Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 307
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 582: 49-56, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34689105

RESUMEN

The efficacy of n-3 polyunsaturated fatty acids (PUFAs) in improving outcomes in a renal ischemia-reperfusion injury (IRI) model has previously been reported. However, the underlying mechanisms remain poorly understood and few reports demonstrate how dietary n-3 PUFAs influence the composition of membrane phospholipids in the kidney. Additionally, it has not been elucidated whether perilla oil (PO), which is mainly composed of the n-3 alpha-linolenic acid, mitigates renal IRI. In this study, we investigated the effect of dietary n-3 PUFAs (PO), compared with an n-6 PUFA-rich soybean oil (SO) diet, on IRI-induced renal insufficiency in a rat model. Levels of membrane phospholipids containing n-3 PUFAs were higher in the kidney of PO-rich diet-fed rats than the SO-rich diet-fed rats. Levels of blood urea nitrogen and serum creatinine were significantly higher in the ischemia-reperfusion group than the sham group under both dietary conditions. However, no significant differences were observed in blood urea nitrogen, serum creatinine, or histological damage between PO-rich diet-fed rats and SO-rich diet-fed rats. In the kidney of PO-rich diet-fed rats, levels of arachidonic acid and arachidonic acid-derived pro-inflammatory lipid mediators were lower than SO-rich diet-fed rats. Eicosapentaenoic acid and eicosapentaenoic acid-derived lipid mediators were significantly higher in the kidney of PO-rich than SO-rich diet-fed rats. These results suggest that dietary n-3 PUFAs alter the fatty acid composition of membrane phospholipids and lipid mediators in the kidney; however, this does not attenuate renal insufficiency or histological damage in a renal IRI model.


Asunto(s)
Ácidos Grasos Omega-3/metabolismo , Ácidos Grasos Omega-6/metabolismo , Insuficiencia Renal/dietoterapia , Daño por Reperfusión/dietoterapia , Aceite de Soja/metabolismo , Animales , Ácido Araquidónico/metabolismo , Nitrógeno de la Urea Sanguínea , Creatinina/sangre , Ácidos Grasos Omega-3/administración & dosificación , Ácidos Grasos Omega-6/administración & dosificación , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Fosfolípidos/metabolismo , Aceites de Plantas/química , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Aceite de Soja/administración & dosificación , Aceite de Soja/química , Insuficiencia del Tratamiento , Ácido alfa-Linolénico/química
2.
J Appl Microbiol ; 130(6): 1893-1901, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33034112

RESUMEN

AIMS: The aim of this study was to determine the effects of unsaturated fatty acids on clinical plasmids. METHODS AND RESULTS: Two unsaturated fatty acids, linoleic acid (LA) and α-linolenic acid (ALA) at final concentration 0, 0·03, 0·3 and 3 mmol l-1 , respectively, were used to assess the effects on conjugative transfer of a mcr-1-harbouring plasmid pCSZ4 (IncX4) in conjugation experiment. The inhibitory mechanisms were analysed by molecular docking and the gene expression of virB11 was quantitated by qRT-PCR. Target plasmid diversity was carried out by TrwD/VirB11 homology protein sequence prediction analysis. Our results showed that LA and ALA inhibit plasmid pCSZ4 transfer by binding to the amino acid residues (Phe124 and Thr125) of VirB11 with dose-dependent effects. The expression levels of virB11 gene were also significantly inhibited by LA and ALA treatment. Protein homology analysis revealed a wide distribution of TrwD/VirB11-like genes among over 37 classes of plasmids originated from both Gram-negative and Gram-positive bacteria. CONCLUSIONS: This study demonstrates representing a diversity of plasmids that may be potentially inhibited by unsaturated fatty acids. SIGNIFICANCE AND IMPACT OF THE STUDY: Our work reported here provides additional support for application of curbing the spread of multiple plasmids by unsaturated fatty acids.


Asunto(s)
Escherichia coli/genética , Transferencia de Gen Horizontal/efectos de los fármacos , Ácido Linoleico/farmacología , Ácido alfa-Linolénico/farmacología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Colistina/farmacología , Conjugación Genética , Farmacorresistencia Bacteriana , Escherichia coli/clasificación , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Expresión Génica/efectos de los fármacos , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Simulación del Acoplamiento Molecular , Plásmidos/genética , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/metabolismo
3.
Bioprocess Biosyst Eng ; 44(3): 627-634, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33159545

RESUMEN

In this study, α-linolenic acid-enriched diacylglycerols (ALA-DAGs) were prepared via a two-step enzymatic way by combi-lipase using silkworm pupae oils as substrates. Firstly, several factors including temperature, mass ratio of water to oil, pH and enzyme loading were optimized for the hydrolysis of silkworm pupae oil. The maximum fatty acid content (96.51%) was obtained under the conditions: temperature 40 °C, water/oil 3:2 (w/w), pH 7, lipase TL100L loading 400 U/g, lipase PCL loading 30 U/g. Then, ALA was enriched by urea inclusion, with an increased ALA content of 82.50% being obtained. Secondly, the ALA-enriched silkworm pupae DAG oil (SPDO) was prepared by lipase PCL-catalyzed esterification reaction. After molecular distillation, the final SPDO product contained contents of DAGs (97.01%) and ALA (82.50%). This two-step enzymatic way for production of ALA-DAGs was successfully applied in a 100-fold scale-up reaction. Overall, our study provides a promising way for the preparation of ALA-DAGs.


Asunto(s)
Bombyx/química , Diglicéridos , Lipasa/química , Aceites/química , Pupa/química , Ácido alfa-Linolénico/química , Animales , Diglicéridos/síntesis química , Diglicéridos/química
4.
Molecules ; 26(22)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34833849

RESUMEN

Industrially, after the removal of oil from perilla seeds (PS) by screw-type compression, the large quantities of residual perilla seed meal (PSM) becomes non-valuable waste. Therefore, to increase the health value and price of PS and PSM, we focused on the biological effects of perilla seed oil (PSO) and rosmarinic acid-rich fraction (RA-RF) extracted from PSM for their role in preventing oxidative stress and inflammation caused by TNF-α exposure in an A549 lung adenocarcinoma culture model. The A549 cells were pretreated with PSO or RA-RF and followed by TNF-α treatment. We found that PSO and RA-RF were not toxic to TNF-α-induced A549 cells. Both extracts significantly decreased the generation of reactive oxygen species (ROS) in this cell line. The mRNA expression levels of IL-1ß, IL-6, IL-8, TNF-α, and COX-2 were significantly decreased by the treatment of PSO and RA-RF. The Western blot indicated that the expression of MnSOD, FOXO1, and NF-κB and phosphorylation of JNK were also significantly diminished by PSO and RA-RF treatment. The results demonstrated that PSO and RA-RF act as antioxidants to scavenge TNF-α induced ROS levels, resulting in decreased the expression of MnSOD, FOXO1, NF-κB and JNK signaling pathway in a human lung cell culture exposed to TNF-α.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Antiinflamatorios , Antioxidantes , Cinamatos , Depsidos , Ácidos Grasos Omega-3 , Neoplasias Pulmonares/metabolismo , Perilla/química , Ácido alfa-Linolénico , Células A549 , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Cinamatos/química , Cinamatos/farmacología , Depsidos/química , Depsidos/farmacología , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/farmacología , Humanos , Estrés Oxidativo/efectos de los fármacos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/farmacología , Ácido Rosmarínico
5.
J Nutr ; 150(11): 2900-2911, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-32937654

RESUMEN

BACKGROUND: Soybean lecithin, a plant-based emulsifier widely used in food, is capable of modulating postprandial lipid metabolism. With arising concerns of sustainability, alternative sources of vegetal lecithin are urgently needed, and their metabolic effects must be characterized. OBJECTIVES: We evaluated the impact of increasing doses of rapeseed lecithin (RL), rich in essential α-linolenic acid (ALA), on postprandial lipid metabolism and ALA bioavailability in lymph-cannulated rats. METHODS: Male Wistar rats (8 weeks old) undergoing a mesenteric lymph duct cannulation were intragastrically administered 1 g of an oil mixture containing 4% ALA and 0, 1, 3, 10, or 30% RL (5 groups). Lymph fractions were collected for 6 h. Lymph lipids and chylomicrons (CMs) were characterized. The expression of genes implicated in intestinal lipid metabolism was determined in the duodenum at 6 h. Data was analyzed using either sigmoidal or linear mixed-effects models, or one-way ANOVA, where appropriate. RESULTS: RL dose-dependently increased the lymphatic recovery (AUC) of total lipids (1100 µg/mL·h per additional RL%; P = 0.010) and ALA (50 µg/mL·h per additional RL%; P = 0.0076). RL induced a faster appearance of ALA in lymph, as evidenced by the exponential decrease of the rate of appearance of ALA with RL (R2 = 0.26; P = 0.0064). Although the number of CMs was unaffected by RL, CM diameter was increased in the 30%-RL group, compared to the control group (0% RL), by 86% at 3-4 h (P = 0.065) and by 81% at 4-6 h (P = 0.0002) following administration. This increase was positively correlated with the duodenal mRNA expression of microsomal triglyceride transfer protein (Mttp; ρ= 0.63; P = 0.0052). The expression of Mttp and secretion-associated, ras-related GTPase 1 gene homolog B (Sar1b, CM secretion), carnitine palmitoyltransferase IA (Cpt1a) and acyl-coenzyme A oxidase 1 (Acox1, beta-oxidation), and fatty acid desaturase 2 (Fads2, bioconversion of ALA into long-chain n-3 PUFAs) were, respectively, 49%, 29%, 74%, 48%, and 55% higher in the 30%-RL group vs. the control group (P < 0.05). CONCLUSIONS: In rats, RL enhanced lymphatic lipid output, as well as the rate of appearance of ALA, which may promote its subsequent bioavailability and metabolic fate.


Asunto(s)
Brassica napus/química , Lecitinas/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Linfa/química , Linfa/metabolismo , Ácido alfa-Linolénico/metabolismo , Animales , Disponibilidad Biológica , Lecitinas/química , Ratas , Ácido alfa-Linolénico/química
6.
Mar Drugs ; 18(2)2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-32059424

RESUMEN

One of the essential fatty acids with therapeutic impacts on human health is known to be omega-3 polyunsaturated fatty acids (PUFA). More lately, ionic liquids (ILs) have received significant attention among scientists in overcoming the disadvantages of traditional solvents in biomass lipid extraction. However, the large pool of cations and anions possibly accessible will lead to a growing number of innovatively synthesized ILs. Nevertheless, the exhaustive measurement of all these systems is economically impractical. The conductive screening model for real solvents (COSMO-RS) is considered a precious approach with the availability of a few models to predict the characteristics of ILs. This work introduces the estimate of capacity values at infinite dilution for a range of ILs using COSMO-RS software as part of solid-liquid extraction. This favorable outcome presented that the capacity values of the IL molecules are extremely dependent on both anions and cations. Among the 352 combinations of cation/anion tested, short alkyl chain cations coupled with inorganic anions were found to be most efficient and therefore superior in the extraction method. Sulphate-, chloride-, and bromide-based ILs were found to have higher extraction capacities in contrast with the remainders, while propanoate revealed an extraordinary capacity when combined with ethyl-based cations. Eventually, the predicted results from COSMO-RS were validated through the experimentally calculated extraction yield of alpha-linolenic acid (ALA) compound from Nannochloropsis sp. microalgae. Three selected ILs namely [EMIM][Cl], [TMAm][Cl], and [EMPyrro][Br] were selected from COSMO-RS for empirical extraction purpose and the validation results pinpointed the good prediction capability of COSMO-RS.


Asunto(s)
Líquidos Iónicos/química , Microalgas/química , Ácido alfa-Linolénico/química , Aniones/química , Cationes/química , Química Computacional , Iones/química , Modelos Moleculares , Estructura Molecular , Temperatura , Termodinámica
7.
Molecules ; 26(1)2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33379293

RESUMEN

Olives affected by active and damaging infestation (olive fruit fly Bactrocera oleae (Rossi)) were assayed for their chemical composition. Biophenols were determined by HPLC, sterols, triterpenic dialcohols, and fatty acids by gas chromatography analysis. The acquired data were statistically analyzed. Oils produced from "Istrska belica" fruit affected by active infestation compared to the oils made from fruit affected by damaging infestation showed higher amounts of total oleuropein biofenols (377.3 versus (vs.) 106.6 mg/kg), total biophenols (755 vs. 377 mg/kg), lignans (85.3 vs. 32.9 mg/kg), the dialdehydic form of decarboxymethyl oleuropein aglycone (DMO-Agl-dA) (148.3 vs. 49.0 mg/kg), its oxidized form (DMO-Agl-dA)ox (35.2 vs. 8.5 mg/kg), the dialdehydic form of oleuropein aglycone (O-Agl-dA) (61.1 vs. 8.0 mg/kg), the dialdehydic form of ligstroside aglycone (L-Agl-dA) (63.5 vs. 28.0 mg/kg), the aldehydic form of oleuropein aglycone (O-Agl-A) (40.6 vs. 8.4 mg/kg), and lower amounts of tyrosol (Tyr) (6.0 vs. 13. 9 mg/kg) and the aldehydic form of ligstroside aglycone (L-Agl-A) (13.8 vs. 40.3 mg/kg). Higher values of stigmasterol (2.99%) and lower values of campesterol (2.25%) were determined in oils affected by damaging infestation; an increase in triterpenic dialcohols was also observed (3.04% for damaging and 1.62% for active infestation). Oils affected by damaging infestation, compared to active infestation, showed lower amounts of oleic acid (73.89 vs. 75.15%) and higher amounts of myristic (0.013 vs. 0.011%), linoleic (7.27 vs. 6.48%), and linolenic (0.74 vs. 0.61%) acids.


Asunto(s)
Infecciones/metabolismo , Olea/química , Olea/metabolismo , Olea/parasitología , Aceite de Oliva/química , Aceite de Oliva/metabolismo , Tephritidae/fisiología , Animales , Infecciones/parasitología , Ácido Linoleico/química , Ácido Mirístico/química , Ácido Oléico/química , Fenoles/química , Ácido alfa-Linolénico/química
8.
Molecules ; 25(18)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933060

RESUMEN

Rana chensinensis ovum oil (RCOO) is an emerging source of unsaturated fatty acids (UFAs), but it is lacking in green and efficient extraction methods. In this work, using the response surface strategy, we developed a green and efficient CO2 supercritical fluid extraction (CO2-SFE) technology for RCOO. The response surface methodology (RSM), based on the Box-Behnken Design (BBD), was used to investigate the influence of four independent factors (pressure, flow, temperature, and time) on the yield of RCOO in the CO2-SFE process, and UPLC-ESI-Q-TOP-MS and HPLC were used to identify and analyze the principal UFA components of RCOO. According to the BBD response surface model, the optimal CO2-SFE condition of RCOO was pressure 29 MPa, flow 82 L/h, temperature 50 °C, and time 132 min, and the corresponding predicted optimal yield was 13.61%. The actual optimal yield obtained from the model verification was 13.29 ± 0.37%, and the average error with the predicted value was 0.38 ± 0.27%. The six principal UFAs identified in RCOO included eicosapentaenoic acid (EPA), α-linolenic acid (ALA), docosahexaenoic acid (DHA), arachidonic acid (ARA), linoleic acid (LA), and oleic acid (OA), which were important biologically active ingredients in RCOO. Pearson correlation analysis showed that the yield of these UFAs was closely related to the yield of RCOO (the correlation coefficients were greater than 0.9). Therefore, under optimal conditions, the yield of RCOO and principal UFAs always reached the optimal value at the same time. Based on the above results, this work realized the optimization of CO2-SFE green extraction process and the confirmation of principal bioactive ingredients of the extract, which laid a foundation for the green production of RCOO.


Asunto(s)
Cromatografía con Fluido Supercrítico/métodos , Ácidos Grasos Insaturados/análisis , Óvulo/química , Animales , Ácido Araquidónico/química , Productos Biológicos/análisis , Dióxido de Carbono , Cromatografía Líquida de Alta Presión , Ácidos Docosahexaenoicos/química , Ácido Eicosapentaenoico/química , Femenino , Ácido Linoleico/química , Ácido Oléico/química , Valor Predictivo de las Pruebas , Presión , Ranidae , Temperatura , Ácido alfa-Linolénico/química
9.
Molecules ; 25(15)2020 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-32748846

RESUMEN

Psoriasis is one of the most common human skin disorders. Although its pathogenesis is complex and not completely know, the hyperactivation of the immune system seem to have a key role. In this regard, among the most effective systemic therapeutics used in psoriasis, we find cyclosporine, an immunosuppressive medication. However, one of the major problems associated with the use of cyclosporine is the occurrence of systemic side effects such as nephrotoxicity, hypertension, etc. The present work fits in this context and its aim is the design of suitable platforms for cyclosporine topical release in psoriasis treatment. The main objective is to achieve local administration of cyclosporine in order to reduce its systemic absorption and, consequently, its side effects. In order to improve dermal penetration, solid lipid nanoparticles (SLNs) are used as carriers, due to their lipophilicity and occlusive properties, and naringenin and linolenic acid are chosen, due to their properties, as starting materials for SLNs design. In order to have dermatological formulations and further modulate drug release, SLNs are incorporated in several topical vehicles obtaining gels with different degree of lipophilicity. Potential applications for psoriasis treatment were evaluated by considering the encapsulation efficiency, release profiles, in vitro skin permeation, and anti-inflammatory effects.


Asunto(s)
Ciclosporina/administración & dosificación , Ciclosporina/farmacocinética , Flavanonas/química , Lípidos/química , Lípidos/farmacología , Piel/efectos de los fármacos , Ácido alfa-Linolénico/química , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antioxidantes/química , Antioxidantes/farmacología , Ciclosporina/química , Portadores de Fármacos , Composición de Medicamentos , Liberación de Fármacos , Humanos , Lípidos/administración & dosificación , Estructura Molecular , Tamaño de la Partícula , Absorción Cutánea , Espectroscopía Infrarroja por Transformada de Fourier
10.
Molecules ; 25(4)2020 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-32098445

RESUMEN

Positive physiological benefits of several plant oils on the UV-induced photoaging have been reported in some cell lines and model mice, but perilla oil collected from the seeds of Perilla frutescens L. has not been investigated in this context. To study the therapeutic effects of cold-pressed perilla oil (CPO) on UV-induced photoaging in vitro and in vivo, UV-induced cellular damage and cutaneous photoaging were assessed in normal human dermal fibroblasts (NHDFs) and HR-1 hairless mice. CPO contained five major fatty acids including linolenic acid (64.11%), oleic acid (16.34%), linoleic acid (11.87%), palmitic acid (5.06%), and stearic acid (2.48%). UV-induced reductions in NHDF cell viability, ROS production, SOD activity, and G2/M cell cycle arrest were remarkably improved in UV + CPO treated NHDF cells as compared with UV + Vehicle treated controls. Also, UV-induced increases in MMP-1 protein and galactosidase levels were remarkably suppressed by CPO. In UV-radiated hairless mice, topical application of CPO inhibited an increase in wrinkle formation, transepidermal water loss (TEWL), erythema value, hydration and melanin index on dorsal skin of UVB-irradiated hairless mice. CPO was observed to similarly suppress UV-induced increases in epidermal thickness, mast cell numbers, and galactosidase and MMP-3 mRNA levels. These results suggest CPO has therapeutic potential in terms of protecting against skin photoaging by regulating skin morphology, histopathology and oxidative status.


Asunto(s)
Extractos Vegetales/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Piel/efectos de los fármacos , Ácido alfa-Linolénico/farmacología , Animales , Antioxidantes , Fibroblastos/efectos de los fármacos , Humanos , Ácido Linoleico/química , Ácido Linoleico/farmacología , Ratones , Ratones Pelados , Ácido Oléico/química , Ácido Oléico/farmacología , Perilla frutescens , Extractos Vegetales/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Piel/patología , Piel/efectos de la radiación , Envejecimiento de la Piel/patología , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Ácido alfa-Linolénico/química
11.
Molecules ; 25(9)2020 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-32365849

RESUMEN

Oxidized low-density lipoprotein (Ox-LDL) is known to be highly atherogenic. Thus, decreasing the blood levels of Ox-LDL through dietary means is an important approach to reduce cardiovascular events in high-risk individuals. In this randomized placebo-controlled human interventional trial, we aimed to evaluate whether Perilla frutescens leaf powder (PLP) ameliorates Ox-LDL and home blood pressure, along with its biological antioxidant potential. Healthy Japanese volunteers aged 30-60 years (n = 60) were randomized to PLP and placebo groups. The PLP group consumed PLP dried using a microwave under reduced pressure, and the placebo group consumed pectin fiber daily for 6 months. Home blood pressure, serum biochemical parameters, and fatty acid profiles of erythrocyte plasma membranes were analyzed. Plasma Ox-LDL levels significantly decreased in the PLP group but not in the placebo group. Mean changes in the biological antioxidant potential and alpha-linolenic acid levels in the erythrocyte plasma membrane were significantly increased in the PLP group than in the placebo group. In subjects with prehypertension (systolic blood pressure [SBP] ³ 120 mmHg), the mean reduction in morning or nocturnal SBP was significantly greater in the PLP group than in the placebo group. Thus, PLP intake may be an effective intervention to prevent cardiovascular diseases.


Asunto(s)
Presión Sanguínea/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Lipoproteínas LDL/sangre , Perilla frutescens/química , Hojas de la Planta/química , Polvos , Ácido alfa-Linolénico/farmacología , Adulto , Biomarcadores , Composición Corporal , Suplementos Dietéticos , Medicamentos Herbarios Chinos/administración & dosificación , Medicamentos Herbarios Chinos/química , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/metabolismo , Ácidos Grasos/sangre , Femenino , Humanos , Japón , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Persona de Mediana Edad , Polvos/administración & dosificación , Ácido alfa-Linolénico/administración & dosificación , Ácido alfa-Linolénico/química
12.
J Sci Food Agric ; 100(12): 4565-4574, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32419135

RESUMEN

BACKGROUND: Medium- and long- chain triacylglycerols (MLCTs) are functional structural lipids that can provide the human body with essential fatty acids and a faster energy supply. This study aimed to prepare MLCTs rich in α-linolenic by enzymatic interesterification of perilla oil and medium-chain triacylglycerols (MCTs), catalyzed by Lipozyme RM IM, Lipozyme TL IM, Lipozyme 435, and Novozyme 435 respectively. RESULTS: The effects of lipase loading, concentration of MCTs, reaction temperature, and reaction time on the yield of MLCTs were investigated. It was found that the reaction achieved more than a 70% yield of MLCTs in triacylglycerols under the conditions of 400 g kg-1 MCTs and 60 g kg-1 lipase loading after equilibrium. A novel two-stage deodorization was also applied to purify the interesterification products. The triacylglycerols reach over 97% purity in the products with significant removal (P < 0.05) of the free fatty acids, and the trans fatty acids were strictly controlled at below 1%. There was more than 40% α-linolenic in the purified products, with long-chain fatty acids mostly occupying the desired sn-2 position in acylglycerols, which are more active in hydrolysis. CONCLUSION: A series of novel α-linolenic acid-rich medium- and long-chain triacylglycerols was prepared. Under appropriate reaction conditions, the yield of MLCTs in triacylglycerols was above 70%. A novel two-stage deodorization can be used to promote the elimination of free fatty acids and limit the generation of trans fatty acids. © 2020 Society of Chemical Industry.


Asunto(s)
Lipasa/química , Triglicéridos/química , Ácido alfa-Linolénico/química , Biocatálisis , Enzimas Inmovilizadas , Ácidos Grasos/química , Proteínas Fúngicas , Aceites de Plantas/química
13.
Microbiology (Reading) ; 165(7): 772-778, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31100055

RESUMEN

To investigate the metabolism of 18:2n-6 and 18:3n-3 by pure cultures of Sharpea azabuensis, two different strains (RL 1 and ST18) were each incubated in the presence of 40 µg ml-1 18:2n-6 or 18:3n-3. Pure cultures of Butyrivibriofibrisolvens D1 and Butyrivibrio proteoclasticus P18 were included as control treatments. Similar to the metabolism of B. fibrisolvens, both S. azabuensis strains converted 18:2n-6 or 18:3n-3 to cis-9, trans-11 CLA or cis-9, trans-11, cis-15 CLnA, after which it was further reduced to trans-11 18:1 or trans-11, cis-15 18:2, respectively. B. proteoclasticus additionally reduced trans-11 18:1 to 18:0. Trans-11, cis-15 18:2 was also further metabolized by B. proteoclasticus, although trans-11 18:1 did not accumulate, and only minor amounts of 18:0 were formed. The time frame of 18:2n-6 and 18:3n-3 biohydrogenation by S. azabuensis was comparable with B. fibrisolvens, indicating that S. azabuensis and B. fibrisolvens might be alternative biohydrogenators of 18:2n-6 and 18:3n-3 in the rumen.


Asunto(s)
Lactobacillaceae/metabolismo , Ácido Linoleico/metabolismo , Rumen/microbiología , Ácido alfa-Linolénico/metabolismo , Animales , Butyrivibrio/química , Butyrivibrio/genética , Butyrivibrio/metabolismo , Bovinos/microbiología , Caballos/microbiología , Lactobacillaceae/química , Lactobacillaceae/genética , Ácido Linoleico/química , Estructura Molecular , Ácido alfa-Linolénico/química
14.
Microb Pathog ; 126: 56-62, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30393116

RESUMEN

This study aimed to investigate the total phenolic content (TPC), the identification of the common compounds by HPLC-ESI-MS and HPLC-ESI-MS-TOF and the inhibitory effects against class A-type ß-lactamase (GES-22 variant, produced recombinantly) in methanolic extracts (MEs) of four Algerian seaweeds [Ulva intestinalis, Codium tomentosum, Dictyota dichotoma and Halopteris scoparia]. The TPC varied among the four species, ranging between 0.93 ±â€¯0.65 and 2.66 ±â€¯1.33 mg GAEs/g DW. C.tomentosum had higher total phenol content than other seaweeds while, all of them inhibited uncompetitively GES-22 activity in a dose-dependent manner. Nitrocefin was used as chromogenic substrate to evaluate the inhibitory effect on GES-22. The methanolic extract of D.dichotoma exhibited significant inhibitory effect on GES-22 (IC50 = 13.01 ±â€¯0.046 µg/mL) more than clavulanate, sulbactam and tazobactam (classical ß-lactam inhibitors) (IC50 = 68.38 ±â€¯0.17 µg/mL, 52.68 ±â€¯0.64 µg/mL, and 29.94 ±â€¯0.01 µg/mL, respectively). IC50 of the other ME of U.intestinalis, C.tomentosum, and H.scoparia were 16.87 ±â€¯0.10 µg/mL, 16.54 ±â€¯0.048 µg/mL, and 25.72 ±â€¯0.15 µg/mL, respectively. Except H. scoparia, other three seaweed extracts showed almost two times or more inhibition on GES-22. Furthermore, four common compounds in these MEs were identified, α-linolenic acid (C18:3ω3), linoleic acid (C18:2ω6), oleic acid (C18:1ω9), the eicosanoid precursors ''arachidonic acid'' (C20:4ω6). Baicalein (C15H10O5) was identified in U.intestinalis and D.dichotoma seaweeds. The fact that all seaweed extracts inhibited the GES-22 better than commercial samples makes these seaweeds candidate for discovering new inhibitors against ß-lactamases. Besides that, they contain important components with potential health benefits.


Asunto(s)
Extractos Vegetales/antagonistas & inhibidores , Algas Marinas/química , beta-Lactamasas/efectos de los fármacos , Argelia , Ácido Araquidónico/química , Chlorophyta/química , Pruebas de Enzimas , Flavanonas/química , Mar Mediterráneo , Metanol , Ácido Oléico/química , Phaeophyceae/química , Fenoles/química , Ácido alfa-Linolénico/química
15.
J Sep Sci ; 42(14): 2360-2370, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31066188

RESUMEN

α-Linolenic acid is an essential omega-3 fatty acid needed for human health. However, the isolation of high-purity α-linolenic acid from plant resources is challenging. The preparative separation methods of α-linolenic acid by both conventional and pH-zone refining counter current chromatography were firstly established in this work. The successful separation of α-linolenic acid by conventional counter current chromatography was achieved by the optimized solvent system n-heptane/methanol/ water/acetic acid (10:9:1:0.04, v/v), producing 466 mg of 98.98% α-linolenic acid from 900 mg free fatty acid sample prepared from perilla seed oil with linoleic acid and oleic acid as by-products. The scaled-up separation in 45× is efficient without loss of resolution and extension of separation time. The separation of α-linolenic acid by pH-zone refining counter current chromatography was also satisfactory by the solvent system n-hexane/methanol/water (10:5:5, v/v) and the optimized concentration of trifluoroacetic acid 30 mM and NH4 OH 10 mM. The separation can be scaled up in 180× producing 9676.7 mg of 92.79% α-linolenic acid from 18 000 mg free fatty acid sample. pH-zone refining counter current chromatography exhibits a great advantage over conventional counter current chromatography with 20× sample loading capacity on the same column.


Asunto(s)
Extractos Vegetales/aislamiento & purificación , Ácido alfa-Linolénico/aislamiento & purificación , Distribución en Contracorriente , Concentración de Iones de Hidrógeno , Extractos Vegetales/química , Aceites de Plantas/química , Ácido alfa-Linolénico/química
16.
Lipids Health Dis ; 18(1): 53, 2019 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-30764880

RESUMEN

BACKGROUND: Supplemented fatty acids can incorporate into cardiolipin (CL) and affect its remodeling. The change in CL species may alter the mitochondrial membrane composition, potentially disturbing the mitochondrial structure and function during inflammation. METHOD: To investigate the effect of the unsaturation of fatty acids on CL, we supplemented macrophage-like RAW264.7 cells with 18-carbon unsaturated fatty acids including oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), γ-linolenic acid (GLA, 18:3), and stearidonic acid (SDA, 18:4). Mitochondrial changes in CL were measured through mass spectrometry. RESULT: Our data indicated that OA(18:1) was the most efficient fatty acid that incorporated into CL, forming symmetrical CL without fatty acid elongation and desaturation. In addition, LA(18:2) and ALA(18:3) were further elongated before incorporation, significantly increasing the number of double bonds and the chain length of CL. GLA and SDA were not optimal substrates for remodeling enzymes. The findings of RT-qPCR experiments revealed that none of these changes in CL occurred through the regulation of CL remodeling- or synthesis-related genes. The fatty acid desaturase and transportation genes-Fads2 and Cpt1a, respectively-were differentially regulated by the supplementation of five unsaturated 18-carbon fatty acids. CONCLUSIONS: The process of fatty acid incorporation to CL was regulated by the fatty acid desaturation and transportation into mitochondria in macrophage. The double bonds of fatty acids significantly affect the incorporation process and preference. Intact OA(18:1) was incorporated to CL; LA(18:2) and ALA(18:3) were desaturated and elongated to long chain fatty acid before the incorporation; GLA(18:3) and SDA(18:4) were unfavorable for the CL incorporation.


Asunto(s)
Cardiolipinas/biosíntesis , Ácidos Grasos Omega-3/farmacología , Ácido Linoleico/farmacología , Membranas Mitocondriales/efectos de los fármacos , Ácido Oléico/farmacología , Ácido alfa-Linolénico/farmacología , Ácido gammalinolénico/farmacología , Animales , Transporte Biológico , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Omega-3/química , Ácidos Grasos Omega-3/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Ratones , Mitocondrias/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/química , Membranas Mitocondriales/metabolismo , Ácido Oléico/química , Ácido Oléico/metabolismo , Células RAW 264.7 , Relación Estructura-Actividad , Ácido alfa-Linolénico/química , Ácido alfa-Linolénico/metabolismo , Ácido gammalinolénico/química , Ácido gammalinolénico/metabolismo
17.
J Dairy Sci ; 102(2): 1213-1223, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30580947

RESUMEN

The basis for marine lipid-induced milk fat depression (MFD) has not been established yet, but recent reports suggest the putative contribution of shifts in the ruminal metabolism of α-linolenic acid (ALA). To test this hypothesis, an isotopic tracer approach was used in batch cultures of rumen microorganisms with inoculum collected from cannulated ewes fed either a total mixed ration without lipid supplementation (control inoculum) or the same diet supplemented with 2% of fish oil, which is known to cause MFD in lactating sheep (FO-MFD inoculum). The [1-13C]ALA was added at a dose of 1% of incubated dry matter and the proportions of 13C-labeled fatty acids (FA) were examined after 24 h of incubation, using complementary gas chromatography and gas chromatography-combustion isotope ratio mass spectrometry (GC-C-IRMS) analyses. Expected differences in FA profiles were confirmed between control and FO-MFD inocula (e.g., large decreases in 18:0 and increases in most 18:1 and 18:2 intermediates, particularly trans isomers, to fish oil supply). The biohydrogenation of 13ALA was extensive and yielded multiple metabolites, with a total of 48 chromatographic peaks showing 13C enrichment, regardless of the inoculum type. However, although ALA was biohydrogenated through common pathways under standard or MFD conditions, large changes in the accumulation of 13C-labeled FA suggest important differences in the relative contribution of each specific route. First, increased accumulation of trans-11-containing FA in FO-MFD incubations was accompanied by a general repression of the trans-13/14 pathway (supported by lower trans-13+14 18:1 or trans-11,trans-13 18:2 proportions), together with a lower production of cis FA (e.g., cis-9, -12, and -15 18:1 and some cis,cis 18:2). Results also downplayed the relevance of the trans-11 to trans-10 shift as an effective marker of diet-induced MFD in sheep, and challenged the involvement of some trans-10 intermediates (e.g., trans-10 18:1 and trans-10,cis-15 18:2) in the low-fat milk syndrome in this species. Conversely, increased abundance of most 18:3 intermediates (including some unidentified isomers) might be representative of ruminal alterations related to fish oil supplementation in ewes. Further research is necessary to examine the potential association between these findings and MFD in lactating animals.


Asunto(s)
Grasas/química , Leche/metabolismo , Rumen/metabolismo , Ovinos/metabolismo , Ácido alfa-Linolénico/metabolismo , Animales , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Grasas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Femenino , Aceites de Pescado/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Leche/química , Ácido alfa-Linolénico/química
18.
Int J Mol Sci ; 20(21)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661847

RESUMEN

Grain number per panicle is an important component of grain yield in sorghum (Sorghum bicolor (L.)) and other cereal crops. Previously, we reported that mutations in multi-seeded 1 (MSD1) and MSD2 genes result in a two-fold increase in grain number per panicle due to the restoration of the fertility of the pedicellate spikelets, which invariably abort in natural sorghum accessions. Here, we report the identification of another gene, MSD3, which is also involved in the regulation of grain numbers in sorghum. Four bulked F2 populations from crosses between BTx623 and each of the independent msd mutants p6, p14, p21, and p24 were sequenced to 20× coverage of the whole genome on a HiSeq 2000 system. Bioinformatic analyses of the sequence data showed that one gene, Sorbi_3001G407600, harbored homozygous mutations in all four populations. This gene encodes a plastidial ω-3 fatty acid desaturase that catalyzes the conversion of linoleic acid (18:2) to linolenic acid (18:3), a substrate for jasmonic acid (JA) biosynthesis. The msd3 mutants had reduced levels of linolenic acid in both leaves and developing panicles that in turn decreased the levels of JA. Furthermore, the msd3 panicle phenotype was reversed by treatment with methyl-JA (MeJA). Our characterization of MSD1, MSD2, and now MSD3 demonstrates that JA-regulated processes are critical to the msd phenotype. The identification of the MSD3 gene reveals a new target that could be manipulated to increase grain number per panicle in sorghum, and potentially other cereal crops, through the genomic editing of MSD3 functional orthologs.


Asunto(s)
Productos Agrícolas/enzimología , Ciclopentanos/metabolismo , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Oxilipinas/metabolismo , Sorghum/enzimología , Alelos , Productos Agrícolas/efectos de los fármacos , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Ciclopentanos/farmacología , Grano Comestible/efectos de los fármacos , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Secuenciación de Nucleótidos de Alto Rendimiento , Ácido Linoleico/química , Ácido Linoleico/metabolismo , Mutación , Oxilipinas/farmacología , Fenotipo , Semillas/efectos de los fármacos , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Sorghum/metabolismo , Ácido alfa-Linolénico/biosíntesis , Ácido alfa-Linolénico/química
19.
Molecules ; 24(3)2019 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-30717326

RESUMEN

Although many investigations on phytochemicals in rice plant parts and root exudates have been conducted, information on the chemical profile of essential oil (EO) and potent biological activities has been limited. In this study, chemical compositions of rice leaf EO and in vitro biological activities were investigated. From 1.5 kg of fresh rice leaves, an amount of 20 mg EO was obtained by distillation and analyzed by gas chromatography-mass spectrometry (GC-MS), electrospray ionization (ESI), and atmospheric pressure chemical ionization (APCI) to reveal the presence of twelve volatile constituents, of which methyl ricinoleate (27.86%) was the principal compound, followed by palmitic acid (17.34%), and linolenic acid (11.16%), while 2-pentadecanone was the least (2.13%). Two phytoalexin momilactones A and B were first time identified in EO using ultra-performance liquid chromatography coupled with electrospray mass spectrometry (UPLC/ESI-MS) (9.80 and 4.93 ng/g fresh weight, respectively), which accounted for 7.35% and 3.70% of the EO, respectively. The assays of DPPH (IC50 = 73.1 µg/mL), ABTS (IC50 = 198.3 µg/mL), FRAP (IC50 = 700.8 µg/mL) and ß-carotene oxidation (LPI = 79%) revealed that EO possessed an excellent antioxidant activity. The xanthine oxidase assay indicated that the anti-hyperuricemia potential was in a moderate level (IC50 = 526 µg/mL) as compared with the standard allopurinol. The EO exerted potent inhibition on growth of Raphanus sativus, Lactuca sativa, and two noxious weeds Echinochloa crus-galli, and Bidens pilosa, but in contrast, the growth of rice seedlings was promoted. Among the examined plants, the growth of the E. crus-galli root was the most inhibited, proposing that constituents found in EO may have potential for the control of the problematic paddy weed E. crus-galli. It was found that the EO of rice leaves contained rich phytochemicals, which were potent in antioxidants and gout treatment, as well as weed management. Findings of this study highlighted the potential value of rice leaves, which may provide extra benefits for rice farmers.


Asunto(s)
Antioxidantes/química , Aceites Volátiles/química , Oryza/química , Fitoquímicos/química , Cromatografía de Gases y Espectrometría de Masas , Lactuca/efectos de los fármacos , Fitoquímicos/farmacología , Hojas de la Planta/química , Raíces de Plantas/química , Raphanus/efectos de los fármacos , Ácidos Ricinoleicos/química , Plantones/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray , Xantina Oxidasa/química , Ácido alfa-Linolénico/química
20.
Bioorg Med Chem Lett ; 28(6): 1020-1023, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29486965

RESUMEN

The isoleucine conjugate of 12-oxo-phytodienoic acid (OPDA-Ile), a new member of the jasmonate family, was recently identified in Arabidopsis thaliana and might be a signaling molecule in plants. However, the biosynthesis and function of OPDA-Ile remains elusive. This study reports an in vitro enzymatic method for synthesizing OPDA-Ile, which is catalyzed by reactions of lipoxygenase (LOX), allene oxide synthase (AOS), and allene oxide cyclase (AOC) using isoleucine conjugates of α -linolenic acid (LA-Ile) as the substrate. A. thaliana fed LA-Ile exhibited a marked increase in the OPDA-Ile concentration. LA-Ile was also detected in A. thaliana. Furthermore, stable isotope labelled LA-Ile was incorporated into OPDA-Ile. Thus, OPDA-Ile is biosynthesized via the cyclization of LA-Ile in A. thaliana.


Asunto(s)
Ácidos Grasos Insaturados/biosíntesis , Oxidorreductasas Intramoleculares/metabolismo , Isoleucina/biosíntesis , Lipooxigenasa/metabolismo , Ácido alfa-Linolénico/metabolismo , Arabidopsis/química , Ciclización , Ácidos Grasos Insaturados/química , Isoleucina/química , Estructura Molecular , Ácido alfa-Linolénico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA