Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.276
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 185(6): 1065-1081.e23, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35245431

RESUMEN

Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.


Asunto(s)
Corteza Motora , Movimiento , Tálamo , Animales , Mesencéfalo , Ratones , Corteza Motora/fisiología , Neuronas/fisiología , Tálamo/fisiología
2.
Cell ; 185(7): 1240-1256.e30, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35305313

RESUMEN

We developed a miniaturized two-photon microscope (MINI2P) for fast, high-resolution, multiplane calcium imaging of over 1,000 neurons at a time in freely moving mice. With a microscope weight below 3 g and a highly flexible connection cable, MINI2P allowed stable imaging with no impediment of behavior in a variety of assays compared to untethered, unimplanted animals. The improved cell yield was achieved through a optical system design featuring an enlarged field of view (FOV) and a microtunable lens with increased z-scanning range and speed that allows fast and stable imaging of multiple interleaved planes, as well as 3D functional imaging. Successive imaging across multiple, adjacent FOVs enabled recordings from more than 10,000 neurons in the same animal. Large-scale proof-of-principle data were obtained from cell populations in visual cortex, medial entorhinal cortex, and hippocampus, revealing spatial tuning of cells in all areas.


Asunto(s)
Calcio , Corteza Visual , Animales , Corteza Entorrinal , Hipocampo , Ratones , Microscopía , Neuronas/fisiología
3.
Cell ; 180(2): 311-322.e15, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31883793

RESUMEN

The propagation of electrical impulses along axons is highly accelerated by the myelin sheath and produces saltating or "jumping" action potentials across internodes, from one node of Ranvier to the next. The underlying electrical circuit, as well as the existence and role of submyelin conduction in saltatory conduction remain, however, elusive. Here, we made patch-clamp and high-speed voltage-calibrated optical recordings of potentials across the nodal and internodal axolemma of myelinated neocortical pyramidal axons combined with electron microscopy and experimentally constrained cable modeling. Our results reveal a nanoscale yet conductive periaxonal space, incompletely sealed at the paranodes, which separates the potentials across the low-capacitance myelin sheath and internodal axolemma. The emerging double-cable model reproduces the recorded evolution of voltage waveforms across nodes and internodes, including rapid nodal potentials traveling in advance of attenuated waves in the internodal axolemma, revealing a mechanism for saltation across time and space.


Asunto(s)
Potenciales de Acción/fisiología , Vaina de Mielina/fisiología , Fibras Nerviosas Mielínicas/fisiología , Nódulos de Ranvier/fisiología , Animales , Axones/metabolismo , Axones/fisiología , Masculino , Modelos Neurológicos , Fibras Nerviosas Mielínicas/metabolismo , Técnicas de Placa-Clamp/métodos , Células Piramidales/fisiología , Ratas , Ratas Wistar
4.
Cell ; 183(5): 1162-1184, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33242416

RESUMEN

Research on astronaut health and model organisms have revealed six features of spaceflight biology that guide our current understanding of fundamental molecular changes that occur during space travel. The features include oxidative stress, DNA damage, mitochondrial dysregulation, epigenetic changes (including gene regulation), telomere length alterations, and microbiome shifts. Here we review the known hazards of human spaceflight, how spaceflight affects living systems through these six fundamental features, and the associated health risks of space exploration. We also discuss the essential issues related to the health and safety of astronauts involved in future missions, especially planned long-duration and Martian missions.


Asunto(s)
Medio Ambiente Extraterrestre , Vuelo Espacial , Astronautas , Salud , Humanos , Microbiota , Factores de Riesgo
5.
Cell ; 183(5): 1185-1201.e20, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33242417

RESUMEN

Spaceflight is known to impose changes on human physiology with unknown molecular etiologies. To reveal these causes, we used a multi-omics, systems biology analytical approach using biomedical profiles from fifty-nine astronauts and data from NASA's GeneLab derived from hundreds of samples flown in space to determine transcriptomic, proteomic, metabolomic, and epigenetic responses to spaceflight. Overall pathway analyses on the multi-omics datasets showed significant enrichment for mitochondrial processes, as well as innate immunity, chronic inflammation, cell cycle, circadian rhythm, and olfactory functions. Importantly, NASA's Twin Study provided a platform to confirm several of our principal findings. Evidence of altered mitochondrial function and DNA damage was also found in the urine and blood metabolic data compiled from the astronaut cohort and NASA Twin Study data, indicating mitochondrial stress as a consistent phenotype of spaceflight.


Asunto(s)
Genómica , Mitocondrias/patología , Vuelo Espacial , Estrés Fisiológico , Animales , Ritmo Circadiano , Matriz Extracelular/metabolismo , Humanos , Inmunidad Innata , Metabolismo de los Lípidos , Análisis de Flujos Metabólicos , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Músculos/inmunología , Especificidad de Órganos , Olfato/fisiología
6.
Cell ; 173(6): 1329-1342.e18, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29731170

RESUMEN

Observational learning is a powerful survival tool allowing individuals to learn about threat-predictive stimuli without directly experiencing the pairing of the predictive cue and punishment. This ability has been linked to the anterior cingulate cortex (ACC) and the basolateral amygdala (BLA). To investigate how information is encoded and transmitted through this circuit, we performed electrophysiological recordings in mice observing a demonstrator mouse undergo associative fear conditioning and found that BLA-projecting ACC (ACC→BLA) neurons preferentially encode socially derived aversive cue information. Inhibition of ACC→BLA alters real-time amygdala representation of the aversive cue during observational conditioning. Selective inhibition of the ACC→BLA projection impaired acquisition, but not expression, of observational fear conditioning. We show that information derived from observation about the aversive value of the cue is transmitted from the ACC to the BLA and that this routing of information is critically instructive for observational fear conditioning. VIDEO ABSTRACT.


Asunto(s)
Complejo Nuclear Basolateral/fisiología , Corteza Cerebral/fisiología , Aprendizaje/fisiología , Amígdala del Cerebelo/fisiología , Animales , Conducta Animal , Condicionamiento Clásico , Fenómenos Electrofisiológicos , Miedo , Luz , Masculino , Memoria/fisiología , Ratones , Vías Nerviosas/fisiología , Neuronas/fisiología , Optogenética , Corteza Prefrontal/fisiología
7.
Cell ; 172(5): 1108-1121.e15, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474910

RESUMEN

The extracellular space (ECS) of the brain has an extremely complex spatial organization, which has defied conventional light microscopy. Consequently, despite a marked interest in the physiological roles of brain ECS, its structure and dynamics remain largely inaccessible for experimenters. We combined 3D-STED microscopy and fluorescent labeling of the extracellular fluid to develop super-resolution shadow imaging (SUSHI) of brain ECS in living organotypic brain slices. SUSHI enables quantitative analysis of ECS structure and reveals dynamics on multiple scales in response to a variety of physiological stimuli. Because SUSHI produces sharp negative images of all cellular structures, it also enables unbiased imaging of unlabeled brain cells with respect to their anatomical context. Moreover, the extracellular labeling strategy greatly alleviates problems of photobleaching and phototoxicity associated with traditional imaging approaches. As a straightforward variant of STED microscopy, SUSHI provides unprecedented access to the structure and dynamics of live brain ECS and neuropil.


Asunto(s)
Encéfalo/diagnóstico por imagen , Espacio Extracelular/metabolismo , Imagenología Tridimensional , Animales , Movimiento Celular , Colorantes/metabolismo , Fenómenos Electrofisiológicos , Epilepsia/patología , Epilepsia/fisiopatología , Femenino , Glutamatos/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/fisiología , Neurópilo , Ósmosis , Sinapsis/metabolismo
8.
Cell ; 171(3): 507-521.e17, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28965758

RESUMEN

The medial entorhinal cortex (MEC) contains several discrete classes of GABAergic interneurons, but their specific contributions to spatial pattern formation in this area remain elusive. We employed a pharmacogenetic approach to silence either parvalbumin (PV)- or somatostatin (SOM)-expressing interneurons while MEC cells were recorded in freely moving mice. PV-cell silencing antagonized the hexagonally patterned spatial selectivity of grid cells, especially in layer II of MEC. The impairment was accompanied by reduced speed modulation in colocalized speed cells. Silencing SOM cells, in contrast, had no impact on grid cells or speed cells but instead decreased the spatial selectivity of cells with discrete aperiodic firing fields. Border cells and head direction cells were not affected by either intervention. The findings point to distinct roles for PV and SOM interneurons in the local dynamics underlying periodic and aperiodic firing in spatially modulated cells of the MEC. VIDEO ABSTRACT.


Asunto(s)
Corteza Entorrinal/citología , Interneuronas/metabolismo , Parvalbúminas/metabolismo , Somatostatina/metabolismo , Procesamiento Espacial , Animales , Neuronas GABAérgicas/metabolismo , Células de Red/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas
9.
Proc Natl Acad Sci U S A ; 121(31): e2404676121, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39042681

RESUMEN

This work establishes a different paradigm on digital molecular spaces and their efficient navigation by exploiting sigma profiles. To do so, the remarkable capability of Gaussian processes (GPs), a type of stochastic machine learning model, to correlate and predict physicochemical properties from sigma profiles is demonstrated, outperforming state-of-the-art neural networks previously published. The amount of chemical information encoded in sigma profiles eases the learning burden of machine learning models, permitting the training of GPs on small datasets which, due to their negligible computational cost and ease of implementation, are ideal models to be combined with optimization tools such as gradient search or Bayesian optimization (BO). Gradient search is used to efficiently navigate the sigma profile digital space, quickly converging to local extrema of target physicochemical properties. While this requires the availability of pretrained GP models on existing datasets, such limitations are eliminated with the implementation of BO, which can find global extrema with a limited number of iterations. A remarkable example of this is that of BO toward boiling temperature optimization. Holding no knowledge of chemistry except for the sigma profile and boiling temperature of carbon monoxide (the worst possible initial guess), BO finds the global maximum of the available boiling temperature dataset (over 1,000 molecules encompassing more than 40 families of organic and inorganic compounds) in just 15 iterations (i.e., 15 property measurements), cementing sigma profiles as a powerful digital chemical space for molecular optimization and discovery, particularly when little to no experimental data is initially available.

10.
Proc Natl Acad Sci U S A ; 121(35): e2402697121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39172785

RESUMEN

Plants sense and respond to environmental cues during 24 h fluctuations in their environment. This requires the integration of internal cues such as circadian timing with environmental cues such as light and temperature to elicit cellular responses through signal transduction. However, the integration and transduction of circadian and environmental signals by plants growing in natural environments remains poorly understood. To gain insights into 24 h dynamics of environmental signaling in nature, we performed a field study of signal transduction from the nucleus to chloroplasts in a natural population of Arabidopsis halleri. Using several modeling approaches to interpret the data, we identified that the circadian clock and temperature are key regulators of this pathway under natural conditions. We identified potential time-delay steps between pathway components, and diel fluctuations in the response of the pathway to temperature cues that are reminiscent of the process of circadian gating. We found that our modeling framework can be extended to other signaling pathways that undergo diel oscillations and respond to environmental cues. This approach of combining studies of gene expression in the field with modeling allowed us to identify the dynamic integration and transduction of environmental cues, in plant cells, under naturally fluctuating diel cycles.


Asunto(s)
Arabidopsis , Relojes Circadianos , Ritmo Circadiano , Transducción de Señal , Arabidopsis/genética , Arabidopsis/fisiología , Arabidopsis/metabolismo , Ritmo Circadiano/fisiología , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas , Temperatura , Cloroplastos/metabolismo , Cloroplastos/genética , Luz , Ambiente , Modelos Biológicos , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(37): e2405382121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39231205

RESUMEN

Stereolithography enables the fabrication of three-dimensional (3D) freeform structures via light-induced polymerization. However, the accumulation of ultraviolet dose within resin trapped in negative spaces, such as microfluidic channels or voids, can result in the unintended closing, referred to as overcuring, of these negative spaces. We report the use of injection continuous liquid interface production to continuously displace resin at risk of overcuring in negative spaces created in previous layers with fresh resin to mitigate the loss of Z-axis resolution. We demonstrate the ability to resolve 50-µm microchannels, breaking the historical relationship between resin properties and negative space resolution. With this approach, we fabricated proof-of-concept 3D free-form microfluidic devices with improved design freedom over device material selection and resulting properties.

12.
Proc Natl Acad Sci U S A ; 121(13): e2321825121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38498716

RESUMEN

Label-free optical imaging of single-nanometer-scale matter is extremely important for a variety of biomedical, physical, and chemical investigations. One central challenge is that the background intensity is much stronger than the intensity of the scattering light from single nano-objects. Here, we propose an optical module comprising cascaded momentum-space polarization filters that can perform vector field modulation to block most of the background field and result in an almost black background; in contrast, only a small proportion of the scattering field is blocked, leading to obvious imaging contrast enhancement. This module can be installed in various optical microscopies to realize a black-field microscopy. Various single nano-objects with dimensions smaller than 20 nm appear distinctly in the black-field images. The chemical reactions occurring on single nanocrystals with edge lengths of approximately 10 nm are in situ real-time monitored by using the black-field microscopy. This label-free black-field microscopy is highly promising for a wide range of future multidisciplinary science applications.

13.
Proc Natl Acad Sci U S A ; 121(15): e2315167121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557177

RESUMEN

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.


Asunto(s)
Red en Modo Predeterminado , Roedores , Ratas , Animales , Corteza Cerebral , Encéfalo/diagnóstico por imagen , Giro del Cíngulo/diagnóstico por imagen , Mapeo Encefálico , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen
14.
Brief Bioinform ; 25(4)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38975893

RESUMEN

The process of drug discovery is widely known to be lengthy and resource-intensive. Artificial Intelligence approaches bring hope for accelerating the identification of molecules with the necessary properties for drug development. Drug-likeness assessment is crucial for the virtual screening of candidate drugs. However, traditional methods like Quantitative Estimation of Drug-likeness (QED) struggle to distinguish between drug and non-drug molecules accurately. Additionally, some deep learning-based binary classification models heavily rely on selecting training negative sets. To address these challenges, we introduce a novel unsupervised learning framework called DrugMetric, an innovative framework for quantitatively assessing drug-likeness based on the chemical space distance. DrugMetric blends the powerful learning ability of variational autoencoders with the discriminative ability of the Gaussian Mixture Model. This synergy enables DrugMetric to identify significant differences in drug-likeness across different datasets effectively. Moreover, DrugMetric incorporates principles of ensemble learning to enhance its predictive capabilities. Upon testing over a variety of tasks and datasets, DrugMetric consistently showcases superior scoring and classification performance. It excels in quantifying drug-likeness and accurately distinguishing candidate drugs from non-drugs, surpassing traditional methods including QED. This work highlights DrugMetric as a practical tool for drug-likeness scoring, facilitating the acceleration of virtual drug screening, and has potential applications in other biochemical fields.


Asunto(s)
Descubrimiento de Drogas , Descubrimiento de Drogas/métodos , Preparaciones Farmacéuticas/química , Preparaciones Farmacéuticas/clasificación , Algoritmos , Aprendizaje Profundo , Inteligencia Artificial
15.
Proc Natl Acad Sci U S A ; 120(43): e2221342120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844249

RESUMEN

The resurgence in space activities we are witnessing may provide opportunities for new technologies to generate potential spillovers to the real economy. To address this view, we propose a macroeconomic model with endogenous growth and a space sector. The model describes the relationship between space investment and technological spillovers, which support persistent economic growth. Our estimates indicate that space activities provide growth spillovers that peak from the late 1960s to the early 1980s. Recent space activities have a much lower economic impact. Finally, extensive experiments quantify the economic relevance of our results.

16.
Proc Natl Acad Sci U S A ; 120(43): e2221347120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844227

RESUMEN

In this speculative article, I argue that the expansion of economic activity in space may offer a uniquely promising way to escape indefinitely from what economists call "secular stagnation," a state of self-fulfilling, persistently sluggish economic growth that has increasingly threatened high-income countries. Economists have pointed to both supply-side and demand-side drivers of secular stagnation, and space as a focal point for investment can-at least in principle-address both. On the supply side, space is an unlimited frontier that, as have frontiers in the past, may inspire the individualism, innovation, and world-building needed to sustainably increase productivity and population growth. On the demand side, public investment toward increased economic activity in space could meaningfully add to aggregate demand if it reached historical peak benchmarks in the United States.

17.
Proc Natl Acad Sci U S A ; 120(43): e2221345120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844231

RESUMEN

Growth models with resources and environmental externalities typically assume that planet Earth is a closed economy. However, private firms like Blue Origin and SpaceX have reduced the cost of rocket launches by a factor of 20 over the last decade. What if these costs continue to decline, making mining from asteroids or the moon feasible? What would be the implications for economic growth and the environment? This paper provides stylized facts about cost trends, geology, and the environmental impact of mining on Earth and potentially in Space. We extend a neoclassical growth model to investigate the transition from mining on Earth to Space. We find that such a transition could potentially allow for continued growth of metal use, while limiting environmental and social costs on Earth. Acknowledging the high uncertainty around the topic, our paper provides a starting point for research on how Space mining could contribute to sustainable growth on Earth.

18.
Proc Natl Acad Sci U S A ; 120(36): e2302652120, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639580

RESUMEN

Gratings which are in apparent motion reveal some startling properties for classical radiation, especially for luminal gratings traveling at or around the speed of light. We show here that their quantum properties are even more remarkable, their effective refractive index modeling the Schwarzschild singularity which as we show generates spontaneous Hawking radiation in correlated photon pairs. Subjected to external radiation, luminal gratings provoke stimulated emission of photon pairs which we propose as a possible means of observing Hawking radiation in the laboratory.

19.
Proc Natl Acad Sci U S A ; 120(43): e2221343120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844226

RESUMEN

Orbital space enables many essential services, such as weather forecasting, global communication, navigation, Earth observation for environmental and agricultural management, and national security applications. Orbit use is increasingly defined by firms launching coordinated fleets-"constellations"-of satellites into low-Earth orbit. These firms operate in markets with few or no competitors, such as the market for broadband internet provision to rural areas. How will oligopolistic competition shape the allocation of orbital space? We analyze orbital-use patterns and economic welfare when two profit-maximizing firms operate satellite constellations with sophisticated collision avoidance systems. We compare this duopoly equilibrium to public utility constellations designed and regulated to maximize economic welfare from orbit use. We show that imperfect competition reduces economic welfare from orbit use by up to 12%-$1.1 billion USD-per year and distorts the allocation of orbital space. The nature of the distortion depends on the magnitude of constellation-related environmental damages. When damages are low, economic welfare is maximized by larger-than-equilibrium constellations. When damages are high, economic welfare is maximized by smaller-than-equilibrium constellations. Between the growing commercial and national interests in outer space and the importance of low-Earth orbit to space exploration, orbit-use management is likely to be a fruitful and policy-relevant area for economic research. We conclude with a discussion of future research directions in orbit-use management relevant to policymakers around the world.

20.
Proc Natl Acad Sci U S A ; 120(43): e2222013120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37844233

RESUMEN

As public and private institutions recognize the role of space exploration as a catalyst for economic growth, various areas of innovation are expected to emerge as drivers of the space economy. These include space transportation, in-space manufacturing, bioproduction, in-space agriculture, nuclear launch, and propulsion systems, as well as satellite services and their maintenance. However, the current nature of space as an open-access resource and global commons presents a systemic risk for exuberant competition for space goods and services, which may result in a "tragedy of the commons" dilemma. In the race among countries to capture the value of space exploration, NASA, American research universities, and private companies can avoid any coordination failures by collaborating in a public-private research and development partnership (PPRDP) structure. We present such a structure founded upon the principles of polycentric autonomous governance, which incorporate a decentralized autonomous organization framework and specialized research clusters. By advancing an alignment of incentives among the specified participatory members, PPRDPs can play a pivotal role in stimulating open-source research by creating positive knowledge spillover effects and agglomeration externalities as well as embracing the nonlinear decomposition paradigm that may blur the distinction between basic and applied research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA