Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636406

RESUMEN

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Asunto(s)
Lesión Pulmonar Aguda , Benzo(a)pireno , ARN de Interacción con Piwi , Animales , Masculino , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Benzo(a)pireno/toxicidad , Ratones Endogámicos C57BL
2.
Environ Sci Technol ; 55(8): 5024-5036, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33755441

RESUMEN

There is increasing pressure to develop alternative ecotoxicological risk assessment approaches that do not rely on expensive, time-consuming, and ethically questionable live animal testing. This study aimed to develop a comprehensive early life stage toxicity pathway model for the exposure of fish to estrogenic chemicals that is rooted in mechanistic toxicology. Embryo-larval fathead minnows (FHM; Pimephales promelas) were exposed to graded concentrations of 17α-ethinylestradiol (water control, 0.01% DMSO, 4, 20, and 100 ng/L) for 32 days. Fish were assessed for transcriptomic and proteomic responses at 4 days post-hatch (dph), and for histological and apical end points at 28 dph. Molecular analyses revealed core responses that were indicative of observed apical outcomes, including biological processes resulting in overproduction of vitellogenin and impairment of visual development. Histological observations indicated accumulation of proteinaceous fluid in liver and kidney tissues, energy depletion, and delayed or suppressed gonad development. Additionally, fish in the 100 ng/L treatment group were smaller than controls. Integration of omics data improved the interpretation of perturbations in early life stage FHM, providing evidence of conservation of toxicity pathways across levels of biological organization. Overall, the mechanism-based embryo-larval FHM model showed promise as a replacement for standard adult live animal tests.


Asunto(s)
Cyprinidae , Contaminantes Químicos del Agua , Animales , Etinilestradiol/toxicidad , Proteómica , Diferenciación Sexual , Vitelogeninas , Contaminantes Químicos del Agua/toxicidad
3.
Environ Res ; 199: 111328, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34004169

RESUMEN

BACKGROUND: The underlying mechanisms of lead (Pb) toxicity are not fully understood, which makes challenges to the traditional risk assessment. There is growing use of the mode of action (MOA) for risk assessment by integration of experimental data and system biology. The current study aims to develop a new pathway-based MOA for assessing Pb-induced neurotoxicity. METHODS: The available Comparative Toxicogenomic Database (CTD) was used to search genes associated with Pb-induced neurotoxicity followed by developing toxicity pathways using Ingenuity Pathway Analysis (IPA). The spatiotemporal sequence of disturbing toxicity pathways and key events (KEs) were identified by upstream regulator analysis. The MOA framework was constructed by KEs in biological and chronological order. RESULTS: There were a total of 71 references showing the relationship between lead exposure and neurotoxicity, which contained 2331 genes. IPA analysis showed that the neuroinflammation signaling pathway was the core toxicity pathway in the enriched pathways relevant to Pb-induced neurotoxicity. The upstream regulator analysis demonstrated that the aryl hydrocarbon receptor (AHR) signaling pathway was the upstream regulator of the neuroinflammation signaling pathway (11.76% overlap with upstream regulators, |Z-score|=1.451). Therefore, AHR activation was recognized as the first key event (KE1) in the MOA framework. The following downstream molecular and cellular key events were also identified. The pathway-based MOA framework of Pb-induced neurotoxicity was built starting with AHR activation, followed by an inflammatory response and neuron apoptosis. CONCLUSION: Our toxicity pathway-based approach not only advances the development of risk assessment for Pb-induced neurotoxicity but also brings new insights into constructing MOA frameworks of risk assessment for new chemicals.


Asunto(s)
Plomo , Toxicogenética , Apoptosis , Plomo/toxicidad , Medición de Riesgo , Transducción de Señal
4.
Planta ; 252(5): 86, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33057834

RESUMEN

MAIN CONCLUSION: UVB radiation caused irradiance-dependent and target-specific responses in non-UVB acclimated Lemna minor. Conceptual toxicity pathways were developed to propose causal relationships between UVB-mediated effects at multiple levels of biological organisation. Macrophytes inhabit waterways around the world and are used in hydroponics or aquaponics for different purposes such as feed and wastewater treatment and are thus exposed to elevated levels of UVB from natural and artificial sources. Although high UVB levels are harmful to macrophytes, mechanistic understanding of irradiance-dependent effects and associated modes of action in non-UVB acclimated plants still remains low. The present study was conducted to characterise the irradiance-dependent mechanisms of UVB leading to growth inhibition in Lemna minor as an aquatic macrophyte model. The L. minor were continuously exposed to UVB (0.008-4.2 W m-2) and constant UVA (4 W m-2) and photosynthetically active radiation, PAR (80 µmol m-2 s-1) for 7 days. A suite of bioassays was deployed to assess effects on oxidative stress, photosynthesis, DNA damage, and transcription of antioxidant biosynthesis, DNA repair, programmed cell death, pigment metabolism and respiration. The results showed that UVB triggered both irradiance-dependent and target-specific effects at multiple levels of biological organization, whereas exposure to UVA alone did not cause any effects. Inhibition of photosystem II and induction of carotenoids were observed at 0.23 W m-2, whereas growth inhibition, excessive reactive oxygen species, lipid peroxidation, cyclobutane pyrimidine dimer formation, mitochondrial membrane potential reduction and chlorophyll depletion were observed at 0.5-1 W m-2. Relationships between responses at different levels of biological organization were used to establish a putative network of toxicity pathways to improve our understanding of UVB effects in aquatic macrophytes under continuous UVB exposures. Additional studies under natural illuminations were proposed to assess whether these putative toxicity pathways may also be relevant for more ecologically relevant exposure scenarios.


Asunto(s)
Araceae , Rayos Ultravioleta , Araceae/efectos de la radiación , Clorofila/metabolismo , Fotosíntesis/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo
5.
Sci Total Environ ; 947: 174450, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38969138

RESUMEN

Fine particulate matter (PM2.5) can cause brain damage and diseases. Of note, ultrafine particles (UFPs) with an aerodynamic diameter less than or equal to 100 nm are a growing concern. Evidence has suggested toxic effects of PM2.5 and UFPs on the brain and links to neurological diseases. However, the underlying mechanism has not yet been fully illustrated due to the variety of the study models, different endpoints, etc. The adverse outcome pathway (AOP) framework is a pathway-based approach that could systematize mechanistic knowledge to assist health risk assessment of pollutants. Here, we constructed AOPs by collecting molecular mechanisms in PM-induced neurotoxicity assessments. We chose particulate matter (PM) as a stressor in the Comparative Toxicogenomics Database (CTD) and identified the critical toxicity pathways based on Ingenuity Pathway Analysis (IPA). We found 65 studies investigating the potential mechanisms linking PM2.5 and UFPs to neurotoxicity, which contained 2, 675 genes in all. IPA analysis showed that neuroinflammation signaling and glucocorticoid receptor signaling were the common toxicity pathways. The upstream regulator analysis (URA) of PM2.5 and UFPs demonstrated that the neuroinflammation signaling was the most initially triggered upstream event. Therefore, neuroinflammation was recognized as the MIE. Strikingly, there is a clear sequence of activation of downstream signaling pathways with UFPs, but not with PM2.5. Moreover, we found that inflammation response and homeostasis imbalance were key cellular events in PM2.5 and emphasized lipid metabolism and mitochondrial dysfunction, and blood-brain barrier (BBB) impairment in UFPs. Previous AOPs, which only focused on phenotypic changes in neurotoxicity upon PM exposure, we for the first time propose AOP framework in which PM2.5 and UFPs may activate pathway cascade reactions, resulting in adverse outcomes associated with neurotoxicity. Our toxicity pathway-based approach not only advances risk assessment for PM-induced neurotoxicity but shines a spotlight on constructing AOP frameworks for new chemicals.


Asunto(s)
Rutas de Resultados Adversos , Contaminantes Atmosféricos , Material Particulado , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Humanos , Síndromes de Neurotoxicidad , Transducción de Señal/efectos de los fármacos , Tamaño de la Partícula , Medición de Riesgo
6.
Toxicol Sci ; 199(1): 108-119, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38445754

RESUMEN

Carbamazepine (CBZ) has been identified in the aquatic environment as an emerging contaminant. Its immune effect across generations at environmentally relevant concentrations is little known. We aim to elucidate the effects of CBZ on the immune system in zebrafish (Danio rerio), hypothesizing the effects caused by CBZ exposure in the parental generation can be passed on to its offspring, leading to impairment of innate immune function and defense against pathogen weakened. A suite of bioassays (including a test with added lipopolysaccharide) was used to measure the effects of environmentally relevant levels of CBZ (1, 10, and 100 µg/l) on zebrafish at multiple biological levels, and across 2 successive generations (21 days exposure for F0; 5 and 21 days exposure or nonexposure for F1). The results showed that CBZ affected homeostasis in the immune system, caused liver vacuolization, increased the inflammation-related microbiota proportion in gut, and decreased reproduction, by induction of oxidative stress and modulation of Toll-like receptors (TLR) signaling pathway on gut-liver axis. The effects of exposure to CBZ over 21 days in F0 could be passed to the next generation. Intergenerational effects on TLR and antioxidant defense system were also observed in nonexposed F1 at 5 days post-fertilization (5 dpf), but diminished at 21 dpf. The finding provided evidence to unravel immune response by gut-liver axis mediated and oxidative stress under 4 test conditions. The study has raised a potential concern about the multigenerational immune effects of environmental pollutants and calls for a focus on the risk of synergetic pathogen infection.


Asunto(s)
Carbamazepina , Hígado , Transducción de Señal , Receptores Toll-Like , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/inmunología , Carbamazepina/toxicidad , Receptores Toll-Like/metabolismo , Transducción de Señal/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/inmunología , Hígado/metabolismo , Contaminantes Químicos del Agua/toxicidad , Estrés Oxidativo/efectos de los fármacos , Femenino , Inmunidad Innata/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Masculino , Relación Dosis-Respuesta a Droga , Reproducción/efectos de los fármacos
7.
Toxicol Appl Pharmacol ; 271(3): 395-404, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-21291902

RESUMEN

Response to environmental chemicals can vary widely among individuals and between population groups. In human health risk assessment, data on susceptibility can be utilized by deriving risk levels based on a study of a susceptible population and/or an uncertainty factor may be applied to account for the lack of information about susceptibility. Defining genetic susceptibility in response to environmental chemicals across human populations is an area of interest in the NAS' new paradigm of toxicity pathway-based risk assessment. Data from high-throughput/high content (HT/HC), including -omics (e.g., genomics, transcriptomics, proteomics, metabolomics) technologies, have been integral to the identification and characterization of drug target and disease loci, and have been successfully utilized to inform the mechanism of action for numerous environmental chemicals. Large-scale population genotyping studies may help to characterize levels of variability across human populations at identified target loci implicated in response to environmental chemicals. By combining mechanistic data for a given environmental chemical with next generation sequencing data that provides human population variation information, one can begin to characterize differential susceptibility due to genetic variability to environmental chemicals within and across genetically heterogeneous human populations. The integration of such data sources will be informative to human health risk assessment.


Asunto(s)
Bases de Datos Factuales , Contaminantes Ambientales/toxicidad , Predisposición Genética a la Enfermedad , Humanos , Polimorfismo Genético , Medición de Riesgo/métodos
8.
Aquat Toxicol ; 259: 106521, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37061422

RESUMEN

Chemical pollutants, such as herbicides, released into the aquatic environment adversely affect the phytoplankton community structure. While majority of herbicides are specifically designed to target photosynthetic processes, they also can be toxic to phytoplankton; however, despite the photosynthetic toxicity, some herbicides can target multiple physiological processes. Therefore, a full picture of toxicity pathway of herbicide to phytoplankton is necessary. In the present study, the cyanobacterium Microcystis aeruginosa was exposed to two levels (17 µg L-1 (EC10) and 65 µg L-1 (EC50)) of paraquat for 72 h. The physiological and metabolic responses were analyzed to elucidate the toxicity pathway and establish the adverse outcome pathway of paraquat to M. aeruginosa. The results revealed that enhanced glycolysis (upregulation of pyruvic acid level) and tricarboxylic acid cycle (upregulation of the levels of malic acid, isocitric acid and citric acid) exposed to EC10 level of paraquat, which probably acted as a temporary strategy to maintain a healthy energy status in M. aeruginosa cells. Meanwhile, the expressions of glutathione and benzoic acid were enhanced to scavenge the excessive reactive oxygen species (ROS). Additionally, the accumulation of pigments (chlorophyll a and carotenoid) might play a supplementary role in the acclimation to EC10 level paraquat treatment. In cells exposed to paraquat by EC50 level, the levels of SOD, CAT, glutathione and benzoic acid increased significantly; however, the ROS exceeded the tolerance level of antioxidant system in M. aeruginosa. The adverse effects were revealed by inhibition of chlorophyll a fluorescence, the decreases in several carbohydrates (e.g., glucose 1-phosphate, fructose and galactose) and total protein content. Consequently, paraquat-induced oxidative stress caused the growth inhibition of M. aeruginosa. These findings provide new insights into the mode of action of paraquat in M. aeruginosa.


Asunto(s)
Herbicidas , Microcystis , Contaminantes Químicos del Agua , Paraquat/toxicidad , Clorofila A/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad , Herbicidas/toxicidad , Herbicidas/metabolismo , Fitoplancton , Glutatión/metabolismo
9.
Environ Pollut ; 328: 121634, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37054867

RESUMEN

Concerns about the implications of microplastics (MPs) on aqueous animals have gained widespread attention. It has been postulated that the magnitude of MPs can influence its toxicity. However, little is known about how MPs toxicity changes with particle size. Amphibians are reliable bioindicators of ecosystem health due to their complex life cycles. In this study, we compared the influences of two sizes nonfunctionalized polystyrene microspheres (1 and 10 µm) on the metamorphosis of Asiatic toad (Bufo gargarizans). Acute exposure to MPs at high concentrations led to bioaccumulation in the digestive track and internal organs (i.e., liver and heart) of tadpoles. Long-term exposure to either size, at environmentally-related concentrations (1 and 4550 p/mL), led to growth and development delay in pro-metamorphic tadpoles. Remarkably, developmental plasticity mitigated these deleterious effects prior to the onset of metamorphic climax without compromising survival rate in later stages. MPs with a diameter of 10 µm dramatically altered the gut microbiota (e.g., abundance of Catabacter and Desulfovibrio) of pro-metamorphic tadpoles, whereas MPs with a diameter of 1 µm induced much more intensive transcriptional responses in the host tissues (e.g., upregulation of protein synthesis and mitochondrial energy metabolism, and downregulation of neural functions and cellular responses). Given that the two MPs sizes induced similar toxic outcomes, this suggests that their principal toxicity mechanisms are distinct. Small-sized MPs can travel easily across the intestinal mucosa and cause direct toxicity, while large-sized MPs accumulate in gut and affect the host by changing the homeostasis of digestive track. In conclusion, our findings indicate that MPs can affect the growth and development of amphibian larvae, but their developmental plasticity determines the ultimate detrimental effects. Multiple pathways of toxicity may contribute to the size-dependent toxicity of MPs. We anticipate that these findings will increase our understanding of the ecological effects of MPs.


Asunto(s)
Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Microplásticos/toxicidad , Microplásticos/metabolismo , Plásticos/farmacología , Ecosistema , Poliestirenos/toxicidad , Bufonidae/metabolismo , Larva , Contaminantes Químicos del Agua/toxicidad
10.
Food Chem Toxicol ; 182: 114199, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38000460

RESUMEN

Benzo(a)Pyrene (BaP) is a well-known environmental carcinogen that poses a significant risk to human health. The pivotal genes and toxicity pathways have been identified as key events to construct the mode of action (MOA) of BaP. In this study, we focused on evaluating the association between genetic variants in BaP-disturbed toxicity pathways and the susceptibility of laryngeal squamous cell carcinoma (LSCC), based on the data of our previous genome-wide association analysis (GWAS). In addition, we investigated the biological roles of these significant polymorphisms by integrating bioinformatic annotation and experimental validation. Our findings revealed that 15 functional polymorphisms in AHR signaling, p53 signaling, NRF2 signaling, TGF-ß signaling, STAT3 signaling, and IL-8 signaling pathways were significantly associated with susceptibility to LSCC. Our study provides a novel approach for identifying novel risk genetic loci utilizing GWAS data, and suggests potential targets for early detection of LSCC in the future.


Asunto(s)
Benzo(a)pireno , Neoplasias de Cabeza y Cuello , Humanos , Benzo(a)pireno/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello , Estudio de Asociación del Genoma Completo , Polimorfismo Genético
11.
Food Chem Toxicol ; 182: 114174, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37949205

RESUMEN

Microcystin-leucine arginine (MC-LR), a widely distributed and highly toxic environmental pollutant, plays crucial roles in cancer malignancy by activating characteristically toxic signaling pathways. Traditional animal-based toxicity evaluation methods have proven insufficient for identifying the specific role of these signaling pathways. Therefore, this study aimed to uncover the regulatory relationship between the toxic pathways and the progression of gastric cancer (GC). The findings provide novel avenues for conducting in vitro toxicity tests based on the investigated pathways. We found that MC-LR promoted the migration and invasion of SGC-7901 cells while simultaneously inhibiting their apoptosis in a dose-dependent manner. This observed cytotoxicity was primarily mediated through the AKT, JNK, and ERK signaling pathways. By using a mediation analysis model, we determined that AKT and ERK exhibited competitive effects in MC-LR-treated GC malignancy, while AKT and JNK acted independently from one another. This study establishes an in vitro toxicity test model of MC-LR based on toxicity-related pathways and underscores the pivotal roles of AKT, ERK, and JNK signaling in MC-LR toxicity. The findings offer a novel, fundamental framework for conducting chemical toxicity risk assessment.


Asunto(s)
Adenocarcinoma , Neoplasias Gástricas , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Neoplasias Gástricas/inducido químicamente , Sistema de Señalización de MAP Quinasas , Microcistinas/toxicidad , Adenocarcinoma/inducido químicamente
12.
Sci Total Environ ; 851(Pt 1): 157817, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970462

RESUMEN

Whole effluent toxicity (WET) testing is commonly used to ensure that wastewater discharges do not pose an unacceptable risk to receiving environments. Traditional WET testing involves exposing animals to (waste)water samples to assess four major ecologically relevant apical endpoints: mortality, growth, development, and reproduction. Recently, with the widespread implementation of the 3Rs to replace, reduce and refine the use of animals in research and testing, there has been a global shift away from in vivo testing towards in vitro alternatives. However, prior to the inclusion of in vitro bioassays in regulatory frameworks, it is critical to establish their ecological relevance and technical suitability. This is part 1 of a two-part review that aims to identify in vitro bioassays that can be used in WET testing and relate them to ecologically relevant endpoints through toxicity pathways, providing the reader with a high-level overview of current capabilities. Part 1 of this review focuses on four apical endpoints currently included in WET testing: mortality, growth, development, and reproduction. For each endpoint, the link between responses at the molecular or cellular level, that can be measured in vitro, and the adverse outcome at the organism level were established through simplified toxicity pathways. Additionally, literature from 2015 to 2020 on the use of in vitro bioassays for water quality assessments was reviewed to identify a list of suitable bioassays for each endpoint. This review will enable the prioritization of relevant endpoints and bioassays for incorporation into WET testing.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Animales , Bioensayo , Pruebas de Toxicidad , Aguas Residuales/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Calidad del Agua
13.
Sci Total Environ ; 851(Pt 1): 158094, 2022 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987232

RESUMEN

Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.


Asunto(s)
Aguas Residuales , Xenobióticos , Animales , Bioensayo/métodos , Sistema Endocrino , Pruebas de Toxicidad/métodos , Aguas Residuales/toxicidad
14.
Sci Total Environ ; 846: 157457, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868377

RESUMEN

Elevated levels of ionizing and non-ionizing radiation may co-occur and pose cumulative hazards to biota. However, the combined effects and underlying toxicity mechanisms of different types of radiation in aquatic plants remain poorly understood. The present study aims to demonstrate how different combined toxicity prediction approaches can collectively characterise how chronic (7 days) exposure to ultraviolet B (UVB) radiation (0.5 W m-2) modulates gamma (γ) radiation (14.9, 19.5, 43.6 mGy h-1) induced stress responses in the macrophyte Lemna minor. A suite of bioassays was applied to quantify stress responses at multiple levels of biological organisation. The combined effects (no-enhancement, additivity, synergism, antagonism) were determined by two-way analysis of variance (2 W-ANOVA) and a modified Independent Action (IA) model. The toxicological responses and the potential causality between stressors were further visualised by a network of toxicity pathways. The results showed that γ-radiation or UVB alone induced oxidative stress and programmed cell death (PCD) as well as impaired oxidative phosphorylation (OXPHOS) and photosystem II (PSII) activity in L. minor. γ-radiation also activated antioxidant responses, DNA damage repair and chlorophyll metabolism, and inhibited growth at higher dose rates (≥20 mGy h-1). When co-exposed, UVB predominantly caused non-interaction (no-enhancement or additive) effects on γ-radiation-induced antioxidant gene expression, energy quenching in PSII and growth for all dose rates, whereas antagonistic effects were observed for lipid peroxidation, OXPHOS, PCD, oxidative stress, chlorophyll metabolism and genes involved in DNA damage responses. Synergistic effects were observed for changes in photochemical quenching and non-photochemical quenching, and up-regulation of antioxidant enzyme genes (GST) at one or more dose rates, while synergistic reproductive inhibition occurred at all three γ-radiation dose rates. The present study provides mechanistic knowledge, quantitative understanding and novel analytical strategies to decipher combined effects across levels of biological organisation, which should facilitate future cumulative hazard assessments of multiple stressors.


Asunto(s)
Antioxidantes , Araceae , Antioxidantes/metabolismo , Clorofila/metabolismo , Rayos gamma , Peroxidación de Lípido , Estrés Oxidativo/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Rayos Ultravioleta
15.
Artículo en Inglés | MEDLINE | ID: mdl-33684654

RESUMEN

To evaluate the impact of environmental contaminants on aquatic health, extensive surveys of fish populations have been conducted using bioaccumulation as an indicator of impairment. While these studies have reported mixtures of chemicals in fish tissues, the relationship between specific contaminants and observed adverse impacts remains poorly understood. The present study aimed to characterize the toxicological responses induced by persistent organic pollutants in wild-caught hornyhead turbot (P. verticalis). To do so, hornyhead turbot were interperitoneally injected with a single dose of PCB or PBDE congeners prepared using environmentally realistic mixture proportions. After 96-hour exposure, the livers were excised and analyzed using transcriptomic approaches and analytical chemistry. Concentrations of PCBs and PBDEs measured in the livers indicated clear differences across treatments, and congener profiles closely mirrored our expectations. Distinct gene profiles were characterized for PCB and PBDE exposed fish, with significant differences observed in the expression of genes associated with immune responses, endocrine-related functions, and lipid metabolism. Our findings highlight the key role that transcriptomics can play in monitoring programs to assess chemical-induced toxicity in heterogeneous group of fish (mixed gender and life stage) as is typically found during field surveys. Altogether, the present study provides further evidence of the potential of transcriptomic tools to improve aquatic health assessment and identify causative agents.


Asunto(s)
Lenguado/genética , Éteres Difenilos Halogenados/toxicidad , Bifenilos Policlorados/toxicidad , Transcriptoma/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Monitoreo del Ambiente , Proteínas de Peces/genética
16.
Environ Pollut ; 285: 117188, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-33957519

RESUMEN

Pyraclostrobin is a widely used and highly efficient fungicide that also has high toxicity to aquatic organisms, especially fish. Although some research has reported the toxic effects of pyraclostrobin on fish, the main toxic pathways of pyraclostrobin in fish remain unclear. The present study has integrated histopathological, biochemical and hematological techniques to reveal the main toxic pathways and mechanisms of pyraclostrobin under different exposure routes. Our results indicated that pyraclostrobin entered fish mainly through the gills. The highest accumulation of pyraclostrobin was observed in the gills and heart compared with accumulation in other tissues and gill tissue showed the most severe damage. Hypoxia symptoms (water jacking, tummy turning and cartwheel formation) in fish were observed throughout the experiment. Taken together, our results suggested that the gills are important target organs. The high pyraclostrobin toxicity to gills might be associated with oxidative damage to the gills, inducing alterations in ventilation frequency, oxygen-carrying substances in blood and disorders of energy metabolism. Our research facilitates a better understanding of the toxic mechanisms of pyraclostrobin in fish, which can promote the ecotoxicological research of agrochemicals on aquatic organisms.


Asunto(s)
Cíclidos , Tilapia , Contaminantes Químicos del Agua , Animales , Branquias , Hígado , Estrobilurinas/toxicidad , Contaminantes Químicos del Agua/toxicidad
17.
Environ Pollut ; 268(Pt B): 115733, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33011576

RESUMEN

With numerous new chemicals introduced into the environment everyday, identification of their potential hazards to the environment and human health is a considerable challenge. Developing adverse outcome pathway (AOP) framework is promising in helping to achieve this goal as it can bring In Vitro testing into toxicity measurement and understanding. To explore the toxic mechanism underlying environmental chemicals via the AOP approach, an integration of adequate experimental data with systems biology understanding is preferred. Here, we describe a novel method to develop reliable and sensible AOPs that relies on chemical-gene interactions, toxicity pathways, molecular regulations, phenotypes, and outcomes information obtained from comparative toxicogenomics database (CTD) and Ingenuity Pathway Analysis (IPA). Using Benzo(a)pyrene (BaP), a highly studied chemical as a stressor, we identified the pivotal IPA toxicity pathways, the molecular initiating event (MIE), and candidate key events (KEs) to structure AOPs in the liver and lung, respectively. Further, we used the corresponding CTD information of multiple typical AHR-ligands, including 2,3,7,8-tetrachlorodibenzoparadioxin (TCDD), valproic acid, quercetin, and particulate matter, to validate our AOP networks. Our approach is likely to speed up AOP development as providing a time- and cost-efficient way to collect all fragmented bioinformation in published studies. It also facilitates a better understanding of the toxic mechanism of environmental chemicals, and potentially brings new insights into the screening of critical paths in the AOP network.


Asunto(s)
Rutas de Resultados Adversos , Bases de Datos Factuales , Humanos , Hígado , Fenotipo , Medición de Riesgo , Toxicogenética
18.
Chemosphere ; 262: 128362, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33182146

RESUMEN

Targeted methods that dominated toxicological research until recently did not allow for screening of all molecular changes involved in toxic response. Therefore, it is difficult to infer if all major mechanisms of toxicity have already been discovered, or if some of them are still overlooked. We used data on 591,084 unique chemical-gene interactions to identify genes and molecular pathways most sensitive to chemical exposures. The list of identified pathways did not change significantly when analyses were done on different subsets of data with non-overlapping lists of chemical compounds indicative that our dataset is saturated enough to provide unbiased results. One of the most important findings of this study is that almost every known molecular mechanism may be affected by chemical exposures. Predictably, xenobiotic metabolism pathways, and mechanisms of cellular response to stress and damage were among the most sensitive. Additionally, we identified highly sensitive molecular pathways, which are not widely recognized as major targets of toxicants, including lipid metabolism pathways, longevity regulation cascade, and cytokine-mediated signaling. These mechanisms are relevant to significant public health problems, such as aging, cancer, metabolic and autoimmune disease. Thus, public health field will benefit from future focus of toxicological research on identified sensitive mechanisms.


Asunto(s)
Exposición a Riesgos Ambientales , Animales , Humanos , Longevidad
19.
Toxicol Rep ; 8: 962-970, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34026559

RESUMEN

Hepatic encephalopathy (HE) following acute and chronic liver failure is defined as a complex of neuropsychiatric abnormalities, such as discrete personal changes, sleep disorder, forgetfulness, confusion, and decreasing the level of consciousness to coma. The use and design of suitable animal models that represent clinical features and pathological changes of HE are valuable to map the molecular mechanisms that result in HE. Among different types of animal models, thioacetamide (TAA) has been used extensively for the induction of acute liver injury and HE. This agent is not directly hepatotoxic but its metabolites induce liver injury through the induction of oxidative stress and produce systemic inflammation similar to that seen in acute HE patients. In this short review article, we shortly review the most important pathological findings in animal models of acute HE following the administration of TAA.

20.
Data Brief ; 33: 106398, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33102660

RESUMEN

A dataset of chemical-gene interactions was created by extracting data from the Comparative Toxicogenomics Database (CTD) with the following filtering criteria: data was extracted only from experiments that used human, rat, or mouse cells/tissues and used high-throughput approaches for gene expression analysis. Genes not present in genomes of all three species were filtered out. The resulting dataset included 591,084 chemical-gene interaction. All chemical compounds in the database were annotated for their major uses. For every gene in the database number of chemical-gene interactions was calculated and used as a metric of gene sensitivity to a variety of chemical exposures. The lists of genes with corresponding numbers of chemical-gene interactions were used in gene-set enrichment analysis (GSEA) to identify potential sensitivity to chemical exposures of molecular pathways in Hallmark, KEGG and Reactome collections. Thus, data presented here represent unbiased and searchable datasets of sensitivity of genes and molecular pathways to a broad range of chemical exposures. As such the data can be used for a diverse range of toxicological and regulatory applications. Approach for the identification of molecular mechanisms sensitive to chemical exposures may inform regulatory toxicology about best toxicity testing strategies. Analysis of sensitivity of genes and molecular pathways to chemical exposures based on these datasets was published in Chemosphere (Suvorov et al., 2021) [1].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA