Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.944
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 186(17): 3558-3576.e17, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37562403

RESUMEN

The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.


Asunto(s)
Briófitas , Cambio Climático , Ecosistema , Aclimatación , Adaptación Fisiológica , Tibet , Briófitas/fisiología
2.
Cell ; 179(5): 1084-1097.e21, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730851

RESUMEN

The ocean is home to myriad small planktonic organisms that underpin the functioning of marine ecosystems. However, their spatial patterns of diversity and the underlying drivers remain poorly known, precluding projections of their responses to global changes. Here we investigate the latitudinal gradients and global predictors of plankton diversity across archaea, bacteria, eukaryotes, and major virus clades using both molecular and imaging data from Tara Oceans. We show a decline of diversity for most planktonic groups toward the poles, mainly driven by decreasing ocean temperatures. Projections into the future suggest that severe warming of the surface ocean by the end of the 21st century could lead to tropicalization of the diversity of most planktonic groups in temperate and polar regions. These changes may have multiple consequences for marine ecosystem functioning and services and are expected to be particularly significant in key areas for carbon sequestration, fisheries, and marine conservation. VIDEO ABSTRACT.


Asunto(s)
Biodiversidad , Plancton/fisiología , Agua de Mar/microbiología , Geografía , Modelos Teóricos , Océanos y Mares , Filogenia
3.
Cell ; 179(5): 1068-1083.e21, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31730850

RESUMEN

Ocean microbial communities strongly influence the biogeochemistry, food webs, and climate of our planet. Despite recent advances in understanding their taxonomic and genomic compositions, little is known about how their transcriptomes vary globally. Here, we present a dataset of 187 metatranscriptomes and 370 metagenomes from 126 globally distributed sampling stations and establish a resource of 47 million genes to study community-level transcriptomes across depth layers from pole-to-pole. We examine gene expression changes and community turnover as the underlying mechanisms shaping community transcriptomes along these axes of environmental variation and show how their individual contributions differ for multiple biogeochemically relevant processes. Furthermore, we find the relative contribution of gene expression changes to be significantly lower in polar than in non-polar waters and hypothesize that in polar regions, alterations in community activity in response to ocean warming will be driven more strongly by changes in organismal composition than by gene regulatory mechanisms. VIDEO ABSTRACT.


Asunto(s)
Regulación de la Expresión Génica , Metagenoma , Océanos y Mares , Transcriptoma/genética , Geografía , Microbiota/genética , Anotación de Secuencia Molecular , ARN Mensajero/genética , ARN Mensajero/metabolismo , Agua de Mar/microbiología , Temperatura
4.
Proc Natl Acad Sci U S A ; 121(12): e2312093121, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38466843

RESUMEN

The observed rate of global warming since the 1970s has been proposed as a strong constraint on equilibrium climate sensitivity (ECS) and transient climate response (TCR)-key metrics of the global climate response to greenhouse-gas forcing. Using CMIP5/6 models, we show that the inter-model relationship between warming and these climate sensitivity metrics (the basis for the constraint) arises from a similarity in transient and equilibrium warming patterns within the models, producing an effective climate sensitivity (EffCS) governing recent warming that is comparable to the value of ECS governing long-term warming under CO[Formula: see text] forcing. However, CMIP5/6 historical simulations do not reproduce observed warming patterns. When driven by observed patterns, even high ECS models produce low EffCS values consistent with the observed global warming rate. The inability of CMIP5/6 models to reproduce observed warming patterns thus results in a bias in the modeled relationship between recent global warming and climate sensitivity. Correcting for this bias means that observed warming is consistent with wide ranges of ECS and TCR extending to higher values than previously recognized. These findings are corroborated by energy balance model simulations and coupled model (CESM1-CAM5) simulations that better replicate observed patterns via tropospheric wind nudging or Antarctic meltwater fluxes. Because CMIP5/6 models fail to simulate observed warming patterns, proposed warming-based constraints on ECS, TCR, and projected global warming are biased low. The results reinforce recent findings that the unique pattern of observed warming has slowed global-mean warming over recent decades and that how the pattern will evolve in the future represents a major source of uncertainty in climate projections.

5.
Proc Natl Acad Sci U S A ; 121(15): e2320687121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557179

RESUMEN

The Mediterranean Sea is a marine biodiversity hotspot already affected by climate-driven biodiversity collapses. Its highly endemic fauna is at further risk if global warming triggers an invasion of tropical Atlantic species. Here, we combine modern species occurrences with a unique paleorecord from the Last Interglacial (135 to 116 ka), a conservative analog of future climate, to model the future distribution of an exemplary subset of tropical West African mollusks, currently separated from the Mediterranean by cold upwelling off north-west Africa. We show that, already under an intermediate climate scenario (RCP 4.5) by 2050, climatic connectivity along north-west Africa may allow tropical species to colonize a by then largely environmentally suitable Mediterranean. The worst-case scenario RCP 8.5 leads to a fully tropicalized Mediterranean by 2100. The tropical Atlantic invasion will add to the ongoing Indo-Pacific invasion through the Suez Canal, irreversibly transforming the entire Mediterranean into a novel ecosystem unprecedented in human history.


Asunto(s)
Biodiversidad , Ecosistema , Humanos , Mar Mediterráneo , Calentamiento Global , África Occidental
6.
Proc Natl Acad Sci U S A ; 121(21): e2316497121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739807

RESUMEN

Decreased production of crops due to climate change has been predicted scientifically. While climate-resilient crops are necessary to ensure food security and support sustainable agriculture, predicting crop growth under future global warming is challenging. Therefore, we aimed to assess the impact of realistic global warming conditions on rice cultivation. We developed a crop evaluation platform, the agro-environment (AE) emulator, which generates diverse environments by implementing the complexity of natural environmental fluctuations in customized, fully artificial lighting growth chambers. We confirmed that the environmental responsiveness of rice obtained in the fluctuation of artificial environments is similar to those exhibited in natural environments by validating our AE emulator using publicly available meteorological data from multiple years at the same location and multiple locations in the same year. Based on the representative concentration pathway, real-time emulation of severe global warming unveiled dramatic advances in the rice life cycle, accompanied by a 35% decrease in grain yield and an 85% increase in quality deterioration, which is higher than the recently reported projections. The transcriptome dynamism showed that increasing temperature and CO2 concentrations synergistically changed the expression of various genes and strengthened the induction of flowering, heat stress adaptation, and CO2 response genes. The predicted severe global warming greatly alters rice environmental adaptability and negatively impacts rice production. Our findings offer innovative applications of artificial environments and insights for enhancing varietal potential and cultivation methods in the future.


Asunto(s)
Calentamiento Global , Oryza , Oryza/crecimiento & desarrollo , Oryza/genética , Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Agricultura/métodos , Regulación de la Expresión Génica de las Plantas , Temperatura , Transcriptoma
7.
Proc Natl Acad Sci U S A ; 121(43): e2401523121, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39401358

RESUMEN

Asymmetric seasonal warming trends are evident across terrestrial ecosystems, with winter temperatures rising more than summer ones. Yet, the impact of such asymmetric seasonal warming on soil microbial carbon metabolism and growth remains poorly understood. Using 18O isotope labeling, we examined the effects of a decade-long experimental seasonal warming on microbial carbon use efficiency (CUE) and growth in alpine grassland ecosystems. Moreover, the quantitative stable isotope probing with 18O-H2O was employed to evaluate taxon-specific bacterial growth in these ecosystems. Results show that symmetric year-round warming decreased microbial growth rate by 31% and CUE by 22%. Asymmetric winter warming resulted in a further decrease in microbial growth rate of 27% and microbial CUE of 59% compared to symmetric year-round warming. Long-term warming increased microbial carbon limitations, especially under asymmetric winter warming. Long-term warming suppressed the growth rates of most bacterial genera, with asymmetric winter warming having a stronger inhibition on the growth rates of specific genera (e.g., Gp10, Actinomarinicola, Bosea, Acidibacter, and Gemmata) compared to symmetric year-round warming. Bacterial growth was phylogenetically conserved, but this conservation diminished under warming conditions, primarily due to shifts in bacterial physiological states rather than the number of bacterial species and community composition. Overall, long-term warming escalated microbial carbon limitations, decreased microbial growth and CUE, with asymmetric winter warming having a more pronounced effect. Understanding these impacts is crucial for predicting soil carbon cycling as global warming progresses.


Asunto(s)
Bacterias , Carbono , Estaciones del Año , Microbiología del Suelo , Suelo , Carbono/metabolismo , Suelo/química , Bacterias/crecimiento & desarrollo , Bacterias/metabolismo , Bacterias/clasificación , Calentamiento Global , Ecosistema , Pradera , Ciclo del Carbono
8.
Proc Natl Acad Sci U S A ; 121(42): e2410294121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39374389

RESUMEN

Compound drought-heatwaves (CDHWs) accelerate the warming and drying of soils, triggering soil compound drought-heatwaves (SCDHWs) that jeopardize the health of soil ecosystems. Nevertheless, the behavior of these events worldwide and their responses to climatic warming are underexplored. Here, we show a global escalation in the frequency, duration, peak intensity, and severity of SCDHWs, as well as an increase in affected land area, from 1980 to 2023. The increasing trends, which are particularly prominent since the early 2000 s, and projected to persist throughout this century, are dominated by summertime SCDHWs and enhanced by El Niño. Intensive soil warming as well as climatologically lower soil temperatures compared to air temperatures lead to localized hotspots of escalating SCDHW severity in northern high latitudes, while prolonged duration causes such hotspots in northern South America. Transformation of natural ecosystems, particularly forests and wetlands, to cropland as well as forest degradation substantially enhance the strength of SCDHWs. Global SCDHWs consistently exhibit higher frequencies, longer durations, greater severities, and faster growth rates than CDHWs in all aspects from 1980 to 2023. They are undergoing a critical transition, with droughts replacing heatwaves as the primary constraint. We emphasize the significant intensification of SCDHWs in northern high latitudes as well as the prolonged duration of SCDHWs in the Southern Hemisphere, posing an underrated threat to achieving carbon neutrality and food security goals.

9.
Proc Natl Acad Sci U S A ; 121(25): e2314036121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38857391

RESUMEN

Permafrost regions contain approximately half of the carbon stored in land ecosystems and have warmed at least twice as much as any other biome. This warming has influenced vegetation activity, leading to changes in plant composition, physiology, and biomass storage in aboveground and belowground components, ultimately impacting ecosystem carbon balance. Yet, little is known about the causes and magnitude of long-term changes in the above- to belowground biomass ratio of plants (η). Here, we analyzed η values using 3,013 plots and 26,337 species-specific measurements across eight sites on the Tibetan Plateau from 1995 to 2021. Our analysis revealed distinct temporal trends in η for three vegetation types: a 17% increase in alpine wetlands, and a decrease of 26% and 48% in alpine meadows and alpine steppes, respectively. These trends were primarily driven by temperature-induced growth preferences rather than shifts in plant species composition. Our findings indicate that in wetter ecosystems, climate warming promotes aboveground plant growth, while in drier ecosystems, such as alpine meadows and alpine steppes, plants allocate more biomass belowground. Furthermore, we observed a threefold strengthening of the warming effect on η over the past 27 y. Soil moisture was found to modulate the sensitivity of η to soil temperature in alpine meadows and alpine steppes, but not in alpine wetlands. Our results contribute to a better understanding of the processes driving the response of biomass distribution to climate warming, which is crucial for predicting the future carbon trajectory of permafrost ecosystems and climate feedback.


Asunto(s)
Biomasa , Ecosistema , Hielos Perennes , Tibet , Humedales , Plantas/metabolismo , Cambio Climático , Temperatura , Ciclo del Carbono , Desarrollo de la Planta/fisiología , Suelo/química , Pradera
10.
Proc Natl Acad Sci U S A ; 121(10): e2313371121, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38408245

RESUMEN

One of the drivers of life's diversification has been the emergence of "evolutionary innovations": The evolution of traits that grant access to underused ecological niches. Since ecological interactions can occur separately from mating, mating-related traits have not traditionally been considered factors in niche evolution. However, in order to persist in their environment, animals need to successfully mate just as much as they need to survive. Innovations that facilitate mating activity may therefore be an overlooked determinant of species' ecological limits. Here, we show that species' historical niches and responses to contemporary climate change are shaped by an innovation involved in mating-a waxy, ultra-violet-reflective pruinescence produced by male dragonflies. Physiological experiments in two species demonstrate that pruinescence reduces heating and water loss. Phylogenetic analyses show that pruinescence is gained after taxa begin adopting a thermohydrically stressful mating behavior. Further comparative analyses reveal that pruinose species are more likely to breed in exposed, open-canopy microhabitats. Biogeographic analyses uncover that pruinose species occupy warmer and drier regions in North America. Citizen-science observations of Pachydiplax longipennis suggest that the extent of pruinescence can be optimized to match the local conditions. Finally, temporal analyses indicate that pruinose species have been buffered against contemporary climate change. Overall, these historical and contemporary patterns show that successful mating can shape species' niche limits in the same way as growth and survival.


Asunto(s)
Cambio Climático , Odonata , Animales , Masculino , Filogenia , Ecosistema , Reproducción , Evolución Biológica
11.
Proc Natl Acad Sci U S A ; 121(11): e2312400121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437571

RESUMEN

The projected changes in the hydrological cycle under global warming remain highly uncertain across current climate models. Here, we demonstrate that the observational past warming trend can be utilized to effectively co1nstrain future projections in mean and extreme precipitation on both global and regional scales. The physical basis for such constraints relies on the relatively constant climate sensitivity in individual models and the reasonable consistency of regional hydrological sensitivity among the models, which is dominated and regulated by the increases in atmospheric moisture. For the high-emission scenario, on the global average, the projected changes in mean precipitation are lowered from 6.9 to 5.2% and those in extreme precipitation from 24.5 to 18.1%, with the inter-model variances reduced by 31.0 and 22.7%, respectively. Moreover, the constraint can be applied to regions in middle-to-high latitudes, particularly over land. These constraints result in spatially resolved corrections that deviate substantially and inhomogeneously from the global mean corrections. This study provides regionally constrained hydrological responses over the globe, with direct implications for climate adaptation in specific areas.

12.
Proc Natl Acad Sci U S A ; 120(39): e2303179120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37729205

RESUMEN

Anaerobic marine environments are the third largest producer of the greenhouse gas methane. The release to the atmosphere is prevented by anaerobic 'methanotrophic archaea (ANME) dependent on a symbiotic association with sulfate-reducing bacteria or direct reduction of metal oxides. Metagenomic analyses of ANME are consistent with a reverse methanogenesis pathway, although no wild-type isolates have been available for validation and biochemical investigation. Herein is reported the characterization of methanotrophic growth for the diverse marine methanogens Methanosarcina acetivorans C2A and Methanococcoides orientis sp. nov. Growth was dependent on reduction of either ferrihydrite or humic acids revealing a respiratory mode of energy conservation. Acetate and/or formate were end products. Reversal of the well-characterized methanogenic pathways is remarkably like the consensus pathways for uncultured ANME based on extensive metagenomic analyses.


Asunto(s)
Euryarchaeota , Respiración , Archaea/genética , Atmósfera , Consenso
13.
Proc Natl Acad Sci U S A ; 120(4): e2120869120, 2023 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-36656855

RESUMEN

Observed range shifts of numerous species support predictions of climate change models that species will shift their distribution northward into the Arctic and sub-Arctic seas due to ocean warming. However, how this is affecting overall species richness is unclear. Here we analyze 20,670 scientific research trawls from the North Sea to the Arctic Ocean collected from 1994 to 2020, including 193 fish species. We found that demersal fish species richness at the local scale has doubled in some Arctic regions, including the Barents Sea, and increased at a lower rate at adjacent regions in the last three decades, followed by an increase in species richness and turnover at a regional scale. These changes in biodiversity correlated with an increase in sea bottom temperature. Within the study area, Arctic species' probability of occurrence generally declined over time. However, the increase in species from southern latitudes, together with an increase in some Arctic species, ultimately led to an enrichment of the Arctic and sub-Arctic marine fauna due to increasing water temperature consistent with climate change.


Asunto(s)
Biodiversidad , Peces , Animales , Regiones Árticas , Océanos y Mares , Temperatura , Cambio Climático , Ecosistema , Océano Atlántico
14.
Proc Natl Acad Sci U S A ; 120(12): e2215278120, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36917663

RESUMEN

Heatwaves damage societies worldwide and are intensifying with global warming. Several mechanistic drivers of heatwaves, such as atmospheric blocking and soil moisture-atmosphere feedback, are well-known for their ability to raise surface air temperature. However, what limits the maximum surface air temperature in heatwaves remains unclear; this became evident during recent Northern Hemisphere heatwaves which achieved temperatures far beyond the upper tail of the observed statistical distribution. Here, we present evidence for the hypothesis that convective instability limits annual maximum surface air temperatures (TXx) over midlatitude land. We provide a theory for the corresponding upper bound of midlatitude temperatures, which accurately describes the observed relationship between temperatures at the surface and in the midtroposphere. We show that known heatwave drivers shift the position of the atmospheric state in the phase space described by the theory, changing its proximity to the upper bound. This theory suggests that the upper bound for midlatitude TXx should increase 1.9 times as fast as 500-hPa temperatures at the time and location of TXx occurrences. Using empirical 500-hPa warming, we project that the upper bound of TXx over Northern Hemisphere midlatitude land (40°N to 65°N) will increase about twice as fast as global mean surface air temperature, and TXx will increase faster than this bound over regions that dry on the hottest days.

15.
Proc Natl Acad Sci U S A ; 120(33): e2220616120, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549260

RESUMEN

Climate change, especially in the form of precipitation and temperature changes, can alter the transformation and delivery of nitrogen on the land surface and to aquatic systems, impacting the trophic states of downstream water bodies. While the expected impacts of changes in precipitation have been explored, a quantitative understanding of the impact of temperature on nitrogen loading is lacking at landscape scales. Here, using several decades of nitrogen loading observations, we quantify how individual and combined future changes in precipitation and temperature will affect riverine nitrogen loading. We find that, contrary to recent decades, rising temperatures are likely to offset or even reverse previously reported impacts of future increases in total and extreme precipitation on nitrogen runoff across the majority of the contiguous United States. These findings highlight the multifaceted impacts of climate change on the global nitrogen cycle.

16.
Proc Natl Acad Sci U S A ; 120(51): e2312714120, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38079548

RESUMEN

Hydrofluoroolefins are being adopted as sustainable alternatives to long-lived fluorine- and chlorine-containing gases and are finding current or potential mass-market applications as refrigerants, among a myriad of other uses. Their olefinic bond affords relatively rapid reaction with hydroxyl radicals present in the atmosphere, leading to short lifetimes and proportionally small global warming potentials. However, this type of functionality also allows reaction with ozone, and whilst these reactions are slow, we show that the products of these reactions can be extremely long-lived. Our chamber measurements show that several industrially important hydrofluoroolefins produce CHF3 (fluoroform, HFC-23), a potent, long-lived greenhouse gas. When this process is accounted for in atmospheric chemical and transport modeling simulations, we find that the total radiative effect of certain compounds can be several times that of the direct radiative effect currently recommended by the World Meteorological Organization. Our supporting quantum chemical calculations indicate that a large range of exothermicity is exhibited in the initial stages of ozonolysis, which has a powerful influence on the CHF3 yield. Furthermore, we identify certain molecular configurations that preclude the formation of long-lived greenhouse gases. This demonstrates the importance of product quantification and ozonolysis kinetics in determining the overall environmental impact of hydrofluoroolefin emissions.

17.
Proc Natl Acad Sci U S A ; 120(52): e2312104120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113265

RESUMEN

Increasingly frequent marine heatwaves are devastating coral reefs. Corals that survive these extreme events must rapidly recover if they are to withstand subsequent events, and long-term survival in the face of rising ocean temperatures may hinge on recovery capacity and acclimatory gains in heat tolerance over an individual's lifespan. To better understand coral recovery trajectories in the face of successive marine heatwaves, we monitored the responses of bleaching-susceptible and bleaching-resistant individuals of two dominant coral species in Hawai'i, Montipora capitata and Porites compressa, over a decade that included three marine heatwaves. Bleaching-susceptible colonies of P. compressa exhibited beneficial acclimatization to heat stress (i.e., less bleaching) following repeat heatwaves, becoming indistinguishable from bleaching-resistant conspecifics during the third heatwave. In contrast, bleaching-susceptible M. capitata repeatedly bleached during all successive heatwaves and exhibited seasonal bleaching and substantial mortality for up to 3 y following the third heatwave. Encouragingly, bleaching-resistant individuals of both species remained pigmented across the entire time series; however, pigmentation did not necessarily indicate physiological resilience. Specifically, M. capitata displayed incremental yet only partial recovery of symbiont density and tissue biomass across both bleaching phenotypes up to 35 mo following the third heatwave as well as considerable partial mortality. Conversely, P. compressa appeared to recover across most physiological metrics within 2 y and experienced little to no mortality. Ultimately, these results indicate that even some visually robust, bleaching-resistant corals can carry the cost of recurring heatwaves over multiple years, leading to divergent recovery trajectories that may erode coral reef resilience in the Anthropocene.


Asunto(s)
Antozoos , Humanos , Animales , Antozoos/fisiología , Arrecifes de Coral , Temperatura , Aclimatación/fisiología , Biomasa
18.
Proc Natl Acad Sci U S A ; 120(32): e2302190120, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37523548

RESUMEN

The paucity of investigations of carbon (C) dynamics through the soil profile with warming makes it challenging to evaluate the terrestrial C feedback to climate change. Soil microbes are important engines driving terrestrial biogeochemical cycles; their carbon use efficiency (CUE), defined as the proportion of metabolized organic C allocated to microbial biomass, is a key regulator controlling the fate of soil C. It has been theorized that microbial CUE should decline with warming; however, empirical evidence for this response is scarce, and data from deeper soils are particularly scarce. Here, based on soil samples from a whole-soil-profile warming experiment (0 to 1 m, +4 °C) and 18O tracing approach, we examined the vertical variation of microbial CUE and its response to ~3.3-y experimental warming in an alpine grassland on the Qinghai-Tibetan Plateau. Microbial CUE decreased with soil depth, a trend that was primarily controlled by soil C availability. However, warming had limited effects on microbial CUE regardless of soil depth. Similarly, warming had no significant effect on soil C availability, as characterized by extractable organic C, enzyme-based lignocellulose index, and lignin phenol-based ratios of vanillyls, syringyls, and cinnamyls. Collectively, our work suggests that short-term warming does not alter microbial CUE in either surface or deep soils, and emphasizes the regulatory role of soil C availability on microbial CUE.


Asunto(s)
Pradera , Suelo , Suelo/química , Carbono/metabolismo , Microbiología del Suelo , Cambio Climático
19.
Proc Natl Acad Sci U S A ; 120(6): e2207183120, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36716375

RESUMEN

Leveraging artificial neural networks (ANNs) trained on climate model output, we use the spatial pattern of historical temperature observations to predict the time until critical global warming thresholds are reached. Although no observations are used during the training, validation, or testing, the ANNs accurately predict the timing of historical global warming from maps of historical annual temperature. The central estimate for the 1.5 °C global warming threshold is between 2033 and 2035, including a ±1σ range of 2028 to 2039 in the Intermediate (SSP2-4.5) climate forcing scenario, consistent with previous assessments. However, our data-driven approach also suggests a substantial probability of exceeding the 2 °C threshold even in the Low (SSP1-2.6) climate forcing scenario. While there are limitations to our approach, our results suggest a higher likelihood of reaching 2 °C in the Low scenario than indicated in some previous assessments-though the possibility that 2 °C could be avoided is not ruled out. Explainable AI methods reveal that the ANNs focus on particular geographic regions to predict the time until the global threshold is reached. Our framework provides a unique, data-driven approach for quantifying the signal of climate change in historical observations and for constraining the uncertainty in climate model projections. Given the substantial existing evidence of accelerating risks to natural and human systems at 1.5 °C and 2 °C, our results provide further evidence for high-impact climate change over the next three decades.

20.
Proc Natl Acad Sci U S A ; 120(39): e2302292120, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722044

RESUMEN

As a major sink of anthropogenic heat and carbon, the Southern Ocean experienced pronounced warming with increasing extreme temperature events over the past decades. Mesoscale eddies that strongly influence the uptake, redistribution, and storage of heat in the ocean are expected to play important roles in these changes, yet observational evidence remains limited. Here, we employ a comprehensive analysis of over 500,000 historical hydrographic profile measurements combined with satellite-based eddy observations to show enhanced thermal eddy imprints in the Southern Ocean. Our observations reveal that anticyclonic (cyclonic) eddies are responsible for nearly half of the subsurface high (low)-temperature extremes detected, although only 10% of the profiles are located in eddy interiors. Over the past decade (2006 to 2019), both mean and extreme temperature anomalies within eddies in the Antarctic Circumpolar Current increased significantly, promoting the rise in subsurface ocean temperature variability. This enhanced role of eddies is likely a result of enhanced eddy pumping due to the increase in eddy intensity and ocean stratification caused by ocean warming. Our analysis underscores the crucial role of eddies in amplifying ocean temperature variability and extremes, with their effects expected to be even more pronounced as global warming persists.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA