Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur Spine J ; 33(9): 3457-3466, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38980367

RESUMEN

OBJECTIVE: To compare the differences between Ultrasound Volume Navigation (UVN), O-arm Navigation, and conventional X-ray fluoroscopy-guided screw placement in Minimally Invasive Transforaminal Lumbar Interbody Fusion (MIS-TLIF) surgeries. METHODS: A total of 90 patients who underwent MIS-TLIF due to lumbar disc herniation from January 2022 to January 2023 were randomly assigned to the UVN group, O-arm group, and X-ray group. UVN, O-arm navigation, and X-ray guidance were used for screw placement in the respective groups, while the remaining surgical procedures followed routine MIS-TLIF protocols. Intraoperative data including average single screw placement time, total radiation dose, and average effective radiation dose per screw were recorded and calculated. On the 10th day after surgery, postoperative X-ray and CT examinations were conducted to assess screw placement accuracy and facet joint violation. RESULTS: There were no significant differences in general characteristics among the three groups, ensuring comparability. Firstly, the average single screw placement time in the O-arm group was significantly shorter than that in the UVN group and X-ray group (P<0.05). Secondly, in terms of total radiation dose during surgery, for single-level MIS-TLIF, the O-arm group had a significantly higher radiation dose compared to the UVN group and X-ray group (P<0.05). However, for multi-level MIS-TLIF, the X-ray group had a significantly higher radiation dose than the O-arm group and UVN group (P<0.05). In terms of average single screw radiation dose, the O-arm group and X-ray group were similar (P>0.05), while the UVN group was significantly lower than the other two groups (P<0.05). Furthermore, no significant differences were found in screw placement assessment grades among the three groups (P>0.05). However, in terms of facet joint violation rate, the UVN group (10.3%) and O-arm group (10.7%) showed no significant difference (P>0.05), while the X-ray group (26.7%) was significantly higher than both groups (P<0.05). Moreover, in the UVN group, there were significant correlations between average single screw placement time and placement grade with BMI index (r = 0.637, P<0.05; r = 0.504, P<0.05), while no similar significant correlations were found in the O-arm and X-ray groups. CONCLUSION: UVN-guided screw placement in MIS-TLIF surgeries demonstrates comparable efficiency, visualization, and accuracy to O-arm navigation, while significantly reducing radiation exposure compared to both O-arm navigation and X-ray guidance. However, UVN may be influenced by factors like obesity, limiting its application.


Asunto(s)
Vértebras Lumbares , Procedimientos Quirúrgicos Mínimamente Invasivos , Fusión Vertebral , Humanos , Fusión Vertebral/métodos , Fusión Vertebral/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Vértebras Lumbares/cirugía , Vértebras Lumbares/diagnóstico por imagen , Adulto , Procedimientos Quirúrgicos Mínimamente Invasivos/métodos , Procedimientos Quirúrgicos Mínimamente Invasivos/instrumentación , Fluoroscopía/métodos , Cirugía Asistida por Computador/métodos , Tornillos Óseos , Anciano , Desplazamiento del Disco Intervertebral/cirugía , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Tornillos Pediculares
2.
J Radiol Prot ; 44(2)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38701771

RESUMEN

Given the new recommendations for occupational eye lens doses, various lead glasses have been used to reduce irradiation of interventional radiologists. However, the protection afforded by lead glasses over prescription glasses (thus over-glasses-type eyewear) has not been considered in detail. We used a phantom to compare the protective effects of such eyewear and regular eyewear of 0.07 mm lead-equivalent thickness. The shielding rates behind the eyewear and on the surface of the left eye of an anthropomorphic phantom were calculated. The left eye of the phantom was irradiated at various angles and the shielding effects were evaluated. We measured the radiation dose to the left side of the phantom using RPLDs attached to the left eye and to the surface/back of the left eyewear. Over-glasses-type eyewear afforded good protection against x-rays from the left and below; the average shielding rates on the surface of the left eye ranged from 0.70-0.72. In clinical settings, scattered radiation is incident on physicians' eyes from the left and below, and through any gap in lead glasses. Over-glasses-type eyewear afforded better protection than regular eyewear of the same lead-equivalent thickness at the irradiation angles of concern in clinical settings. Although clinical evaluation is needed, we suggest over-glasses-type Pb eyewear even for physicians who do not wear prescription glasses.


Asunto(s)
Dispositivos de Protección de los Ojos , Anteojos , Exposición Profesional , Dosis de Radiación , Protección Radiológica , Humanos , Exposición Profesional/prevención & control , Exposición Profesional/análisis , Fantasmas de Imagen , Ojo/efectos de la radiación , Traumatismos por Radiación/prevención & control
3.
J Radiol Prot ; 43(4)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37939385

RESUMEN

The diagnostic reference level (DRL) is an effective tool for optimising protection in medical exposures to patients. However regarding air kerma at the patient entrance reference point (Ka,r), one of the DRL quantities for endoscopic retrograde cholangiopancreatography (ERCP), manufacturers use a variety of the International Electrotechnical Commission and their own specific definitions of the reference point. The research question for this study was whetherKa,ris appropriate as a DRL quantity for ERCP. The purpose of this study was to evaluate the difference betweenKa,rand air kerma incident on the patient's skin surface (Ka,e) at the different height of the patient couch for a C-arm system. Fluoroscopy and radiography were performed using a C-arm system (Ultimax-i, Canon Medical Systems, Japan) and a over-couch tube system (CUREVISTA Open, Fujifilm Healthcare, Japan).Ka,ewas measured by an ion chamber placed on the entrance surface of the phantom. Kerma-area product (PKA) andKa,rwere measured by a built-inPKAmeter and displayed on the fluoroscopy system.Ka,edecreased whileKa,rincreased as the patient couch moved away from the focal spot. The uncertainty of theKa,e/Ka,rratio due to the different height of the patient couch was estimated to be 75%-94%.Ka,rmay not accurately representKa,e.PKAwas a robust DRL quantity that was independent of the patient couch height. We cautioned against optimising patient doses in ERCP with DRLs set in terms ofKa,rwithout considering the patient couch height of the C-arm system. Therefore, we recommend thatKa,ris an inappropriate DRL quantity in ERCP using the C-arm system.


Asunto(s)
Colangiopancreatografia Retrógrada Endoscópica , Niveles de Referencia para Diagnóstico , Humanos , Colangiopancreatografia Retrógrada Endoscópica/efectos adversos , Dosis de Radiación , Fluoroscopía , Radiografía
4.
BMC Musculoskelet Disord ; 23(1): 644, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35790951

RESUMEN

BACKGROUND: The pedicle screw system is widely used in spine surgery, and it provides rigid fixation and leads to successful subsequent deformity correction and bony fusion. The standard imaging technique for pedicle screw insertion is two-dimensional images obtained from C-arm-type X-ray fluoroscopy. Artis Zeego is an emerging intraoperative imaging technique that can provide conventional two-dimensional fluoroscopic images and rapid three-dimensional fluoroscopic computed tomography reconstruction imaging. The aim of this study is to compare the insertion accuracies of PS placement using Artis Zeego and conventional 2D X-ray fluoroscopy. METHODS: In this study, we retrospectively reviewed the postoperative images of thoracolumbar fusion patients who underwent surgery using pedicle screws between 2013 and 2018. Pedicle screw malplacement was assessed using a four-grade classification by Rao et al. Misplacement rates were compared between pedicle screws assisted with Artis Zeego and two-dimensional fluoroscopy. RESULTS: A total of 1107 pedicle screws in 153 patients were inserted using Artis Zeego, and 427 pedicle screws in 80 patients were inserted using fluoroscopy. The overall perforation rate was 4.2% (46 perforations of 1106 pedicle screws) in the Artis Zeego group and 7.7% (33 perforations of 427 pedicle screws) in the fluoroscopy group. In the Artis Zeego group, 43 (3.9%) screws were classified as grade 1, and three (0.3%) screws were classified as grade 2. In the fluoroscopy group, 21 (4.9%) screws were classified as grade 1, 10 (2.3%) screws were classified as grade 2, and 2 (0.5%) screws were classified as grade 3. The use of Artis Zeego was associated with a significantly lower screw malplacement rate than was the use of fluoroscopy (p < 0.001). CONCLUSIONS: Our results demonstrated that pedicle screw placement with Artis Zeego was associated with a lower malplacement rate than was conventional two-dimensional fluoroscopy. No severe malplacement was observed in the Artis Zeego group. Thus, Artis Zeego could be a good option for improving pedicle screw accuracy.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Fluoroscopía/métodos , Humanos , Tornillos Pediculares/efectos adversos , Estudios Retrospectivos , Fusión Vertebral/efectos adversos , Fusión Vertebral/métodos , Tomografía Computarizada por Rayos X
5.
BMC Musculoskelet Disord ; 23(1): 1067, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36471305

RESUMEN

BACKGROUND: Accurate puncture and localization are critical for percutaneous transforaminal endoscopic lumbar discectomy surgery. However, several punctures are often required, followed by X-ray fluoroscopy, which can increase surgical risk and complications. The aim of this study was to demonstrate a new body surface-assisting puncture device that can be used in percutaneous transforaminal endoscopic lumbar discectomy and to assess its clinical effectiveness. METHODS: Three hundred and forty-four patients were treated with percutaneous transforaminal endoscopic lumbar discectomy surgery in the Spinal Surgery Department of Taian City Central Hospital, China, between January 2020 and February 2022. Of these, 162 patients (the locator group) were punctured using a body surface-assisting puncture device while and 182 patients (the control group) were punctured using the traditional blind puncture method. The number of punctures, radiation dose during X-ray fluoroscopy, operation time, and surgical complications were compared between the two groups. RESULTS: The average number of punctures was 2.15 ± 1.10 in the locator group which was significantly lower than that in the control group (5.30 ± 1.74; P < 0.001). The average X-ray fluoroscopy radiation dose in the locator group was significantly lower at 2.34 ± 0.99 mGy, compared with 5.13 ± 1.29 mGy in the control group (P < 0.001). The mean operation time was also significantly less in locator group (47.06 ± 5.12 vs. 62.47 ± 5.44 min; P = 0.008). No significant differences in surgical complications were found between the two groups (P > 0.05). CONCLUSION: The use of a new body surface-assisting puncture device in percutaneous transforaminal endoscopic lumbar discectomy surgery can significantly reduce the number of punctures and X-ray fluoroscopy radiation dose, as well as shortening the operation time, without increasing surgical complications. This device is cheap, easy to operate, and suitable for all hospitals and spine surgeons, especially for small hospitals, with also no extra costs for patients.


Asunto(s)
Discectomía Percutánea , Desplazamiento del Disco Intervertebral , Humanos , Desplazamiento del Disco Intervertebral/diagnóstico por imagen , Desplazamiento del Disco Intervertebral/cirugía , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía , Punción Espinal , Discectomía Percutánea/efectos adversos , Discectomía Percutánea/métodos , Discectomía/efectos adversos , Discectomía/métodos , Endoscopía/efectos adversos , Endoscopía/métodos , Resultado del Tratamiento , Estudios Retrospectivos
6.
Int J Urol ; 29(10): 1207-1212, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35851694

RESUMEN

OBJECTIVES: To identify and raise awareness of the radiation exposure of urologists due to X-ray fluoroscopic procedures in daily practice. METHODS: This was a single-center, cohort study of 30 consecutive patients who underwent periodic percutaneous or transurethral replacements of urinary tract catheters. A total of 55 replacements every 3 months with cases aligned were performed by a single urologist. The urologist's radiation exposure and the incident dose to patients per case were measured with thermoluminescent dosimeters. In the latter 3-month period, the pulse fluoroscopy condition was changed from 15 to 7.5 pulses per second, and collimation was added to the field of view. RESULTS: In the analysis of all patients, the use of a modified pulse rate and collimation did not affect the fluoroscopy time, but it did significantly reduce the air kerma and dose area product; in addition, with respect to the medical exposure dose during percutaneous catheter replacement, fluoroscopy time was longer, but air kerma and dose area product showed significant decreases. As with decreases in medical exposure of patients, the equivalent dose for eye lenses of the urologist decreased from 1.2 mSv in the first 3-month period to 0.2 mSv in the second 3-month period. Similarly, the exposure dose for the extremities also decreased significantly, from 33.9 mSv to 8.1 mSv. CONCLUSIONS: Urologists are exposed to non-negligible amounts of radiation due to fluoroscopy. Appropriate management such as modified pulse fluoroscopy condition and precautions are required.


Asunto(s)
Exposición Profesional , Exposición a la Radiación , Estudios de Cohortes , Fluoroscopía/efectos adversos , Fluoroscopía/métodos , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/prevención & control , Dosis de Radiación , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/prevención & control , Urólogos
7.
Cryobiology ; 95: 72-79, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32526236

RESUMEN

Organ transplantation is the gold standard treatment for end-stage organ failure. Due to the severe shortage of transplantable organs, only a tiny fraction of patients may receive timely organ transplantation every year. Decellularization-recellularization technology using allogeneic and xenogeneic organs is currently conceived to be a promising solution to generate functionally transplantable organs in vitro. This approach, however, still faces tremendous technological challenges, one of them being the ability to evaluate and preserve the integrity of vascular architectures upon decellularization and cryostorage of the whole organ matrices so that the off-the-shelf organ grafts are available on demand for clinical applications. In the present study, we report a Micro-CT imaging method for evaluating the integrity of vasculature of the decellularized whole organ scaffolds with/without freezing/thawing. The method uses radiopaque Microfil perfusion and x-ray fluoroscopy to acquire high-resolution angiography of the organ matrix. The whole rat kidney is decellularized using a new multistep perfusion protocol with the combined use of Triton X-100 and DNase. The decellularized kidney matrix is then cryopreserved after the pretreatment with different cryoprotectant solutions. The reconstructed tomographic images from Micro-CT confirm various structural alterations in the vasculature of the whole decellularized kidney matrix with/without frozen storage. The freezing damage to the vascular architectures can be reduced by perfusing cryoprotectant solutions into the whole kidney matrix. Ice-free cryopreservation with the vitrification solution VS83 can successfully preserve the integrity of the whole kidney matrix's vasculature after frozen storage.


Asunto(s)
Matriz Extracelular , Andamios del Tejido , Animales , Criopreservación/métodos , Humanos , Riñón , Perfusión , Ratas , Ingeniería de Tejidos
8.
BMC Musculoskelet Disord ; 21(1): 750, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33189133

RESUMEN

BACKGROUND: We studied the characteristics and regularity of appropriate insertion points for percutaneous pedicle screw placement in the lumbar spine using C-arm X-ray fluoroscopy. The purpose of this study was to improve the accuracy of percutaneous pedicle screw placement and reduce the incidence of superior-level facet joint violation. METHODS: Six normal spinal specimens were included. Three different methods for placing percutaneous pedicle screws in the lumbar spine were applied, including the Roy-Camille method, Magerl method and Weinstein method. The relationships among the insertion point, pedicle projection and proximal facet joint on C-arm X-ray films were studied. The projection morphology of the vertebral pedicle in different segments of the lumbar spine was observed. The relationship between the outer edge of the pedicle projection and the outer edge of the cranial articular process was also studied. The distance between the insertion point and the facet joint (M1), the distance between the insertion point and outer edge of the cranial articular process (M2), and the distance between the insertion point and the projection center of the pedicle (M) were measured. RESULTS: In this study, we found that the projection shape of the vertebral pedicle differed across segments of the lumbar spine: the shape for L1-L3 was oval, and that for L4-L5 was round. The radiographic study showed that the outer edge of the cranial articular process was located on the lateral side of the outer edge of the pedicle projection and did not overlap with the pedicle projection. M for the Weinstein group was larger than that for the Roy-Camille group (P <  0.05). M1 for the Weinstein group was larger than that for the Roy-Camille and Magerl groups (P <  0.05). M2 for the Roy-Camille group was negative, M2 for the Magerl group was 0, and M2 for the Weinstein group was positive. CONCLUSION: Under C-arm X-ray fluoroscopy, we were able to accurately identify the characteristics and regularity of the appropriate insertion point for percutaneous pedicle screw placement in the lumbar spine, which was important for improving the accuracy of percutaneous pedicle screw placement and reducing the incidence of superior-level facet joint violation.


Asunto(s)
Tornillos Pediculares , Fusión Vertebral , Cadáver , Fluoroscopía , Humanos , Vértebras Lumbares/diagnóstico por imagen , Vértebras Lumbares/cirugía
9.
Sensors (Basel) ; 20(1)2019 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-31861606

RESUMEN

C-arm X-ray imaging is commonly applied in operating rooms for guiding orthopedic surgeries. Augmented Reality (AR) with C-arm X-ray images during surgery is an efficient way to facilitate procedures for surgeons. However, the accurate calibration process for surgical AR based on C-arm is essential and still challenging due to the limitations of C-arm imaging systems, such as instability of C-arm calibration parameters and the narrow field of view. We extend existing methods using a depth camera and propose a new calibration procedure consisting of calibration of the C-arm imaging system, and 3D/2D calibration of an RGB-D camera and C-arm system with a new method to achieve reliable data and promising accuracy and, at the same time, consistent with standard surgical protocols. For the calibration procedure, we apply bundle adjustment equations with a 3D designed Lego multi-modal phantom, in contrast to the previous methods in which planar calibration phantoms were applied. By using our method, the visualization of the X-ray image upon the 3D data was done, and the achieved mean overlay error was 1.03 mm. The evaluations showed that the proposed calibration procedure provided promising accuracy for AR surgeries and it improved the flexibility and robustness of existing C-arm calibration methods for surgical augmented reality (using C-arm and RGB-D sensor). Moreover, the results showed the efficiency of our method to compensate for the effects of the C-arm movement on calibration parameters. It was shown that the obtained overlay error was improved for the non-zero rotation movement of C-arm by using a virtual detector.

10.
Catheter Cardiovasc Interv ; 92(2): 222-246, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160001

RESUMEN

The stimulus to create this document was the recognition that ionizing radiation-guided cardiovascular procedures are being performed with increasing frequency, leading to greater patient radiation exposure and, potentially, to greater exposure to clinical personnel. While the clinical benefit of these procedures is substantial, there is concern about the implications of medical radiation exposure. ACC leadership concluded that it is important to provide practitioners with an educational resource that assembles and interprets the current radiation knowledge base relevant to cardiovascular procedures. By applying this knowledge base, cardiovascular practitioners will be able to select procedures optimally, and minimize radiation exposure to patients and to clinical personnel. "Optimal Use of Ionizing Radiation in Cardiovascular Imaging - Best Practices for Safety and Effectiveness" is a comprehensive overview of ionizing radiation use in cardiovascular procedures and is published online. To provide the most value to our members, we divided the print version of this document into 2 focused parts. "Part I: Radiation Physics and Radiation Biology" addresses radiation physics, dosimetry and detrimental biologic effects. "Part II: Radiologic Equipment Operation, Dose-Sparing Methodologies, Patient and Medical Personnel Protection" covers the basics of operation and radiation delivery for the 3 cardiovascular imaging modalities (x-ray fluoroscopy, x-ray computed tomography, and nuclear scintigraphy). For each modality, it includes the determinants of radiation exposure and techniques to minimize exposure to both patients and to medical personnel.


Asunto(s)
Técnicas de Imagen Cardíaca/normas , Enfermedades Cardiovasculares/diagnóstico por imagen , Exposición Profesional/normas , Dosis de Radiación , Exposición a la Radiación/normas , Benchmarking/normas , Consenso , Medicina Basada en la Evidencia/normas , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/prevención & control , Seguridad del Paciente/normas , Valor Predictivo de las Pruebas , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/prevención & control , Medición de Riesgo , Factores de Riesgo
11.
Catheter Cardiovasc Interv ; 92(2): 203-221, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30160013

RESUMEN

The stimulus to create this document was the recognition that ionizing radiation-guided cardiovascular procedures are being performed with increasing frequency, leading to greater patient radiation exposure and, potentially, to greater exposure for clinical personnel. Although the clinical benefit of these procedures is substantial, there is concern about the implications of medical radiation exposure. The American College of Cardiology leadership concluded that it is important to provide practitioners with an educational resource that assembles and interprets the current radiation knowledge base relevant to cardiovascular procedures. By applying this knowledge base, cardiovascular practitioners will be able to select procedures optimally, and minimize radiation exposure to patients and to clinical personnel. Optimal Use of Ionizing Radiation in Cardiovascular Imaging: Best Practices for Safety and Effectiveness is a comprehensive overview of ionizing radiation use in cardiovascular procedures and is published online. To provide the most value to our members, we divided the print version of this document into 2 focused parts. Part I: Radiation Physics and Radiation Biology addresses the issue of medical radiation exposure, the basics of radiation physics and dosimetry, and the basics of radiation biology and radiation-induced adverse effects. Part II: Radiological Equipment Operation, Dose-Sparing Methodologies, Patient and Medical Personnel Protection covers the basics of operation and radiation delivery for the 3 cardiovascular imaging modalities (x-ray fluoroscopy, x-ray computed tomography, and nuclear scintigraphy) and will be published in the next issue of the Journal.


Asunto(s)
Técnicas de Imagen Cardíaca/normas , Enfermedades Cardiovasculares/diagnóstico por imagen , Dosis de Radiación , Exposición a la Radiación/normas , Benchmarking/normas , Consenso , Medicina Basada en la Evidencia/normas , Humanos , Seguridad del Paciente/normas , Valor Predictivo de las Pruebas , Exposición a la Radiación/efectos adversos , Exposición a la Radiación/prevención & control , Medición de Riesgo , Factores de Riesgo
12.
BMC Pulm Med ; 17(1): 184, 2017 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-29228929

RESUMEN

BACKGROUND: Transbronchial biopsy for peripheral pulmonary lesions is generally performed under X-ray fluoroscopy. Virtual bronchoscopic navigation (VBN) is a method in which virtual images of the bronchial route to the lesion are produced based on CT images obtained before VBN, and the bronchoscope is guided using these virtual images, improving the diagnostic yield of peripheral pulmonary lesions. VBN has the possibility of eliminating the need for X-ray fluoroscopy in the bronchoscopic diagnosis of peripheral lesions. To determine whether VBN can be a substitute for X-ray fluoroscopy, a randomized multicenter trial (non-inferiority trial) was performed in VBN and X-ray fluoroscopy (XRF) -assisted groups. METHODS: The non-inferiority margin in the VBN-assisted group compared with the XRF-assisted group was set at 15%. The subjects consisted of 140 patients with peripheral pulmonary lesions with a mean diameter > 3 cm. In the VBN-assisted group, the bronchoscope was guided to the lesion using a VBN system without X-ray fluoroscopy. In the XRF-assisted group, the same bronchoscope was guided to the lesion under X-ray fluoroscopy. Subsequently, in both groups, the lesion was visualized using endobronchial ultrasonography with a guide sheath (EBUS/GS), and biopsy was performed. In this serial procedure, X-ray fluoroscopy was not used in the VBNA group. RESULTS: The subjects of analysis consisted of 129 patients. The diagnostic yield was 76.9% (50/65) in the VBN-assisted group and 85.9% (55/64) in the XRF-assisted group. The difference in the diagnostic yield between the two groups was -9.0% (95% confidence interval: -22.3% ~ 4.3%). The non-inferiority of the VBN-assisted group could not be confirmed. The rate of visualizing lesions by EBUS was 95.4% (62/65) in the VBN-assisted group and 96.9% (62/64) in the XRF-assisted group, being high in both groups. CONCLUSIONS: On EBUS/GS, a bronchoscope and biopsy instruments may be guided to the lesions using VBN without X-ray fluoroscopy, but X-ray fluoroscopy is necessary to improve the accuracy of sample collection from lesions. During transbronchial biopsy for peripheral pulmonary lesions, VBN cannot be a substitute for X-ray fluoroscopy. TRIAL REGISTRATION: UMIN-CTR (UMIN000001710); registered 16 February 2009.


Asunto(s)
Broncoscopía/métodos , Endosonografía/métodos , Fluoroscopía/métodos , Neoplasias Pulmonares , Pulmón , Tomografía Computarizada por Rayos X/métodos , Anciano , Biopsia/métodos , Investigación sobre la Eficacia Comparativa , Precisión de la Medición Dimensional , Femenino , Humanos , Biopsia Guiada por Imagen/métodos , Pulmón/diagnóstico por imagen , Pulmón/patología , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad
13.
Ann Otol Rhinol Laryngol ; 124(2): 162-7, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25139135

RESUMEN

OBJECTIVES: The first objective was to describe a novel case of migration of a broken dental needle into the parapharyngeal space. The second was to address the importance of simulation elucidating visualization of such a thin needle under X-ray fluoroscopy. METHODS: Clinical case records (including computed tomography [CT] and surgical approaches) were reviewed, and a simulation experiment using a head phantom was conducted using the same settings applied intraoperatively. RESULTS: A 36-year-old man was referred after failure to locate a broken 31-G dental needle. Computed tomography revealed migration of the needle into the parapharyngeal space. Intraoperative X-ray fluoroscopy failed to identify the needle, so a steel wire was applied as a reference during X-ray to locate the foreign body. The needle was successfully removed using an intraoral approach with tonsillectomy under surgical microscopy. The simulation showed that the dental needle was able to be identified only after applying an appropriate compensating filter, contrasting with the steel wire. CONCLUSION: Meticulous preoperative simulation regarding visual identification of dental needle foreign bodies is mandatory. Intraoperative radiography and an intraoral approach with tonsillectomy under surgical microscopy offer benefits for accessing the parapharyngeal space, specifically for cases medial to the great vessels.


Asunto(s)
Instrumentos Dentales , Fluoroscopía/métodos , Migración de Cuerpo Extraño/cirugía , Agujas , Procedimientos Quirúrgicos Otorrinolaringológicos/métodos , Faringe , Adulto , Migración de Cuerpo Extraño/diagnóstico , Humanos , Cuidados Intraoperatorios/métodos , Masculino , Cirugía Endoscópica por Orificios Naturales/métodos , Faringe/diagnóstico por imagen , Faringe/cirugía , Intensificación de Imagen Radiográfica/métodos , Tomografía Computarizada por Rayos X , Resultado del Tratamiento
14.
J Xray Sci Technol ; 23(3): 365-72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26410469

RESUMEN

BACKGROUND: Technologies employing digital X-ray devices are developed for mobile settings. OBJECTIVE: To develop a mobile digital X-ray fluoroscopy (MDF) for intraoperative guidance, using a novel flat panel detector to focus on diagnostics in outpatient clinics, operating and emergency rooms. METHODS: An MDF for small-scale field diagnostics was configured using an X-ray source and a novel flat panel detector. The imager enabled frame rates reaching 30 fps in full resolution fluoroscopy with maximal running time of 5 minutes. Signal-to-noise (SNR), contrast-to-noise (CNR), and spatial resolution were analyzed. Stray radiation, exposure radiation dose, and effective absorption dose were measured for patients. RESULTS: The system was suitable for small-scale field diagnostics. SNR and CNR were 62.4 and 72.0. Performance at 10% of MTF was 9.6 lp/mm (53 µ m) in the no binned mode. Stray radiation at 100 cm and 150 cm from the source was below 0.2 µ Gy and 0.1 µ Gy. Exposure radiation in radiography and fluoroscopy (5 min) was 10.2 µ Gy and 82.6 mGy. The effective doses during 5-min-long fluoroscopy were 0.26 mSv (wrist), 0.28 mSv (elbow), 0.29 mSv (ankle), and 0.31 mSv (knee). CONCLUSIONS: The proposed MDF is suitable for imaging in operating rooms.


Asunto(s)
Fluoroscopía/instrumentación , Monitoreo Intraoperatorio/instrumentación , Tobillo/diagnóstico por imagen , Tobillo/cirugía , Codo/diagnóstico por imagen , Codo/cirugía , Fluoroscopía/métodos , Fluoroscopía/normas , Humanos , Monitoreo Intraoperatorio/métodos , Monitoreo Intraoperatorio/normas , Procedimientos Ortopédicos , Dosis de Radiación , Interfaz Usuario-Computador
15.
Radiol Phys Technol ; 17(1): 288-296, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316688

RESUMEN

Previous radiation protection-measure studies for medical staff who perform X-ray fluoroscopy have employed simulations to investigate the use of protective plates and their shielding effectiveness. Incorporating directional information enables users to gain a clearer understanding of how to position protective plates effectively. Therefore, in this study, we propose the visualization of the directional vectors of scattered rays. X-ray fluoroscopy was performed; the particle and heavy-ion transport code system was used in Monte Carlo simulations to reproduce the behavior of scattered rays in an X-ray room by reproducing a C-arm X-ray fluoroscopy system. Using the calculated results of the scattered-ray behavior, the vectors of photons scattered from the phantom were visualized in three dimensions. A model of the physician was placed on the directional vectors and dose distribution maps to confirm the direction of the scattered rays toward the physician when the protective plate was in place. Simulation accuracy was confirmed by measuring the ambient dose equivalent and comparing the measured and calculated values (agreed within 10%). The directional vectors of the scattered rays radiated outward from the phantom, confirming a large amount of backscatter radiation. The use of a protective plate between the patient and the physician's head part increased the shielding effect, thereby enhancing radiation protection for the physicians compared to cases without the protective plate. The use of directional vectors and the surrounding dose-equivalent distribution of this method can elucidate the appropriate use of radiation protection plates.


Asunto(s)
Exposición Profesional , Protección Radiológica , Humanos , Dispersión de Radiación , Protección Radiológica/métodos , Simulación por Computador , Rayos X , Fluoroscopía , Fantasmas de Imagen , Dosis de Radiación , Exposición Profesional/prevención & control
16.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 398-404, 2024 Apr 15.
Artículo en Zh | MEDLINE | ID: mdl-38632057

RESUMEN

Objective: To explore the effectiveness of irreducible intertrochanteric femoral fracture in the elderly by treating with folding top technique and right-angle pliers prying and pulling under G-arm X-ray fluoroscopy. Methods: The clinical data of 74 elderly patients with irreducible intertrochanteric femoral fracture admitted between February 2016 and December 2022 and met the selection criteria were retrospectively analyzed. Among them, 38 cases were treated with folding top technique combined with right-angle pliers prying and pulling under G-arm X-ray fluoroscopy and intramedullary nailing fixation (study group), and 36 cases were treated with limited open reduction combined with other reduction methods and intramedullary nailing fixation (control group). There was no significant difference in baseline data between the two groups, such as age, gender, cause of injury, affected side and classification of fractures, complicated medical diseases, and time from injury to operation ( P>0.05). The operation time, intraoperative blood loss, hospital stay, fracture reduction time, fracture healing time, and complications of the two groups were recorded and compared. The quality of fracture reduction was evaluated by Baumgaertner et al. and Chang et al. fracture reduction standards. Results: Patients in both groups were followed up 10-14 months, with an average of 12 months. The operation time and intraoperative blood loss in the study group were significantly less than those in the control group ( P<0.05), there was no significant difference in hospital stay between the two groups ( P>0.05). At 2 days after operation, according to the fracture reduction standards of Baumgaertner et al. and CHANG Shimin et al., the quality of fracture reduction in the study group was better than that in the control group, and the fracture reduction time in the study group was shorter than that in the control group, with significant differences ( P<0.05). After operation, the fractures of the two groups all healed, and there was no significant difference in healing time between the two groups ( P>0.05). During the follow-up, there was no complication such as incision infection, internal fixation failure, deep venous thrombosis of lower limbs, intramedullary nail breakage, spiral blade cutting, or hip varus in the two groups, except for 2 cases of coxa vara in the control group. Conclusion: For the irreducible intertrochanteric femoral fracture, using folding top technique combined with right-angle pliers prying and pulling under G-arm X-ray fluoroscopy can obviously shorten the operation time, reduce the intraoperative blood loss, and improve the quality of fracture reduction.


Asunto(s)
Fijación Intramedular de Fracturas , Fracturas de Cadera , Humanos , Anciano , Pérdida de Sangre Quirúrgica , Estudios Retrospectivos , Rayos X , Resultado del Tratamiento , Clavos Ortopédicos , Fracturas de Cadera/cirugía , Fluoroscopía , Curación de Fractura
18.
JACC Case Rep ; 26: 102060, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38094170

RESUMEN

We report the case of a 64-year-old man with a history of chemotherapy-induced cardiomyopathy requiring heart transplant in 2022 who underwent successful endomyocardial biopsy using patient-specific computed tomographic fluoroscopic projections. (Level of Difficulty: Beginner.).

19.
J Orthop Res ; 41(6): 1217-1227, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36317847

RESUMEN

The aim of this randomized controlled trial was to measure and compare six-degree-of-freedom (6-DOF) knee joint motion of three total knee arthroplasty (TKA) implant designs across a range of daily activities. Seventy-five TKA patients were recruited to this study and randomly assigned a posterior-stabilized (PS), cruciate-retaining (CR), or medial-stabilized (MS) implant. Six months after surgery, patients performed five activities of daily living: level walking, step-up, step-down, sit-to-stand, and stand-to-sit. Mobile biplane X-ray imaging was used to measure 6-DOF knee kinematics and the center of rotation of the knee in the transverse plane for each activity. Mean 6-DOF knee kinematics were consistently similar for PS and CR, whereas MS was more externally rotated and abducted, and lateral shift was lower across all activities. Peak-to-peak anterior drawer for MS was also significantly lower during walking, step-up, and step-down (p < 0.017). The center of rotation of the knee in the transverse plane was located on the medial side for MS, whereas PS and CR rotated about the lateral compartment or close to the tibial origin. The kinematic function of MS was more similar to that of the healthy knee than PS and CR based on reduced paradoxical anterior translation at low flexion angles and a transverse center of rotation located in the medial compartment. Overall, 6-DOF knee joint motion for PS and CR were similar across all daily activities, whereas that measured for MS was appreciably different. The kinematic patterns observed for MS reflects a highly conforming medial articulation in the MS design.


Asunto(s)
Artroplastia de Reemplazo de Rodilla , Prótesis de la Rodilla , Humanos , Fenómenos Biomecánicos , Actividades Cotidianas , Articulación de la Rodilla/diagnóstico por imagen , Articulación de la Rodilla/cirugía , Artroplastia de Reemplazo de Rodilla/métodos , Rango del Movimiento Articular
20.
Phys Med Biol ; 68(21)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37774711

RESUMEN

Objective. Surgical guidewires are commonly used in placing fixation implants to stabilize fractures. Accurate positioning of these instruments is challenged by difficulties in 3D reckoning from 2D fluoroscopy. This work aims to enhance the accuracy and reduce exposure times by providing 3D navigation for guidewire placement from as little as two fluoroscopic images.Approach. Our approach combines machine learning-based segmentation with the geometric model of the imager to determine the 3D poses of guidewires. Instrument tips are encoded as individual keypoints, and the segmentation masks are processed to estimate the trajectory. Correspondence between detections in multiple views is established using the pre-calibrated system geometry, and the corresponding features are backprojected to obtain the 3D pose. Guidewire 3D directions were computed using both an analytical and an optimization-based method. The complete approach was evaluated in cadaveric specimens with respect to potential confounding effects from the imaging geometry and radiographic scene clutter due to other instruments.Main results. The detection network identified the guidewire tips within 2.2 mm and guidewire directions within 1.1°, in 2D detector coordinates. Feature correspondence rejected false detections, particularly in images with other instruments, to achieve 83% precision and 90% recall. Estimating the 3D direction via numerical optimization showed added robustness to guidewires aligned with the gantry rotation plane. Guidewire tips and directions were localized in 3D world coordinates with a median accuracy of 1.8 mm and 2.7°, respectively.Significance. The paper reports a new method for automatic 2D detection and 3D localization of guidewires from pairs of fluoroscopic images. Localized guidewires can be virtually overlaid on the patient's pre-operative 3D scan during the intervention. Accurate pose determination for multiple guidewires from two images offers to reduce radiation dose by minimizing the need for repeated imaging and provides quantitative feedback prior to implant placement.


Asunto(s)
Fracturas Óseas , Procedimientos Ortopédicos , Cirugía Asistida por Computador , Humanos , Procedimientos Ortopédicos/métodos , Cirugía Asistida por Computador/métodos , Fracturas Óseas/cirugía , Fluoroscopía/métodos , Imagenología Tridimensional/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA