Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 982
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Genes Dev ; 34(15-16): 1005-1016, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32747477

RESUMEN

Over the past decade there has been increased awareness of the potential role of alternative splicing in the etiology of cancer. In particular, advances in RNA-Sequencing technology and analysis has led to a wave of discoveries in the last few years regarding the causes and functional relevance of alternative splicing in cancer. Here we discuss the current understanding of the connections between splicing and cancer, with a focus on the most recent findings. We also discuss remaining questions and challenges that must be addressed in order to use our knowledge of splicing to guide the diagnosis and treatment of cancer.


Asunto(s)
Empalme Alternativo , Neoplasias/genética , Humanos , Mutación , Factores de Empalme de ARN/metabolismo , Transcriptoma
2.
Plant J ; 117(5): 1413-1431, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38038980

RESUMEN

During fruit ripening, polygalacturonases (PGs) are key contributors to the softening process in many species. Apple is a crisp fruit that normally exhibits only minor changes to cell walls and limited fruit softening. Here, we explore the effects of PG overexpression during fruit development using transgenic apple lines overexpressing the ripening-related endo-POLYGALACTURONASE1 gene. MdPG1-overexpressing (PGox) fruit displayed early maturation/ripening with black seeds, conversion of starch to sugars and ethylene production occurring by 80 days after pollination (DAP). PGox fruit exhibited a striking, white-skinned phenotype that was evident from 60 DAP and most likely resulted from increased air spaces and separation of cells in the hypodermis due to degradation of the middle lamellae. Irregularities in the integrity of the epidermis and cuticle were also observed. By 120 DAP, PGox fruit cracked and showed lenticel-associated russeting. Increased cuticular permeability was associated with microcracks in the cuticle around lenticels and was correlated with reduced cortical firmness at all time points and extensive post-harvest water loss from the fruit, resulting in premature shrivelling. Transcriptomic analysis suggested that early maturation was associated with upregulation of genes involved in stress responses, and overexpression of MdPG1 also altered the expression of genes involved in cell wall metabolism (e.g. ß-galactosidase, MD15G1221000) and ethylene biosynthesis (e.g. ACC synthase, MD14G1111500). The results show that upregulation of PG not only has dramatic effects on the structure of the fruit outer cell layers, indirectly affecting water status and turgor, but also has unexpected consequences for fruit development.


Asunto(s)
Malus , Malus/metabolismo , Frutas/metabolismo , Etilenos/metabolismo , Agua/metabolismo , Regulación de la Expresión Génica de las Plantas , Pared Celular/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant J ; 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39037746

RESUMEN

The advanced model of floral morphogenesis is based largely on data from Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa), but this process is less well understood in the Triticeae. Here, we investigated a sterile barley (Hordeum vulgare) mutant with malformed floral organs (designated mfo1), of which the paleae, lodicules, and stamens in each floret were all converted into lemma-like organs, and the ovary was abnormally shaped. Combining bulked-segregant analysis, whole-genome resequencing, and TILLING approaches, the mfo1 mutant was attributed to loss-of-function mutations in the MADS-box transcription factor gene HvAGL6, a key regulator in the ABCDE floral morphogenesis model. Through transcriptomic analysis between young inflorescences of wild-type and mfo1 plants, 380 genes were identified as differentially expressed, most of which function in DNA binding, protein dimerization, cell differentiation, or meristem determinacy. Regulatory pathway enrichment showed HvAGL6 associates with transcriptional abundance of many MADS-box genes, including the B-class gene HvMADS4. Mutants with deficiency in HvMADS4 exhibited the conversion of stamens into supernumerary pistils, producing multiple ovaries resembling the completely sterile multiple ovaries 3.h (mov3.h) mutant. These findings demonstrate that the regulatory model of floral morphogenesis is conserved across plant species and provides insights into the interactions between HvAGL6 and other MADS-box regulators.

4.
Gastroenterology ; 166(5): 859-871.e3, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38280684

RESUMEN

BACKGROUND & AIMS: The complex tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) has hindered the development of reliable predictive biomarkers for targeted therapy and immunomodulatory strategies. A comprehensive characterization of the TME is necessary to advance precision therapeutics in PDAC. METHODS: A transcriptomic profiling platform for TME classification based on functional gene signatures was applied to 14 publicly available PDAC datasets (n = 1657) and validated in a clinically annotated independent cohort of patients with PDAC (n = 79). Four distinct subtypes were identified using unsupervised clustering and assessed to evaluate predictive and prognostic utility. RESULTS: TME classification using transcriptomic profiling identified 4 biologically distinct subtypes based on their TME immune composition: immune enriched (IE); immune enriched, fibrotic (IE/F); fibrotic (F); and immune depleted (D). The IE and IE/F subtypes demonstrated a more favorable prognosis and potential for response to immunotherapy compared with the F and D subtypes. Most lung metastases and liver metastases were subtypes IE and D, respectively, indicating the role of clonal phenotype and immune milieu in developing personalized therapeutic strategies. In addition, distinct TMEs with potential therapeutic implications were identified in treatment-naive primary tumors compared with tumors that underwent neoadjuvant therapy. CONCLUSIONS: This novel approach defines a distinct subgroup of PADC patients that may benefit from immunotherapeutic strategies based on their TME subtype and provides a framework to select patients for prospective clinical trials investigating precision immunotherapy in PDAC. Further, the predictive utility and real-world clinical applicability espoused by this transcriptomic-based TME classification approach will accelerate the advancement of precision medicine in PDAC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Ductal Pancreático , Perfilación de la Expresión Génica , Neoplasias Pancreáticas , Medicina de Precisión , Transcriptoma , Microambiente Tumoral , Humanos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/inmunología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Microambiente Tumoral/inmunología , Microambiente Tumoral/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/inmunología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Biomarcadores de Tumor/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Regulación Neoplásica de la Expresión Génica , Inmunoterapia/métodos , Pronóstico , Terapia Neoadyuvante , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/inmunología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/terapia , Valor Predictivo de las Pruebas , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Bases de Datos Genéticas
5.
Exp Cell Res ; 440(2): 114139, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38908423

RESUMEN

Pelvic organ prolapse (POP) is a group of diseases caused by extracellular matrix (ECM) degradation in pelvic supportive tissues. Cysteine and serine rich nuclear protein 1 (CSRNP1) is involved in cell proliferation and survival regulation, and reportedly facilitates collagen breakdown in human chondrocytes. The present study aimed to probe the effect of CSRNP1 on collagen metabolism in human-derived vaginal fibroblasts. High expression of CSRNP1 was found in POP patient-derived vaginal fibroblasts in comparison to normal-derived vaginal fibroblasts. Following functional experiments revealed that CSRNP1 overexpression led to proliferation inhibition, apoptosis and collagen degradation in normal vaginal fibroblasts. In line with this, silencing of CSRNP1 inhibited hydrogen peroxide (H2O2)-triggered apoptosis, ROS generation and collagen loss in normal vaginal fibroblasts. Silencing of CSRNP1 also reduced the expression of cell senescence markers p21 and γ-H2Ax (the histone H2Ax phosphorylated at Ser139), as well as curbed collagen breakdown in normal vaginal fibroblasts caused by a DNA damage agent etoposide. Transcriptomic analysis of vaginal fibroblasts showed that differentially expressed genes affected by CSRNP1 overexpression were mainly enriched in the Wnt signaling pathway. Treatment with a Wnt pathway inhibitor DKK1 blocked CSRNP1 knockdown-caused collagen deposition. Mechanistically, CSRNP1 was identified to be a target of Snail family transcriptional repressor 2 (SNAI2). Forced expression of CSRNP1 reversed the anti-apoptotic, anti-senescent and anti-collagen loss effects of SNAI2 in normal vaginal fibroblasts exposed to H2O2 or etoposide. Our study indicates that the SNAI2/CSRNP1 axis may be a key driver in POP progression, which provides a potential therapeutic strategy for POP.


Asunto(s)
Apoptosis , Senescencia Celular , Colágeno , Daño del ADN , Fibroblastos , Estrés Oxidativo , Vagina , Femenino , Humanos , Apoptosis/genética , Proliferación Celular , Células Cultivadas , Senescencia Celular/genética , Colágeno/metabolismo , Fibroblastos/metabolismo , Silenciador del Gen , Peróxido de Hidrógeno/farmacología , Prolapso de Órgano Pélvico/metabolismo , Prolapso de Órgano Pélvico/genética , Prolapso de Órgano Pélvico/patología , Factores de Transcripción de la Familia Snail/metabolismo , Factores de Transcripción de la Familia Snail/genética , Vagina/metabolismo , Vagina/citología , Vagina/patología
6.
Genomics ; 116(4): 110869, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38797456

RESUMEN

Fusarium graminearum is an economically important phytopathogenic fungus. Chemical control remains the dominant approach to managing this plant pathogen. In the present study, we performed a comparative transcriptome analysis to understand the effects of four commercially used fungicides on F. graminearum. The results revealed a significant number of differentially expressed genes related to carbohydrate, amino acid, and lipid metabolism, particularly in the carbendazim and phenamacril groups. Central carbon pathways, including the TCA and glyoxylate cycles, were found to play crucial roles across all treatments except tebuconazole. Weighted gene co-expression network analysis reinforced the pivotal role of central carbon pathways based on identified hub genes. Additionally, critical candidates associated with ATP-binding cassette transporters, heat shock proteins, and chitin synthases were identified. The crucial functions of the isocitrate lyase in F. graminearum were also validated. Overall, the study provided comprehensive insights into the mechanisms of how F. graminearum responds to fungicide stress.


Asunto(s)
Proteínas Fúngicas , Fungicidas Industriales , Fusarium , Transcriptoma , Fusarium/genética , Fusarium/metabolismo , Fungicidas Industriales/farmacología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Isocitratoliasa/genética , Isocitratoliasa/metabolismo , Regulación Fúngica de la Expresión Génica , Perfilación de la Expresión Génica
7.
Proteomics ; 24(11): e2300058, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38470197

RESUMEN

Previously, we reported that human primary (SW480) and metastatic (SW620) colorectal (CRC) cells release three classes of membrane-encapsulated extracellular vesicles (EVs); midbody remnants (MBRs), exosomes (Exos), and microparticles (MPs). We reported that MBRs were molecularly distinct at the protein level. To gain further biochemical insights into MBRs, Exos, and MPs and their emerging role in CRC, we performed, and report here, for the first time, a comprehensive transcriptome and long noncoding RNA sequencing analysis and fusion gene identification of these three EV classes using the next-generation RNA sequencing technique. Differential transcript expression analysis revealed that MBRs have a distinct transcriptomic profile compared to Exos and MPs with a high enrichment of mitochondrial transcripts lncRNA/pseudogene transcripts that are predicted to bind to ribonucleoprotein complexes, spliceosome, and RNA/stress granule proteins. A salient finding from this study is a high enrichment of several fusion genes in MBRs compared to Exos, MPs, and cell lysates from their parental cells such as MSH2 (gene encoded DNA mismatch repair protein MSH2). This suggests potential EV-liquid biopsy targets for cancer detection. Importantly, the expression of cancer progression-related transcripts found in EV classes derived from SW480 (EGFR) and SW620 (MET and MACCA1) cell lines reflects their parental cell types. Our study is the report of RNA and fusion gene compositions within MBRs (including Exos and MPs) that could have an impact on EV functionality in cancer progression and detection using EV-based RNA/ fusion gene candidates for cancer biomarkers.


Asunto(s)
Neoplasias Colorrectales , Exosomas , Perfilación de la Expresión Génica , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Exosomas/genética , Exosomas/metabolismo , Perfilación de la Expresión Génica/métodos , Línea Celular Tumoral , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/genética , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/genética , Transcriptoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
J Cell Mol Med ; 28(17): e70085, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39267259

RESUMEN

Acute myeloid leukaemia (AML) is a highly heterogeneous disease, which lead to various findings in transcriptomic research. This study addresses these challenges by integrating 34 datasets, including 26 control groups, 6 prognostic datasets and 2 single-cell RNA sequencing (scRNA-seq) datasets to identify 10,000 AML-related genes (ARGs). We focused on genes with low variability and high consistency and successfully discovered 191 AML signatures (ASs). Leveraging machine learning techniques, specifically the XGBoost model and our custom framework, we classified AML subtypes with both scRNA-seq and bulk RNA-seq data, complementing the ELN2022 classification approach. Our research also identified promising treatments for AML through drug repurposing, with solasonine showing potential efficacy for high-risk AML patients, supported by molecular docking and transcriptomic analyses. To enhance reproducibility and customizability, we developed CSAMLdb, a user-friendly database platform. It facilitates the reuse and personalized analysis of nearly all results obtained in this research, including single-gene prognostics, multi-gene scoring, enrichment analysis, machine learning risk assessment, drug repositioning analysis and literature abstract named entity recognition. CSAMLdb is available at http://www.csamldb.com.


Asunto(s)
Reposicionamiento de Medicamentos , Perfilación de la Expresión Génica , Leucemia Mieloide Aguda , Transcriptoma , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Reposicionamiento de Medicamentos/métodos , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Aprendizaje Automático , Reproducibilidad de los Resultados , Pronóstico , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Biología Computacional/métodos , Simulación del Acoplamiento Molecular , Bases de Datos Genéticas
9.
J Cell Mol Med ; 28(20): e70110, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39422548

RESUMEN

The role of eosinophilic inflammation in the pathogenesis of chronic obstructive pulmonary disease (COPD) remains ambiguous and likely differs from its role in asthma. The molecular processes underlying the differences between eosinophils from asthma and COPD have not been sufficiently studied. The objective of this study was to compare the transcriptomic profiles of blood eosinophils in COPD and asthma. Eosinophils were isolated from peripheral blood drawn from stable mild-to-moderate COPD and asthma patients. RNA was isolated from eosinophils and sequenced using an NGSelect RNA. The prepared libraries were sequenced on an Illumina platform. The study group included five patients with asthma and four patients with COPD. The RNA-Seq data analysis identified 26 differentially expressed genes between COPD and asthma (according to adjusted p-value). In total, 6 genes were upregulated (e.g. CCL3L1, CCL4L2, GPR82) and 20 were downregulated (e.g. JUN, IFITM3, DUSP1, GNG7) in peripheral eosinophils of COPD patients compared to asthma. The genes associated with signalling of IL-4 and IL-13 pathways were downregulated in COPD eosinophils compared to asthma. In conclusion, blood eosinophils from COPD and asthma patients present different transcriptomic profiles suggesting their different function in pathobiology of both obstructive airway diseases. These differences might indicate the direction of the search of targeted therapy in COPD.


Asunto(s)
Asma , Eosinófilos , Perfilación de la Expresión Génica , Enfermedad Pulmonar Obstructiva Crónica , Transcriptoma , Humanos , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Asma/genética , Asma/patología , Eosinófilos/metabolismo , Eosinófilos/patología , Masculino , Femenino , Persona de Mediana Edad , Transcriptoma/genética , Anciano , Regulación de la Expresión Génica
10.
Plant J ; 113(2): 402-415, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36562774

RESUMEN

Photoperiod plays a critical role in controlling the formation of sexual or vegetative reproductive organs in potato. Although StPHYF-silenced plants overcome day-length limitations to tuberize through a systemic effect on tuberigen StSP6A expression in the stolon, the comprehensive regulatory network of StPHYF remains obscure. Therefore, the present study investigated the transcriptomes of StPHYF-silenced plants and observed that, in addition to known components of the photoperiodic tuberization pathway, florigen StSP3D and other flowering-related genes were activated in StPHYF-silenced plants, exhibiting an early flowering response. Additionally, grafting experiments uncovered the long-distance effect of StPHYF silencing on gene expression in the stolon, including the circadian clock components, flowering-associated MADSs, and tuberization-related regulatory genes. Similar to the AtFT-AtAP1 regulatory module in Arabidopsis, the present study established that the AP1-like StMADS1 functions downstream of the tuberigen activation complex (TAC) and that suppressing StMADS1 inhibits tuberization in vitro and delays tuberization in vivo. Moreover, the expression of StSP6A was downregulated in StMADS1-silenced plants, implying the expression of StSP6A may be feedback-regulated by StMADS1. Overall, these results reveal that the regulatory network of StPHYF controls flowering and tuberization and targets the crucial tuberization factor StMADS1 through TAC, thereby providing a better understanding of StPHYF-mediated day-length perception during potato reproduction.


Asunto(s)
Arabidopsis , Fitocromo , Solanum tuberosum , Fitocromo/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Solanum tuberosum/metabolismo , Transcriptoma , Tubérculos de la Planta/metabolismo , Hojas de la Planta/metabolismo , Fotoperiodo , Arabidopsis/genética , Reproducción , Regulación de la Expresión Génica de las Plantas/genética
11.
BMC Genomics ; 25(1): 557, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834972

RESUMEN

Reducing the levels of dietary protein is an effective nutritional approach in lowering feed cost and nitrogen emissions in ruminants. The purpose of this study was to evaluate the effects of dietary Lys/Met ratio in a low protein diet (10%, dry matter basis) on the growth performance and hepatic function (antioxidant capacity, immune status, and glycolytic activity) in Tibetan lambs. Ninety two-month-old rams with an average weight of 15.37 ± 0.92 kg were randomly assigned to LP-L (dietary Lys/Met = 1:1), LP-M (dietary Lys/Met = 2:1) and LP-H (dietary Lys/Met = 3:1) treatments. The trial was conducted over 100 d, including 10 d of adaption to the diets. Hepatic phenotypes, antioxidant capacity, immune status, glycolytic activity and gene expression profiling was detected after the conclusion of the feeding trials. The results showed that the body weight was higher in the LP-L group when compared to those on the LP-M group (P < 0.05). In addition, the activities of the catalase (CAT) and glutathione peroxidase (GSH-Px) in the LP-L group were significantly increased compared with the LP-M group (P < 0.05), while the malondialdehyde (MDA) levels in LP-H group were significantly decreased (P < 0.05). Compared with LP-H group, both hepatic glycogen (P < 0.01) and lactate dehydrogenase (LDH) (P < 0.05) were significantly elevated in LP-L group. For the LP-L group, the hepatocytes were arranged radially with the central vein in the center, and hepatic plates exhibited tight arrangement. Transcriptome analysis identified 29, 179, and 129 differentially expressed genes (DEGs) between the LP-M vs. LP-L, LP-H vs. LP-M, and LP-H vs. LP-L groups, respectively (Q-values < 0.05 and |log2Fold Change| > 1). Gene Ontology (GO) and correlation analyses showed that in the LP-L group, core genes (C1QA and JUNB) enriched in oxidoreductase activity were positively correlated with antioxidant indicators, while the MYO9A core gene enriched in the immune response was positively associated with immune indicators, and core genes enriched in molecular function (PDK3 and PDP2) were positively correlated with glycolysis indicators. In summary, low-protein diet with a low Lys/Met ratio (1:1) could reduce the hepatic oxidative stress and improve the glycolytic activity by regulating the expression of related genes of Tibetan sheep.


Asunto(s)
Antioxidantes , Glucólisis , Hígado , Metionina , Animales , Hígado/metabolismo , Hígado/efectos de los fármacos , Glucólisis/efectos de los fármacos , Antioxidantes/metabolismo , Ovinos , Metionina/farmacología , Metionina/administración & dosificación , Metionina/metabolismo , Lisina/metabolismo , Dieta con Restricción de Proteínas/veterinaria , Suplementos Dietéticos , Alimentación Animal/análisis , Masculino
12.
BMC Genomics ; 25(1): 390, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649807

RESUMEN

Medicinal plants are rich sources for treating various diseases due their bioactive secondary metabolites. Fenugreek (Trigonella foenum-graecum) is one of the medicinal plants traditionally used in human nutrition and medicine which contains an active substance, called diosgenin, with anticancer properties. Biosynthesis of this important anticancer compound in fenugreek can be enhanced using eliciting agents which involves in manipulation of metabolite and biochemical pathways stimulating defense responses. Methyl jasmonate elicitor was used to increase diosgenin biosynthesis in fenugreek plants. However, the molecular mechanism and gene expression profiles underlying diosgening accumulation remain unexplored. In the current study we performed an extensive analysis of publicly available RNA-sequencing datasets to elucidate the biosynthesis and expression profile of fenugreek plants treated with methyl jasmonate. For this purpose, seven read datasets of methyl jasmonate treated plants were obtained that were covering several post-treatment time points (6-120 h). Transcriptomics analysis revealed upregulation of several key genes involved in diosgenein biosynthetic pathway including Squalene synthase (SQS) as the first committed step in diosgenin biosynthesis as well as Squalene Epoxidase (SEP) and Cycloartenol Synthase (CAS) upon methyl jasmonate application. Bioinformatics analysis, including gene ontology enrichment and pathway analysis, further supported the involvement of these genes in diosgenin biosynthesis. The bioinformatics analysis led to a comprehensive validation, with expression profiling across three different fenugreek populations treated with the same methyl jasmonate application. Initially, key genes like SQS, SEP, and CAS showed upregulation, followed by later upregulation of Δ24, suggesting dynamic pathway regulation. Real-time PCR confirmed consistent upregulation of SQS and SEP, peaking at 72 h. Additionally, candidate genes Δ24 and SMT1 highlighted roles in directing metabolic flux towards diosgenin biosynthesis. This integrated approach validates the bioinformatics findings and elucidates fenugreek's molecular response to methyl jasmonate elicitation, offering insights for enhancing diosgenin yield. The assembled transcripts and gene expression profiles are deposited in the Zenodo open repository at https://doi.org/10.5281/zenodo.8155183 .


Asunto(s)
Vías Biosintéticas , Perfilación de la Expresión Génica , Oxilipinas , Terpenos , Transcriptoma , Trigonella , Trigonella/metabolismo , Trigonella/genética , Vías Biosintéticas/efectos de los fármacos , Vías Biosintéticas/genética , Terpenos/metabolismo , Oxilipinas/farmacología , Ciclopentanos/farmacología , Ciclopentanos/metabolismo , Acetatos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos
13.
BMC Genomics ; 25(1): 570, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844864

RESUMEN

Compound eyes formation in decapod crustaceans occurs after the nauplius stage. However, the key genes and regulatory mechanisms of compound eye development during crustacean embryonic development have not yet been clarified. In this study, RNA-seq was used to investigate the gene expression profiles of Neocaridina denticulata sinensis from nauplius to zoea stage. Based on RNA-seq data analysis, the phototransduction and insect hormone biosynthesis pathways were enriched, and molting-related neuropeptides were highly expressed. There was strong cell proliferation in the embryo prior to compound eye development. The formation of the visual system and the hormonal regulation of hatching were the dominant biological events during compound eye development. The functional analysis of DEGs across all four developmental stages showed that cuticle formation, muscle growth and the establishment of immune system occurred from nauplius to zoea stage. Key genes related to eye development were discovered, including those involved in the determination and differentiation of the eye field, eye-color formation, and visual signal transduction. In conclusion, the results increase the understanding of the molecular mechanism of eye formation in crustacean embryonic stage.


Asunto(s)
Ojo Compuesto de los Artrópodos , Perfilación de la Expresión Génica , Animales , Ojo Compuesto de los Artrópodos/metabolismo , Ojo Compuesto de los Artrópodos/crecimiento & desarrollo , Transcriptoma , Regulación del Desarrollo de la Expresión Génica , Decápodos/genética , Decápodos/crecimiento & desarrollo , Ojo/metabolismo , Ojo/embriología , Ojo/crecimiento & desarrollo
14.
BMC Genomics ; 25(1): 1002, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39455924

RESUMEN

BACKGROUND: With the improvement of living standards, the quality of chicken has become a significant concern. Chinese Dagu Chicken (dual-purpose type) and Arbor Acres plus broiler (AA+ broiler) (meat-type) were selected as the research subjects in this study, the meat quality of the breast and leg muscles were measured. However, the molecular mechanism(s) underlying regulation of muscle development are not yet fully elucidated. Therefore, finding molecular markers or major genes that regulate muscle quality has become a crucial breakthrough in chicken breeding. Unraveling the molecular mechanism behind meat traits in chicken and other domestic fowl is facilitated by identifying the key genes associated with these developmental events. Here, a comparative transcriptomic analysis of chicken meat was conducted on breast muscles (BM) and leg muscles (LM) in AA+ broilers (AA) and Dagu chicken (DG) to explore the differences in their meat traits employing RNA-seq. RESULTS: Twelve cDNA libraries of BM and LM from AA and DG were constructed from four experimental groups, yielding 14,464 genes. Among them, Dagu chicken breast muscles (DGB) vs AA+ broilers breast muscles (AAB) showed 415 upregulated genes and 449 downregulated genes, Dagu chicken leg muscles (DGL) vs AA+ broilers leg muscles (AAL) exhibited 237 upregulated genes and 278 downregulated genes, DGL vs DGB demonstrated 391 upregulated genes and 594 downregulated genes, and AAL vs AAB displayed 122 upregulated genes and 154 downregulated genes. 13 genes, including nine upregulated genes (COX5A, COX7C, NDUFV1, UQCRFS1, UQCR11, BRT-1, FGF14, TMOD1, MYOZ2) and four downregulated genes (MYBPC3, MYO7B, MTMR7, and TNNC1), were found to be associated with the oxidative phosphorylation signaling pathway. Further analysis revealed that the differentially expressed genes (DEGs) from muscle were enriched in various pathways, such as metabolic pathways, oxidative phosphorylation, carbon metabolism, glycolysis, extracellular matrix-receptor interaction, biosynthesis of amino acids, focal adhesion, vascular smooth muscle contraction, and cardiac muscle contraction, all of which are involved in muscle development and metabolism. This study also measured the meat quality of the breast and leg muscles from the two breeds, which demonstrated superior overall meat quality in Chinese Dagu Chicken compared to the AA+ broiler. CONCLUSIONS: Our findings show that the meat quality of dual-purpose breeds (Chinese Dagu chicken) is higher than meat-type (AA+ broiler), which may be related to the DEGs regulating muscle development and metabolism. Our findings also provide transcriptomic insights for a comparative analysis of molecular mechanisms underlying muscle development between the two breeds, and have practical implications for the improvement of chicken breeding practices.


Asunto(s)
Pollos , Perfilación de la Expresión Génica , Carne , Animales , Pollos/genética , Pollos/metabolismo , Pollos/crecimiento & desarrollo , Carne/normas , Carne/análisis , Transcriptoma , Músculo Esquelético/metabolismo , Masculino , Pueblos del Este de Asia
15.
BMC Genomics ; 25(1): 82, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245670

RESUMEN

Glucosidase II beta subunit (GluIIß), encoded from PRKCSH, is a subunit of the glucosidase II enzyme responsible for quality control of N-linked glycoprotein folding and suppression of GluIIß led to inhibitory effect of the receptor tyrosine kinase (RTKs) activities known to be critical for survival and development of cancer. In this study, we investigated the effect of GluIIß knockout on the global gene expression of cancer cells and its impact on functions of immune cells. GluIIß knockout lung adenocarcinoma A549 cell line was generated using CRISPR/Cas9-based genome editing system and subjected to transcriptomic analysis. Among 23,502 expressed transcripts, 1068 genes were significantly up-regulated and 807 genes greatly down-regulated. The KEGG enrichment analysis showed significant down-regulation of genes related extracellular matrix (ECM), ECM-receptor interaction, cytokine-cytokine receptor interaction and cell adhesion molecules (CAMs) in GluIIß knockout cells. Of 9 CAMs encoded DEG identified by KEGG enrichment analysis, real time RT-PCR confirmed 8 genes to be significantly down-regulated in all 3 different GluIIß knockout clones, which includes cadherin 4 (CDH4), cadherin 2 (CDH2), versican (VCAN), integrin subunit alpha 4 (ITGA4), endothelial cell-selective adhesion molecule (ESAM), CD274 (program death ligand-1 (PD-L1)), Cell Adhesion Molecule 1 (CADM1), and Nectin Cell Adhesion Molecule 3 (NECTIN3). Whereas PTPRF (Protein Tyrosine Phosphatase Receptor Type F) was significantly decreased only in 1 out of 3 knockout clones. Microscopic analysis revealed distinctively different cell morphology of GluIIß knockout cells with lesser cytoplasmic and cell surface area compared to parental A549 cells and non-targeted transfected cells.Further investigations revealed that Jurkat E6.1 T cells or human peripheral blood mononuclear cells (PBMCs) co-cultured with GluIIß knockout A549 exhibited significantly increased viability and tumor cell killing activity compared to those co-cultured with non-target transfected cells. Analysis of cytokine released from Jurkat E6.1 T cells co-cultured with GluIIß knockout A549 cells showed significant increased level of angiogenin and significant decreased level of ENA-78. In conclusion, knockout of GluIIß from cancer cells induced altered gene expression profile that improved anti-tumor activities of co-cultured T lymphocytes and PBMCs thus suppression of GluIIß may represent a novel approach of boosting anti-tumor immunity.


Asunto(s)
Moléculas de Adhesión Celular , Leucocitos Mononucleares , alfa-Glucosidasas , Humanos , Células A549 , Moléculas de Adhesión Celular/genética , Perfilación de la Expresión Génica , Citocinas , Adhesión Celular , Molécula 1 de Adhesión Celular
16.
Plant Mol Biol ; 114(3): 44, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630172

RESUMEN

Albino tea cultivars have high economic value because their young leaves contain enhanced free amino acids that improve the quality and properties of tea. Zhonghuang 1 (ZH1) and Zhonghuang 2 (ZH2) are two such cultivars widely planted in China; however, the environmental factors and molecular mechanisms regulating their yellow-leaf phenotype remain unclear. In this study, we demonstrated that both ZH1 and ZH2 are light- and temperature-sensitive. Under natural sunlight and low-temperature conditions, their young shoots were yellow with decreased chlorophyll and an abnormal chloroplast ultrastructure. Conversely, young shoots were green with increased chlorophyll and a normal chloroplast ultrastructure under shading and high-temperature conditions. RNA-seq analysis was performed for high light and low light conditions, and pairwise comparisons identified genes exhibiting different light responses between albino and green-leaf cultivars, including transcription factors, cytochrome P450 genes, and heat shock proteins. Weighted gene coexpression network analyses of RNA-seq data identified the modules related to chlorophyll differences between cultivars. Genes involved in chloroplast biogenesis and development, light signaling, and JA biosynthesis and signaling were typically downregulated in albino cultivars, accompanied by a decrease in JA-ILE content in ZH2 during the albino period. Furthermore, we identified the hub genes that may regulate the yellow-leaf phenotype of ZH1 and ZH2, including CsGDC1, CsALB4, CsGUN4, and a TPR gene (TEA010575.1), which were related to chloroplast biogenesis. This study provides new insights into the molecular mechanisms underlying leaf color formation in albino tea cultivars.


Asunto(s)
Albinismo , Perfilación de la Expresión Génica , Temperatura , Frío , Clorofila
17.
Mol Cancer ; 23(1): 228, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39394099

RESUMEN

Immune checkpoint inhibitors (ICIs) have transformed cancer treatment, providing significant benefit to patients across various tumour types, including melanoma. However, around 40% of melanoma patients do not benefit from ICI treatment, and accurately predicting ICI response remains challenging. We now describe a novel and simple approach that integrates immune-associated transcriptome signatures and tumour volume burden to better predict ICI response in melanoma patients. RNA sequencing was performed on pre-treatment (PRE) tumour specimens derived from 32 patients with advanced melanoma treated with combination PD1 and CTLA4 inhibitors. Of these 32 patients, 11 also had early during treatment (EDT, 5-15 days after treatment start) tumour samples. Tumour volume was assessed at PRE for all 32 patients, and at first computed tomography (CT) imaging for the 11 patients with EDT samples. Analysis of the Hallmark IFNγ gene set revealed no association with ICI response at PRE (AUC ROC curve = 0.6404, p = 0.24, 63% sensitivity, 71% specificity). When IFNg activity was evaluated with tumour volume (ratio of gene set expression to tumour volume) using logistic regression to predict ICI response, we observed high discriminative power in separating ICI responders from non-responders (AUC = 0.7760, p = 0.02, 88% sensitivity, 67% specificity); this approach was reproduced with other immune-associated transcriptomic gene sets. These findings were further replicated in an independent cohort of 23 melanoma patients treated with PD1 inhibitor. Hence, integrating tumour volume with immune-associated transcriptomic signatures improves the prediction of ICI response, and suggest that higher levels of immune activation relative to tumour burden are required for durable ICI response.


Asunto(s)
Inhibidores de Puntos de Control Inmunológico , Inmunoterapia , Melanoma , Carga Tumoral , Humanos , Melanoma/tratamiento farmacológico , Melanoma/inmunología , Melanoma/genética , Melanoma/patología , Melanoma/terapia , Carga Tumoral/efectos de los fármacos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Transcriptoma , Pronóstico , Resultado del Tratamiento , Biomarcadores de Tumor , Femenino , Masculino , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Perfilación de la Expresión Génica , Persona de Mediana Edad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Anciano
18.
Neurobiol Dis ; 200: 106624, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39097036

RESUMEN

Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.


Asunto(s)
Neuralgia , Traumatismos de los Nervios Periféricos , Animales , Humanos , Neuralgia/genética , Neuralgia/metabolismo , Traumatismos de los Nervios Periféricos/genética , Traumatismos de los Nervios Periféricos/metabolismo , Células Receptoras Sensoriales/metabolismo , Transcriptoma
19.
Cancer ; 130(S8): 1415-1423, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38079306

RESUMEN

BACKGROUND: Immune-checkpoint blockade (ICB) therapy shows promise for treating aggressive triple-negative breast cancer (TNBC). However, only some patients benefit from ICB, revealing an urgent need for identifying novel strategies for sensitizing patients to ICB. Previously, the authors demonstrated that type-I protein arginine methyltransferases (PRMTs) regulated antiviral innate-immune responses in TNBC by altering RNA splicing. This study aimed to explore the effects of targeting type-I PRMTs on the tumor microenvironment (TME) and the efficacy of ICB therapy against TNBC. METHODS: Single-cell transcriptomic analysis was performed to investigate the effects of type-I PRMT inhibition on the TME, especially T-cell subsets. Single-cell T-cell receptor sequencing was performed to analyze the diversity and dynamics of the T-cell repertoire. A syngeneic murine model of TNBC was used to evaluate the therapeutic efficacy and immune memory effect of combining a type-I PRMT inhibitor (MS023) with an anti-programmed cell death protein 1 (PD-1) antibody. RESULTS: Type-I PRMT inhibition combined with anti-PD-1 therapy reduced tumor growth. Mechanistically, type-I PRMT inhibition reshaped the TME. Increased CD8 T-cell infiltration was verified using flow cytometry. Increased clonotypes and clonal diversity were also observed after MS023 treatment, which contributed to immune memory following combination treatment. CONCLUSIONS: Targeting type-I PRMT can potentially improve immunotherapeutic efficacies in patients with TNBC. By enhancing the tumor immunogenicity and promoting a more favorable immune microenvironment, this combined approach may enable more patients with TNBC to benefit from immunotherapies.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Animales , Ratones , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Receptor de Muerte Celular Programada 1 , Proteína-Arginina N-Metiltransferasas/genética , Inmunoterapia , Muerte Celular , Microambiente Tumoral
20.
J Gen Virol ; 105(3)2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488850

RESUMEN

Arboviruses such as chikungunya, dengue and zika viruses cause debilitating diseases in humans. The principal vector species that transmits these viruses is the Aedes mosquito. Lack of substantial knowledge of the vector species hinders the advancement of strategies for controlling the spread of arboviruses. To supplement our information on mosquitoes' responses to virus infection, we utilized Aedes aegypti-derived Aag2 cells to study changes at the transcriptional level during infection with chikungunya virus (CHIKV). We observed that genes belonging to the redox pathway were significantly differentially regulated. Upon quantifying reactive oxygen species (ROS) in the cells during viral infection, we further discovered that ROS levels are considerably higher during the early hours of infection; however, as the infection progresses, an increase in antioxidant gene expression suppresses the oxidative stress in cells. Our study also suggests that ROS is a critical regulator of viral replication in cells and inhibits intracellular and extracellular viral replication by promoting the Rel2-mediated Imd immune signalling pathway. In conclusion, our study provides evidence for a regulatory role of oxidative stress in infected Aedes-derived cells.


Asunto(s)
Aedes , Arbovirus , Fiebre Chikungunya , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Especies Reactivas de Oxígeno , Mosquitos Vectores , Estrés Oxidativo , Inmunidad Innata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA