Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.282
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(18): 4946-4963.e17, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39089253

RESUMEN

The choroid plexus (ChP) is a vital brain barrier and source of cerebrospinal fluid (CSF). Here, we use longitudinal two-photon imaging in awake mice and single-cell transcriptomics to elucidate the mechanisms of ChP regulation of brain inflammation. We used intracerebroventricular injections of lipopolysaccharides (LPS) to model meningitis in mice and observed that neutrophils and monocytes accumulated in the ChP stroma and surged across the epithelial barrier into the CSF. Bi-directional recruitment of monocytes from the periphery and, unexpectedly, macrophages from the CSF to the ChP helped eliminate neutrophils and repair the barrier. Transcriptomic analyses detailed the molecular steps accompanying this process and revealed that ChP epithelial cells transiently specialize to nurture immune cells, coordinating their recruitment, survival, and differentiation as well as regulation of the tight junctions that control the permeability of the ChP brain barrier. Collectively, we provide a mechanistic understanding and a comprehensive roadmap of neuroinflammation at the ChP brain barrier.


Asunto(s)
Barrera Hematoencefálica , Plexo Coroideo , Lipopolisacáridos , Macrófagos , Enfermedades Neuroinflamatorias , Neutrófilos , Plexo Coroideo/metabolismo , Animales , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Barrera Hematoencefálica/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Neutrófilos/metabolismo , Neutrófilos/inmunología , Ratones Endogámicos C57BL , Monocitos/metabolismo , Masculino , Uniones Estrechas/metabolismo , Células Epiteliales/metabolismo , Femenino
2.
Cell ; 172(1-2): 191-204.e10, 2018 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-29224778

RESUMEN

Hematopoietic stem cell transplantation is a potential curative therapy for malignant and nonmalignant diseases. Improving the efficiency of stem cell collection and the quality of the cells acquired can broaden the donor pool and improve patient outcomes. We developed a rapid stem cell mobilization regimen utilizing a unique CXCR2 agonist, GROß, and the CXCR4 antagonist AMD3100. A single injection of both agents resulted in stem cell mobilization peaking within 15 min that was equivalent in magnitude to a standard multi-day regimen of granulocyte colony-stimulating factor (G-CSF). Mechanistic studies determined that rapid mobilization results from synergistic signaling on neutrophils, resulting in enhanced MMP-9 release, and unexpectedly revealed genetic polymorphisms in MMP-9 that alter activity. This mobilization regimen results in preferential trafficking of stem cells that demonstrate a higher engraftment efficiency than those mobilized by G-CSF. Our studies suggest a potential new strategy for the rapid collection of an improved hematopoietic graft.


Asunto(s)
Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/inmunología , Adulto , Animales , Bencilaminas , Quimiocina CXCL2/farmacología , Ciclamas , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Compuestos Heterocíclicos/farmacología , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/genética , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos ICR , Polimorfismo Genético
3.
Immunity ; 55(5): 862-878.e8, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35508166

RESUMEN

Macrophage colony stimulating factor-1 (CSF-1) plays a critical role in maintaining myeloid lineage cells. However, congenital global deficiency of CSF-1 (Csf1op/op) causes severe musculoskeletal defects that may indirectly affect hematopoiesis. Indeed, we show here that osteolineage-derived Csf1 prevented developmental abnormalities but had no effect on monopoiesis in adulthood. However, ubiquitous deletion of Csf1 conditionally in adulthood decreased monocyte survival, differentiation, and migration, independent of its effects on bone development. Bone histology revealed that monocytes reside near sinusoidal endothelial cells (ECs) and leptin receptor (Lepr)-expressing perivascular mesenchymal stromal cells (MSCs). Targeted deletion of Csf1 from sinusoidal ECs selectively reduced Ly6C- monocytes, whereas combined depletion of Csf1 from ECs and MSCs further decreased Ly6Chi cells. Moreover, EC-derived CSF-1 facilitated recovery of Ly6C- monocytes and protected mice from weight loss following induction of polymicrobial sepsis. Thus, monocytes are supported by distinct cellular sources of CSF-1 within a perivascular BM niche.


Asunto(s)
Factor Estimulante de Colonias de Macrófagos , Células Madre Mesenquimatosas , Animales , Médula Ósea , Células de la Médula Ósea , Células Endoteliales , Factor Estimulante de Colonias de Macrófagos/farmacología , Ratones , Monocitos
4.
Immunity ; 53(1): 127-142.e7, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32562599

RESUMEN

Located within red pulp cords, splenic red pulp macrophages (RPMs) are constantly exposed to the blood flow, clearing senescent red blood cells (RBCs) and recycling iron from hemoglobin. Here, we studied the mechanisms underlying RPM homeostasis, focusing on the involvement of stromal cells as these cells perform anchoring and nurturing macrophage niche functions in lymph nodes and liver. Microscopy revealed that RPMs are embedded in a reticular meshwork of red pulp fibroblasts characterized by the expression of the transcription factor Wilms' Tumor 1 (WT1) and colony stimulating factor 1 (CSF1). Conditional deletion of Csf1 in WT1+ red pulp fibroblasts, but not white pulp fibroblasts, drastically altered the RPM network without altering circulating CSF1 levels. Upon RPM depletion, red pulp fibroblasts transiently produced the monocyte chemoattractants CCL2 and CCL7, thereby contributing to the replenishment of the RPM network. Thus, red pulp fibroblasts anchor and nurture RPM, a function likely conserved in humans.


Asunto(s)
Fibroblastos/metabolismo , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/inmunología , Bazo/citología , Proteínas WT1/metabolismo , Animales , Quimiocina CCL2/metabolismo , Quimiocina CCL7/metabolismo , Regulación de la Expresión Génica , Humanos , Inmunidad Innata/inmunología , Hierro/metabolismo , Factor Estimulante de Colonias de Macrófagos/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Monocitos/inmunología , Ratas , Transducción de Señal/inmunología , Bazo/metabolismo
5.
Immunity ; 50(6): 1453-1466.e4, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31053503

RESUMEN

In lymph nodes, subcapsular sinus macrophages (SSMs) form an immunological barrier that monitors lymph drained from peripheral tissues. Upon infection, SSMs activate B and natural killer T (NKT) cells while secreting inflammatory mediators. Here, we investigated the mechanisms regulating development and homeostasis of SSMs. Embryonic SSMs originated from yolk sac hematopoiesis and were replaced by a postnatal wave of bone marrow (BM)-derived monocytes that proliferated to establish the adult SSM network. The SSM network self-maintained by proliferation with minimal BM contribution. Upon pathogen-induced transient deletion, BM-derived cells contributed to restoring the SSM network. Lymphatic endothelial cells (LECs) were the main source of CSF-1 within the lymph node and conditional deletion of Csf1 in adult LECs decreased the network of SSMs and medullary sinus macrophages (MSMs). Thus, SSMs have a dual hematopoietic origin, and LECs are essential to the niche supporting these macrophages.


Asunto(s)
Células Endoteliales/metabolismo , Macrófagos/metabolismo , Animales , Biomarcadores , Comunicación Celular , Diferenciación Celular , Expresión Génica , Genes Reporteros , Hematopoyesis/genética , Hematopoyesis/inmunología , Homeostasis , Ganglios Linfáticos/citología , Ganglios Linfáticos/inmunología , Vasos Linfáticos , Factor Estimulante de Colonias de Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Ratones , Monocitos/citología , Monocitos/metabolismo , Saco Vitelino
6.
Immunity ; 49(2): 275-287.e5, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30054206

RESUMEN

Airway epithelial cells (AECs) secrete innate immune cytokines that regulate adaptive immune effector cells. In allergen-sensitized humans and mice, the airway and alveolar microenvironment is enriched with colony stimulating factor-1 (CSF1) in response to allergen exposure. In this study we found that AEC-derived CSF1 had a critical role in the production of allergen reactive-IgE production. Furthermore, spatiotemporally secreted CSF1 regulated the recruitment of alveolar dendritic cells (DCs) and enhanced the migration of conventional DC2s (cDC2s) to the draining lymph node in an interferon regulatory factor 4 (IRF4)-dependent manner. CSF1 selectively upregulated the expression of the chemokine receptor CCR7 on the CSF1R+ cDC2, but not the cDC1, population in response to allergen stimuli. Our data describe the functional specification of CSF1-dependent DC subsets that link the innate and adaptive immune responses in T helper 2 (Th2) cell-mediated allergic lung inflammation.


Asunto(s)
Alérgenos/inmunología , Células Dendríticas/inmunología , Factor Estimulante de Colonias de Macrófagos/inmunología , Receptores CCR7/biosíntesis , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología , Animales , Línea Celular , Movimiento Celular/inmunología , Células Dendríticas/clasificación , Células Epiteliales/citología , Células Epiteliales/inmunología , Humanos , Inmunidad Innata/inmunología , Inmunoglobulina E/inmunología , Factores Reguladores del Interferón/inmunología , Ganglios Linfáticos/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Células RAW 264.7 , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Células Th2/inmunología , Regulación hacia Arriba/inmunología
7.
EMBO Rep ; 25(4): 1987-2014, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38454158

RESUMEN

α-Melanocyte-stimulating hormone (α-MSH) regulates diverse physiological functions by activating melanocortin receptors (MC-R). However, the role of α-MSH and its possible target receptors in the heart remain completely unknown. Here we investigate whether α-MSH could be involved in pathological cardiac remodeling. We found that α-MSH was highly expressed in the mouse heart with reduced ventricular levels after transverse aortic constriction (TAC). Administration of a stable α-MSH analog protected mice against TAC-induced cardiac hypertrophy and systolic dysfunction. In vitro experiments revealed that MC5-R in cardiomyocytes mediates the anti-hypertrophic signaling of α-MSH. Silencing of MC5-R in cardiomyocytes induced hypertrophy and fibrosis markers in vitro and aggravated TAC-induced cardiac hypertrophy and fibrosis in vivo. Conversely, pharmacological activation of MC5-R improved systolic function and reduced cardiac fibrosis in TAC-operated mice. In conclusion, α-MSH is expressed in the heart and protects against pathological cardiac remodeling by activating MC5-R in cardiomyocytes. These results suggest that analogs of naturally occurring α-MSH, that have been recently approved for clinical use and have agonistic activity at MC5-R, may be of benefit in treating heart failure.


Asunto(s)
Remodelación Ventricular , alfa-MSH , Ratones , Animales , alfa-MSH/farmacología , Receptores de Corticotropina , Receptores de Melanocortina , Cardiomegalia/genética , Fibrosis
8.
Annu Rev Med ; 74: 307-319, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35773226

RESUMEN

Red blood cells transport O2 from the lungs to body tissues. Hypoxia stimulates kidney cells to secrete erythropoietin (EPO), which increases red cell mass. Hypoxia-inducible factors (HIFs) mediate EPO gene transcriptional activation. HIF-α subunits are subject to O2-dependent prolyl hydroxylation and then bound by the von Hippel-Lindau protein (VHL), which triggers their ubiquitination and proteasomal degradation. Mutations in the genes encoding EPO, EPO receptor, HIF-2α, prolyl hydroxylase domain protein 2 (PHD2), or VHL cause familial erythrocytosis. In addition to O2, α-ketoglutarate is a substrate for PHD2, and analogs of α-ketoglutarate inhibit hydroxylase activity. In phase III clinical trials evaluating the treatment of anemia in chronic kidney disease, HIF prolyl hydroxylase inhibitors were as efficacious as darbepoetin alfa in stimulating erythropoiesis. However, safety concerns have arisen that are focused on thromboembolism, which is also a phenotypic manifestation of VHL or HIF-2α mutation, suggesting that these events are on-target effects of HIF prolyl hydroxylase inhibitors.


Asunto(s)
Eritropoyesis , Inhibidores de Prolil-Hidroxilasa , Humanos , Eritropoyesis/genética , Inhibidores de Prolil-Hidroxilasa/farmacología , Inhibidores de Prolil-Hidroxilasa/uso terapéutico , Ácidos Cetoglutáricos , Hipoxia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
9.
Eur J Immunol ; : e2350943, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39233527

RESUMEN

Macrophage infiltration and accumulation in the atherosclerotic lesion are associated with plaque progression and instability. Depletion of macrophages from the lesion might provide valuable insights into plaque stabilization processes. Therefore, we assessed the effects of systemic and local macrophage depletion on atherogenesis. To deplete monocytes/macrophages we used atherosclerosis-susceptible Apoe- /- mice, bearing a MaFIA (macrophage-Fas-induced-apoptosis) suicide construct under control of the Csf1r (CD115) promotor, where selective apoptosis of Csf1r-expressing cells was induced in a controlled manner, by administration of a drug, AP20187. Systemic induction of apoptosis resulted in a decrease in lesion macrophages and smooth-muscle cells. Plaque size and necrotic core size remained unaffected. Two weeks after the systemic depletion of macrophages, we observed a replenishment of the myeloid compartment. Myelopoiesis was modulated resulting in an expansion of CSF1Rlo myeloid cells in the circulation and a shift from Ly6chi monocytes toward Ly6cint and Ly6clo populations in the spleen. Local apoptosis induction led to a decrease in plaque burden and macrophage content with marginal effects on the circulating myeloid cells. Local, but not systemic depletion of Csf1r+ myeloid cells resulted in decreased plaque burden. Systemic depletion led to CSF1Rlo-monocyte expansion in blood, possibly explaining the lack of effects on plaque development.

10.
Arterioscler Thromb Vasc Biol ; 44(3): 698-719, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38205641

RESUMEN

BACKGROUND: Androgen deprivation therapy (ADT) is the mainstay treatment for advanced prostate cancer. But ADTs with orchiectomy and gonadotropin-releasing hormone (GnRH) agonist are associated with increased risk of cardiovascular diseases, which appears less significant with GnRH antagonist. The difference of follicle-stimulating hormone (FSH) in ADT modalities is hypothesized to be responsible for ADT-associated cardiovascular diseases. METHODS: We administered orchiectomy, GnRH agonist, or GnRH antagonist in male ApoE-/- mice fed with Western diet and manipulated FSH levels by testosterone and FSH supplementation or FSH antibody to investigate the role of FSH elevation on atherosclerosis. By combining lipidomics, in vitro study, and intraluminal FSHR (FSH receptor) inhibition, we delineated the effects of FSH on endothelium and monocytes and the underlying mechanisms. RESULTS: Orchiectomy and GnRH agonist, but not GnRH antagonist, induced long- or short-term FSH elevation and significantly accelerated atherogenesis. In orchiectomized and testosterone-supplemented mice, FSH exposure increased atherosclerosis. In GnRH agonist-treated mice, blocking of short FSH surge by anti-FSHß antibody greatly alleviated endothelial inflammation and delayed atherogenesis. In GnRH antagonist-treated mice, FSH supplementation aggravated atherogenesis. Mechanistically, FSH, synergizing with TNF-α (tumor necrosis factor alpha), exacerbated endothelial inflammation by elevating VCAM-1 (vascular cell adhesion protein 1) expression through the cAMP/PKA (protein kinase A)/CREB (cAMP response element-binding protein)/c-Jun and PI3K (phosphatidylinositol 3 kinase)/AKT (protein kinase B)/GSK-3ß (glycogen synthase kinase 3 beta)/GATA-6 (GATA-binding protein 6) pathways. In monocytes, FSH upregulated CD29 (cluster of differentiation 29) expression via the PI3K/AKT/GSK-3ß/SP1 (specificity protein 1) pathway and promoted monocyte-endothelial adhesion both in vitro and in vivo. Importantly, FSHR knockdown by shRNA in endothelium of carotid arteries markedly reduced GnRH agonist-induced endothelial inflammation and atherosclerosis in mice. CONCLUSIONS: FSH is responsible for ADT-associated atherosclerosis by exaggerating endothelial inflammation and promoting monocyte-endothelial adhesion.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Neoplasias de la Próstata , Animales , Masculino , Ratones , Antagonistas de Andrógenos/efectos adversos , Andrógenos/deficiencia , Aterosclerosis/patología , Endotelio/metabolismo , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Hormona Liberadora de Gonadotropina/farmacología , Hormona Liberadora de Gonadotropina/fisiología , Inflamación/etiología , Monocitos/metabolismo , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Testosterona
11.
Mol Ther ; 32(6): 1970-1983, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38627968

RESUMEN

Mesenchymal stem/stromal cells (MSCs) modulate the immune response through interactions with innate immune cells. We previously demonstrated that MSCs alleviate ocular autoimmune inflammation by directing bone marrow cell differentiation from pro-inflammatory CD11bhiLy6ChiLy6Glo cells into immunosuppressive CD11bmidLy6CmidLy6Glo cells. Herein, we analyzed MSC-induced CD11bmidLy6Cmid cells using single-cell RNA sequencing and compared them with CD11bhiLy6Chi cells. Our investigation revealed seven distinct immune cell types including myeloid-derived suppressor cells (MDSCs) in the CD11bmidLy6Cmid cells, while CD11bhiLy6Chi cells included mostly monocytes/macrophages with a small cluster of neutrophils. These MSC-induced MDSCs highly expressed Retnlg, Cxcl3, Cxcl2, Mmp8, Cd14, and Csf1r as well as Arg1. Comparative analyses of CSF-1RhiCD11bmidLy6Cmid and CSF-1RloCD11bmidLy6Cmid cells demonstrated that the former had a homogeneous monocyte morphology and produced elevated levels of interleukin-10. Functionally, these CSF-1RhiCD11bmidLy6Cmid cells, compared with the CSF-1RloCD11bmidLy6Cmid cells, inhibited CD4+ T cell proliferation and promoted CD4+CD25+Foxp3+ Treg expansion in culture and in a mouse model of experimental autoimmune uveoretinitis. Resistin-like molecule (RELM)-γ encoded by Retnlg, one of the highly upregulated genes in MSC-induced MDSCs, had no direct effects on T cell proliferation, Treg expansion, or splenocyte activation. Together, our study revealed a distinct transcriptional profile of MSC-induced MDSCs and identified CSF-1R as a key cell-surface marker for detection and therapeutic enrichment of MDSCs.


Asunto(s)
Células Madre Mesenquimatosas , Células Supresoras de Origen Mieloide , Análisis de la Célula Individual , Animales , Ratones , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/inmunología , Análisis de la Célula Individual/métodos , Transcriptoma , Diferenciación Celular/genética , Perfilación de la Expresión Génica , Modelos Animales de Enfermedad , Uveítis/genética , Uveítis/inmunología , Uveítis/metabolismo , Humanos
12.
Semin Immunol ; 54: 101516, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-34728120

RESUMEN

Neutrophils are vital for the innate immune system's control of pathogens and neutrophil deficiency can render the host susceptible to life-threatening infections. Neutrophil responses must also be tightly regulated because excessive production, recruitment or activation of neutrophils can cause tissue damage in both acute and chronic inflammatory diseases. Granulocyte colony stimulating factor (G-CSF) is a key regulator of neutrophil biology, from production, differentiation, and release of neutrophil precursors in the bone marrow (BM) to modulating the function of mature neutrophils outside of the BM, particularly at sites of inflammation. G-CSF acts by binding to its cognate cell surface receptor on target cells, causing the activation of intracellular signalling pathways mediating the proliferation, differentiation, function, and survival of cells in the neutrophil lineage. Studies in humans and mice demonstrate that G-CSF contributes to protecting the host against infection, but conversely, it can play a deleterious role in inflammatory diseases. As such, neutrophils and the G-CSF pathway may provide novel therapeutic targets. This review will focus on understanding the role G-CSF plays in the balance between effective neutrophil mediated host defence versus neutrophil-mediated inflammation and tissue damage in various inflammatory and infectious diseases.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Neutrófilos , Animales , Médula Ósea/metabolismo , Diferenciación Celular , Factor Estimulante de Colonias de Granulocitos/metabolismo , Humanos , Inflamación/metabolismo , Ratones
13.
Genomics ; 116(5): 110938, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39293535

RESUMEN

Thyroperoxidase (TPO) is central in thyroid hormone (TH) synthesis and inhibition can lead to TH deficiency. Many chemicals can inhibit TPO activity in vitro, but how this may manifest in the developing thyroid gland at the molecular level is unclear. Here, we characterized the thyroid gland transcriptome of male rats developmentally exposed to the in vitro TPO-inhibitors amitrole, 2-mercaptobenzimidazole (MBI), or cyanamide by use of Bulk-RNA-Barcoding (BRB) and sequencing. Amitrole exposure caused TH deficiency and 149 differentially expressed genes in the thyroid gland. The effects indicated an activated and growing thyroid gland. MBI caused intermittent changes to serum TH concentrations in a previous study and this was accompanied by 60 differentially expressed genes in the present study. More than half of these were also affected by amitrole, indicating that they could be early effect biomarkers of developmental TH system disruption due to TPO inhibition. Further work to validate the signature is needed, including assessment of substance independency and applicability domain.


Asunto(s)
Yoduro Peroxidasa , Glándula Tiroides , Transcriptoma , Animales , Glándula Tiroides/metabolismo , Glándula Tiroides/efectos de los fármacos , Ratas , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Masculino , Transcriptoma/efectos de los fármacos , Amitrol (Herbicida)/farmacología , Inhibidores Enzimáticos/farmacología , Bencimidazoles/farmacología
14.
J Biol Chem ; 299(12): 105448, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37951305

RESUMEN

Bacteria utilize quorum sensing (QS) to coordinate many group behaviors. As such, QS has attracted significant attention as a potential mean to attenuate bacterial infectivity without introducing selective pressure for resistance development. Streptococcus mitis, a human commensal, acts as a genetic diversity reservoir for Streptococcus pneumoniae, a prevalent human pathogen. S. mitis possesses a typical comABCDE competence regulon QS circuitry; however, the competence-stimulating peptide (CSP) responsible for QS activation and the regulatory role of the competence regulon QS circuitry in S. mitis are yet to be explored. We set out to delineate the competence regulon QS circuitry in S. mitis, including confirming the identity of the native CSP signal, evaluating the molecular mechanism that governs CSP interactions with histidine kinase receptor ComD leading to ComD activation, and defining the regulatory roles of the competence regulon QS circuitry in initiating various S. mitis phenotypes. Our analysis revealed important structure-activity relationship insights of the CSP signal and facilitated the development of novel CSP-based QS modulators. Our analysis also revealed the involvement of the competence regulon in modulating competence development and biofilm formation. Furthermore, our analysis revealed that the native S. mitis CSP signal can modulate QS response in S. pneumoniae. Capitalizing on this crosstalk, we developed a multispecies QS modulator that activates both the pneumococcus ComD receptors and the S. mitis ComD-2 receptor with high potencies. The novel scaffolds identified herein can be utilized to evaluate the effects temporal QS modulation has on S. mitis as it inhabits its natural niche.


Asunto(s)
Percepción de Quorum , Streptococcus mitis , Humanos , Proteínas Bacterianas/metabolismo , Histidina Quinasa/metabolismo , Péptidos/metabolismo , Fenotipo , Regulón , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Streptococcus pneumoniae/genética , Relación Estructura-Actividad , Especificidad de la Especie
15.
J Biol Chem ; 299(10): 105240, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37690682

RESUMEN

Upstream stimulating factors (USFs), including USF1 and USF2, are key components of the transcription machinery that recruit coactivators and histone-modifying enzymes. Using the classic basic helix-loop-helix leucine zipper (bHLH-LZ) domain, USFs bind the E-box DNA and form tetramers that promote DNA looping for transcription initiation. The structural basis by which USFs tetramerize and bind DNA, however, remains unknown. Here, we report the crystal structure of the complete bHLH-LZ domain of USF2 in complex with E-box DNA. We observed that the leucine zipper (LZ) of USF2 is longer than that of other bHLH-LZ family transcription factors and that the C-terminus of USF2 forms an additional α-helix following the LZ region (denoted as LZ-Ext). We also found the elongated LZ-Ext facilitates compact tetramer formation. In addition to the classic interactions between the basic region and DNA, we show a highly conserved basic residue in the loop region, Lys271, participates in DNA interaction. Together, these findings suggest that USF2 forms a tetramer structure with a bent elongated LZ-Ext region, providing a molecular basis for its role as a key component of the transcription machinery.

16.
Am J Physiol Endocrinol Metab ; 326(5): E626-E639, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38536037

RESUMEN

Loss of ovarian function imparts increased susceptibility to obesity and metabolic disease. These effects are largely attributed to decreased estradiol (E2), but the role of increased follicle-stimulating hormone (FSH) in modulating energy balance has not been fully investigated. Previous work that blocked FSH binding to its receptor in mice suggested this hormone may play a part in modulating body weight and energy expenditure after ovariectomy (OVX). We used an alternate approach to isolate the individual and combined contributions of FSH and E2 in mediating energy imbalance and changes in tissue-level metabolic health. Female Wistar rats were ovariectomized and given the gonadotropin releasing hormone (GnRH) antagonist degarelix to suppress FSH production. E2 and FSH were then added back individually and in combination for a period of 3 wk. Energy balance, body mass composition, and transcriptomic profiles of individual tissues were obtained. In contrast to previous studies, suppression and replacement of FSH in our paradigm had no effect on body weight, body composition, food intake, or energy expenditure. We did, however, observe organ-specific effects of FSH that produced unique transcriptomic signatures of FSH in retroperitoneal white adipose tissue. These included reductions in biological processes related to lipogenesis and carbohydrate transport. In addition, rats administered FSH had reduced liver triglyceride concentration (P < 0.001), which correlated with FSH-induced changes at the transcriptomic level. Although not appearing to modulate energy balance after loss of ovarian function in rats, FSH may still impart tissue-specific effects in the liver and white adipose tissue that might affect the metabolic health of those organs.NEW & NOTEWORTHY We find no effect of follicle-stimulating hormone (FSH) on energy balance using a novel model in which rats are ovariectomized, subjected to gonadotropin-releasing hormone antagonism, and systematically given back FSH by osmotic pump. However, tissue-specific effects of FSH on adipose tissue and liver were observed in this study. These include unique transcriptomic signatures induced by the hormone and a stark reduction in hepatic triglyceride accumulation.


Asunto(s)
Metabolismo Energético , Estradiol , Hormona Folículo Estimulante , Ovariectomía , Ratas Wistar , Animales , Femenino , Metabolismo Energético/efectos de los fármacos , Ratas , Hormona Folículo Estimulante/metabolismo , Estradiol/farmacología , Composición Corporal/efectos de los fármacos , Peso Corporal/efectos de los fármacos , Ovario/efectos de los fármacos , Ovario/metabolismo , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Blanco/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Transcriptoma/efectos de los fármacos
17.
Int J Cancer ; 155(3): 545-557, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561936

RESUMEN

Recombinant human granulocyte colony-stimulating factor (G-CSF) administration in patients with cancer and coronavirus disease (COVID-19) remains controversial. Concerns exist that it may worsen COVID-19 outcomes by triggering an inflammatory cytokine storm, despite its common use for managing chemotherapy-induced neutropenia (CIN) or febrile neutropenia post-chemotherapy. Here, we determined whether prophylactic or therapeutic G-CSF administration following chemotherapy exacerbates COVID-19 progression to severe/critical conditions in breast cancer patients with COVID-19. Between December 2022 and February 2023, all 503 enrolled breast cancer patients had concurrent COVID-19 and received G-CSF post-chemotherapy, with most being vaccinated pre-chemotherapy. We prospectively observed COVID-19-related adverse outcomes, conducted association analyses, and subsequently performed Mendelian randomization (MR) analyses to validate the causal effect of genetically predicted G-CSF or its associated granulocyte traits on COVID-19 adverse outcomes. Only 0.99% (5/503) of breast cancer patients experienced COVID-19-related hospitalization following prophylactic or therapeutic G-CSF administration after chemotherapy. No mortality or progression to severe/critical COVID-19 occurred after G-CSF administration. Notably, no significant associations were observed between the application, dosage, or response to G-CSF and COVID-19-related hospitalization (all p >.05). Similarly, the MR analyses showed no evidence of causality of genetically predicted G-CSF or related granulocyte traits on COVID-19-related hospitalization or COVID-19 severity (all p >.05). There is insufficient evidence to substantiate the notion that the prophylactic or therapeutic administration of G-CSF after chemotherapy for managing CIN in patients with breast cancer and COVID-19 would worsen COVID-19 outcomes, leading to severe or critical conditions, or even death, especially considering the context of COVID-19 vaccination.


Asunto(s)
Neoplasias de la Mama , COVID-19 , Factor Estimulante de Colonias de Granulocitos , Análisis de la Aleatorización Mendeliana , SARS-CoV-2 , Humanos , COVID-19/virología , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Persona de Mediana Edad , SARS-CoV-2/genética , Anciano , Adulto , Estudios Prospectivos , Antineoplásicos/uso terapéutico , Antineoplásicos/efectos adversos , Antineoplásicos/administración & dosificación , Estudios de Cohortes
18.
Cancer ; 130(14): 2472-2481, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38470375

RESUMEN

BACKGROUND: Both venetoclax plus a hypomethylating agent (VEN/HMA) and cytarabine, aclarubicin, and granulocyte colony-stimulating factor (CAG) are low-intensity regimens for older patients with acute myeloid leukemia (AML) that show good efficacy and safety. It is unknown how VEN/HMA compares with the CAG regimen for the treatment of newly diagnosed AML. METHODS: The outcomes of patients with newly diagnosed AML treated with VEN/HMA were compared with those of patients treated with a CAG-based regimen. Propensity score matching between these two cohorts at a 1:1 ratio was performed according to age at diagnosis, sex, Eastern Cooperative Oncology Group performance status, state of fitness, and European LeukemiaNet (ELN) 2022 risk stratification to minimize bias. RESULTS: A total of 84 of 96 patients in the VEN/HMA cohort were matched with 84 of 147 patients in the CAG cohort. VEN/HMA resulted in a better response than the CAG-based regimens, as indicated by a higher composite complete remission (CRc) rate (82.1% vs. 60.7%; p = .002) and minimal residual disease negativity rate (88.2% vs. 68.2%; p = .009). In patients with an ELN adverse risk, VEN/HMA was associated with a higher CRc rate compared to CAG (80.5% vs. 58.3%; p = .006). VEN/HMA was associated with longer event-free survival (EFS) (median EFS, not reached vs. 4.5 months; p = .0004), whereas overall survival (OS) was comparable between the two cohorts (median OS, not reached vs. 18 months; p = .078). CONCLUSIONS: The VEN/HMA regimen may result in a better response than CAG-based treatment in older patients with newly diagnosed AML.


Asunto(s)
Aclarubicina , Protocolos de Quimioterapia Combinada Antineoplásica , Compuestos Bicíclicos Heterocíclicos con Puentes , Citarabina , Factor Estimulante de Colonias de Granulocitos , Leucemia Mieloide Aguda , Puntaje de Propensión , Sulfonamidas , Humanos , Femenino , Masculino , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/mortalidad , Anciano , Citarabina/administración & dosificación , Citarabina/uso terapéutico , Aclarubicina/administración & dosificación , Aclarubicina/uso terapéutico , Persona de Mediana Edad , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/administración & dosificación , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Anciano de 80 o más Años
19.
BMC Immunol ; 25(1): 63, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39354368

RESUMEN

OBJECTIVES: Carcinoembryonic-antigen-related cell-adhesion molecule 1 (CEACAM1) is an adhesion molecule that acts as a coinhibitory receptor in the immune system. We previously demonstrated that CEACAM1 is predominantly expressed on peripheral blood neutrophils in patients with RA. The aim of the present study was to investigate the effects of Janus kinase inhibitors (JAKi) on cytokine-activated human neutrophils and CEACAM1 expression. METHODS: Peripheral blood neutrophils were obtained from healthy subjects. Isolated neutrophils were stimulated with tumor necrosis factor-alpha (TNF-α) or granulocyte-macrophage colony-stimulating factor (GM-CSF) in the presence or absence of JAKi. The expression of CEACAM1 in peripheral blood neutrophils was analyzed by flow cytometry. Protein phosphorylation of signal transducer and activator of transcription (STAT)1, STAT3, and STAT5 was assessed by western blot using phospho-specific antibodies. RESULTS: We found that TNF-α-induced CEACAM1 expression was marginally suppressed after pretreatment with pan-JAK inhibitor, tofacitinib. Moreover, TNF-α induced STAT1 and STAT3 phosphorylation at the late stimulation phase (4 to 16 h). The expressions of CEACAM1 on neutrophils were markedly up-regulated by GM-CSF not by interleukin (IL)-6 stimulation. All JAKi inhibited GM-CSF-induced CEACAM1 expressions on neutrophils, however, the inhibitory effects of baricitinib were larger compared to those of tofacitinib or filgotinib. Moreover, CEACAM1 was marginally upregulated in interferon (IFN)-γ stimulated neutrophils. Similarly, JAKi inhibited IFN-γ-induced CEACAM1 expressions on neutrophils. CONCLUSIONS: We demonstrated that JAKi prevent GM-CSF-induced CEACAM1 expression in neutrophils, and JAKi-induced inhibition depends on their selectivity against JAK isoforms. These findings suggest that JAKi can modulate the expression of CEACAM1 in cytokine-activated neutrophils, thereby limiting their activation.


Asunto(s)
Antígenos CD , Moléculas de Adhesión Celular , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Inhibidores de las Cinasas Janus , Neutrófilos , Pirimidinas , Factor de Necrosis Tumoral alfa , Humanos , Neutrófilos/metabolismo , Neutrófilos/inmunología , Neutrófilos/efectos de los fármacos , Moléculas de Adhesión Celular/metabolismo , Antígenos CD/metabolismo , Pirimidinas/farmacología , Inhibidores de las Cinasas Janus/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Fosforilación/efectos de los fármacos , Piperidinas/farmacología , Pirroles/farmacología , Activación Neutrófila/efectos de los fármacos , Citocinas/metabolismo , Transducción de Señal/efectos de los fármacos
20.
Br J Haematol ; 205(2): 645-652, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972835

RESUMEN

This retrospective study analysed 106 acute myeloid leukaemia (AML) patients undergoing autologous haematopoietic stem cell transplantation (ASCT) to assess the impact of multiple small-dose infusions of granulocyte-colony-stimulating factor (G-CSF)-mobilized haploidentical lymphocytes as post-ASCT maintenance therapy. Among them, 50 patients received lymphocyte maintenance therapy, 21 received alternative maintenance therapy, and 35 received no maintenance therapy. Patients receiving lymphocyte maintenance therapy demonstrated significantly higher overall survival (OS) and disease-free survival (DFS) compared to those without maintenance therapy, with 4-year OS and DFS rates notably elevated. While there were no significant differences in recurrence rates among the three groups, lymphocyte maintenance therapy showcased particular benefits for intermediate-risk AML patients, yielding significantly higher OS and DFS rates and lower relapse rates compared to alternative maintenance therapy and no maintenance therapy. The study suggests that multiple small-dose infusions of G-CSF-mobilized haploidentical lymphocytes may offer promising outcomes for AML patients after ASCT, particularly for those classified as intermediate-risk. These findings underscore the potential efficacy of lymphocyte maintenance therapy in reducing disease relapse and improving long-term prognosis in this patient population.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Trasplante de Células Madre Hematopoyéticas , Leucemia Mieloide Aguda , Transfusión de Linfocitos , Humanos , Leucemia Mieloide Aguda/terapia , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Masculino , Femenino , Adulto , Persona de Mediana Edad , Trasplante de Células Madre Hematopoyéticas/métodos , Estudios Retrospectivos , Trasplante Autólogo , Adolescente , Movilización de Célula Madre Hematopoyética/métodos , Adulto Joven , Anciano , Trasplante Haploidéntico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA