RESUMEN
Bright and colorful fluorescent polymers are ideal materials for a variety of applications. Although polymers could be made fluorescent by physical doping or chemical binding of fluorescent units, it is a great challenge to get colorful and highly emissive polymers with a single fluorophore. Here the development of a general and facile method to synthesize ultrabright and colorful polymers using a single twisted intramolecular charge transfer (TICT) probe is reported. By incorporating polymerizable, highly fluorescent, and environmental sensitive TICT probe, a series of colorful acrylic polymers (emission from 481 to 543 nm) with almost 100% fluorescence quantum yields are prepared. Like the solvatochromic effect, functional groups within side chains of acrylic polymers (including alkyl chain, tetrahydrofurfuryl group, and hydroxyl group) provide varied environmental polarity for the incorporated fluorophore, resulting in a series of colorful polymeric materials. Benefiting from the excellent photophysical properties, the polymers show great potential in encryption, cultural relics protection, white light-emitting diode bulb making, and fingerprint identification.
Asunto(s)
Colorantes Fluorescentes , Polímeros , Fluorescencia , Colorantes Fluorescentes/químicaRESUMEN
Following previous studies, the ternary mixture of methanol/formamide/acetonitrile (MeOH/Formamide/MeCN) was studied using the UV-Vis absorption spectra at 298.15 K with a set of five probes, 4-nitroaniline, 4-nitroanisole, 4-nitrophenol, N,N-dimethyl-4-nitroaniline and 2,6-diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolate (Reichardt betaine dye), for a total of 22 mole ternary fractions. In addition, nine mole fractions of the underling binary mixtures, MeOH/Formamide and Formamide/MeCN were also tested. Spectroscopic results were used to model the preferential solvation order for each probe in the mixtures. The Kamlet-Taft solvatochromic solvent parameters, α, ß, and π*, were also computed through the use of the solvatochromic shifts of the five probe indicators. Moreover, discrepancies in the spectroscopic behavior of 4-nitrophenol in formamide-rich mixtures were observed and analyzed.
RESUMEN
Solvatochromic probes are suitable tools for quantitative characterization of protein-membrane interactions. Based on diverse fluorophores these probes have different fluorescent properties and therefore demonstrate different responses when applied for sensing the interactions of biomolecules. Surprisingly, to the best of our knowledge, no systematic comparison of the sensitivities of solvatochromic dyes for monitoring protein-membrane interactions was described. Hence, a rational choice of an optimal environmentally sensitive probe for such experiments is usually not a straightforward task. In this work we developed a series of thiol-reactive fluorescent probes based on the fluorophores with high sensitivity to their environment and compared them with two widely used DNS and DMN probes. We investigated the responses of these probes to the interaction of probe-labeled presynaptic protein α-synuclein with lipid membranes. We observed that newly synthesized probes based on fluorene and chromone dyes, which combine the strongest brightness and significant changes of fluorescence intensity, demonstrated the highest sensitivity to interaction of α-synuclein with lipid membranes. They are especially beneficial for sensing in scattering media such as solutions of lipid vesicles. We show that the described probes permit quantitative measurements of α-synuclein binding to lipid membranes at low nanomolar concentrations. We developed a detailed protocol for measuring Kd and binding stoichiometry for interaction of soluble peripheral proteins with membranes based on the response of the environmentally sensitive fluorescent probes. We applied this protocol for quantification of the affinity of α-synuclein to anionic membranes and found that it is substantially higher than it was earlier reported.
Asunto(s)
Colorantes Fluorescentes , Membrana Dobles de Lípidos/química , alfa-Sinucleína/química , Luz , Membrana Dobles de Lípidos/metabolismo , Unión Proteica , Dispersión de Radiación , alfa-Sinucleína/metabolismoRESUMEN
Three synthesized compounds, 4-(4-nitrostyryl)phenol, 2,6-dibromo-4-(2,4-dinitrobenzylideneamino)phenol and 2,6-dichloro-4-(2,4-dinitrobenzylideneamino)phenol, were deprotonated to generate the perichromic dyes 2b, 3b and 4b, respectively. These dyes were used as probes to investigate the micropolarity of natural cyclodextrins (CyDs) and it was observed that they interact differently with the CyDs according to the molecular structure of the dye and the diameter of the CyD. The solvatochromic bands of the dyes that interacted with the CyDs were bathochromically shifted, suggesting that the probes were transferred to the hydrophobic interior of the CyD in aqueous solution. Dyes 2b and 4b were found to be very selective for α-CyD and γ-CyD, respectively, while ß- and γ-CyD changed the color of the solution of compound 3b. These dyes were then successfully used in a simple assay that allows the naked-eye discrimination of natural CyDs in aqueous solution, without the need for expensive techniques.
RESUMEN
Solvatochromic UV-Vis shifts of four indicators (4-nitroaniline, 4-nitroanisole, 4-nitrophenol and N,N-dimethyl-4-nitroaniline) have been measured at 298.15K in the ternary mixture methanol/1-propanol/acetonitrile (MeOH/1-PrOH/MeCN) in a total of 22 mole fractions, along with 18 additional mole fractions for each of the corresponding binary mixtures, MeOH/1-PrOH, 1-PrOH/MeCN and MeOH/MeCN. These values, combined with our previous experimental results for 2,6-diphenyl-4-(2,4,6-triphenylpyridinium-1-yl)phenolate (Reichardt's betaine dye) in the same mixtures, permitted the computation of the Kamlet-Taft solvent parameters, α, ß, and π(*). The rationalization of the spectroscopic behavior of each probe within each mixture's whole mole fraction range was achieved through the use of the Bosch and Rosés preferential solvation model. The applied model allowed the identification of synergistic behaviors in MeCN/alcohol mixtures and thus to infer the existence of solvent complexes in solution. Also, the addition of small amounts of MeCN to the binary mixtures was seen to cause a significant variation in π(*), whereas the addition of alcohol to MeCN mixtures always lead to a sudden change in α and ß. The behavior of these parameters in the ternary mixture was shown to be mainly determined by the contributions of the underlying binary mixtures.