrub growth. Finally, we present novel dendroecology-based estimates of shrub biomass change under a future climate regime, made possible by recently developed shrub allometry models. We find that S. pulchra growth has responded positively to mean June temperature over the past 2.5 decades at both a dry upland tundra site and an adjacent mesic riparian site. For the upland site, including a negative second-order term in the climate-growth model significantly improved explanatory power, matching theoretical predictions of diminishing growth returns to increasing temperature. A first-order linear model fit best at the riparian site, indicating consistent growth increases in response to sustained warming, possibly due to lack of temperature-induced moisture limitation in mesic habitats. These contrasting results indicate that S. pulchra in mesic habitats may respond positively to a wider range of temperature increase than S. pulchra in dry habitats. Lastly, we estimate that a 2°C increase in current mean June temperature will yield a 19% increase in aboveground S. pulchra biomass at the upland site and a 36% increase at the riparian site. Our method of biomass estimation provides an important link toward incorporating dendroecology data into coupled vegetation and climate models.


Asunto(s)
Ecosistema , Desarrollo de la Planta , Tundra , Alaska , Regiones Árticas , Suelo , Agua
18.
Glob Chang Biol ; 23(9): 3895-3907, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28276177

RESUMEN

Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two.


Asunto(s)
Biomasa , Cambio Climático , Herbivoria , Tundra , Regiones Árticas , Ecosistema , Federación de Rusia
19.
Glob Chang Biol ; 23(11): 5006-5020, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28464494

RESUMEN

Rapid climate warming has resulted in shrub expansion, mainly of erect deciduous shrubs in the Low Arctic, but the more extreme, sparsely vegetated, cold and dry High Arctic is generally considered to remain resistant to such shrub expansion in the next decades. Dwarf shrub dendrochronology may reveal climatological causes of past changes in growth, but is hindered at many High Arctic sites by short and fragmented instrumental climate records. Moreover, only few High Arctic shrub chronologies cover the recent decade of substantial warming. This study investigated the climatic causes of growth variability of the evergreen dwarf shrub Cassiope tetragona between 1927 and 2012 in the northernmost polar desert at 83°N in North Greenland. We analysed climate-growth relationships over the period with available instrumental data (1950-2012) between a 102-year-long C. tetragona shoot length chronology and instrumental climate records from the three nearest meteorological stations, gridded climate data, and North Atlantic Oscillation (NAO) and Arctic Oscillation (AO) indices. July extreme maximum temperatures (JulTemx ), as measured at Alert, Canada, June NAO, and previous October AO, together explained 41% of the observed variance in annual C. tetragona growth and likely represent in situ summer temperatures. JulTemx explained 27% and was reconstructed back to 1927. The reconstruction showed relatively high growing season temperatures in the early to mid-twentieth century, as well as warming in recent decades. The rapid growth increase in C. tetragona shrubs in response to recent High Arctic summer warming shows that recent and future warming might promote an expansion of this evergreen dwarf shrub, mainly through densification of existing shrub patches, at High Arctic sites with sufficient winter snow cover and ample water supply during summer from melting snow and ice as well as thawing permafrost, contrasting earlier notions of limited shrub growth sensitivity to summer warming in the High Arctic.


Asunto(s)
Cambio Climático , Ericaceae/crecimiento & desarrollo , Calor , Groenlandia , Estaciones del Año
20.
Glob Chang Biol ; 22(1): 208-19, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26527375

RESUMEN

Warming during the 20th century has changed the arctic landscape, including aspects of the hydrology, vegetation, permafrost, and glaciers, but effects on wildlife have been difficult to detect. The primary aim of this study is to examine the physical and biological processes contributing to the expanded riparian habitat and range of snowshoe hares (Lepus americanus) in northern Alaska. We explore linkages between components of the riparian ecosystem in Arctic Alaska since the 1960s, including seasonality of stream flow, air temperature, floodplain shrub habitat, and snowshoe hare distributions. Our analyses show that the peak discharge during spring snowmelt has occurred on average 3.4 days per decade earlier over the last 30 years and has contributed to a longer growing season in floodplain ecosystems. We use empirical correlations between cumulative summer warmth and riparian shrub height to reconstruct annual changes in shrub height from the 1960s to the present. The effects of longer and warmer growing seasons are estimated to have stimulated a 78% increase in the height of riparian shrubs. Earlier spring discharge and the estimated increase in riparian shrub height are consistent with observed riparian shrub expansion in the region. Our browsing measurements show that snowshoe hares require a mean riparian shrub height of at least 1.24-1.36 m, a threshold which our hindcasting indicates was met between 1964 and 1989. This generally coincides with observational evidence we present suggesting that snowshoe hares became established in 1977 or 1978. Warming and expanded shrub habitat is the most plausible reason for recent snowshoe hare establishment in Arctic Alaska. The establishment of snowshoe hares and other shrub herbivores in the Arctic in response to increasing shrub habitat is a contrasting terrestrial counterpart to the decline in marine mammals reliant on decreasing sea ice.


Asunto(s)
Cambio Climático , Ecosistema , Liebres , Ríos , Alaska , Distribución Animal , Animales , Regiones Árticas , Herbivoria , Plantas , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA