Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 602
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 165(4): 949-62, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27114038

RESUMEN

Cpf1 is an RNA-guided endonuclease of a type V CRISPR-Cas system that has been recently harnessed for genome editing. Here, we report the crystal structure of Acidaminococcus sp. Cpf1 (AsCpf1) in complex with the guide RNA and its target DNA at 2.8 Å resolution. AsCpf1 adopts a bilobed architecture, with the RNA-DNA heteroduplex bound inside the central channel. The structural comparison of AsCpf1 with Cas9, a type II CRISPR-Cas nuclease, reveals both striking similarity and major differences, thereby explaining their distinct functionalities. AsCpf1 contains the RuvC domain and a putative novel nuclease domain, which are responsible for cleaving the non-target and target strands, respectively, and for jointly generating staggered DNA double-strand breaks. AsCpf1 recognizes the 5'-TTTN-3' protospacer adjacent motif by base and shape readout mechanisms. Our findings provide mechanistic insights into RNA-guided DNA cleavage by Cpf1 and establish a framework for rational engineering of the CRISPR-Cpf1 toolbox.


Asunto(s)
Acidaminococcus/química , Proteínas Bacterianas/química , ADN/química , Técnicas Genéticas , ARN Guía de Kinetoplastida/química , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , ADN/metabolismo , Modelos Moleculares , Ácidos Nucleicos Heterodúplex/metabolismo , ARN Guía de Kinetoplastida/metabolismo
2.
Mol Cell ; 73(3): 398-411, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735654

RESUMEN

During transcription, the nascent RNA strand can base pair with its template DNA, displacing the non-template strand as ssDNA and forming a structure called an R-loop. R-loops are common across many domains of life and cause DNA damage in certain contexts. In this review, we summarize recent results implicating R-loops as important regulators of cellular processes such as transcription termination, gene regulation, and DNA repair. We also highlight recent work suggesting that R-loops can be problematic to cells as blocks to efficient transcription and replication that trigger the DNA damage response. Finally, we discuss how R-loops may contribute to cancer, neurodegeneration, and inflammatory diseases and compare the available next-generation sequencing-based approaches to map R-loops genome wide.


Asunto(s)
Núcleo Celular/fisiología , ADN/genética , Genoma , Inestabilidad Genómica , Ácidos Nucleicos Heterodúplex/genética , ARN/genética , Animales , ADN/química , ADN/metabolismo , Daño del ADN , Reparación del ADN , Regulación de la Expresión Génica , Humanos , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/metabolismo , ARN/química , ARN/metabolismo , Relación Estructura-Actividad , Transcripción Genética
3.
Mol Cell ; 73(6): 1243-1254.e6, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30770238

RESUMEN

Chromatin-associated non-coding RNAs modulate the epigenetic landscape and its associated gene expression program. The formation of triple helices is one mechanism of sequence-specific targeting of RNA to chromatin. With this study, we show an important role of the nucleosome and its relative positioning to the triplex targeting site (TTS) in stabilizing RNA-DNA triplexes in vitro and in vivo. Triplex stabilization depends on the histone H3 tail and the location of the TTS close to the nucleosomal DNA entry-exit site. Genome-wide analysis of TTS-nucleosome arrangements revealed a defined chromatin organization with an enrichment of arrangements that allow triplex formation at active regulatory sites and accessible chromatin. We further developed a method to monitor nucleosome-RNA triplexes in vivo (TRIP-seq), revealing RNA binding to TTS sites adjacent to nucleosomes. Our data strongly support an activating role for RNA triplex-nucleosome complexes, pinpointing triplex-mediated epigenetic regulation in vivo.


Asunto(s)
ADN/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Nucleosomas/metabolismo , Estabilidad del ARN , ARN/metabolismo , Células 3T3 , Animales , Sitios de Unión , Ensamble y Desensamble de Cromatina , ADN/química , ADN/genética , Células HeLa , Histonas/química , Histonas/metabolismo , Humanos , Ratones , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Nucleosomas/química , Nucleosomas/genética , Unión Proteica , ARN/química , ARN/genética , Relación Estructura-Actividad
4.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30639241

RESUMEN

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Asunto(s)
Daño del ADN , Replicación del ADN , Inestabilidad Genómica , Neoplasias/genética , División del ARN , Precursores del ARN/genética , ARN Mensajero/genética , ARN Neoplásico/genética , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Proteínas de Unión al ADN , Regulación Neoplásica de la Expresión Génica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Poliadenilación , Precursores del ARN/biosíntesis , ARN Mensajero/biosíntesis , ARN Neoplásico/biosíntesis , Proteínas de Unión al ARN
5.
Mol Cell ; 70(1): 9-20.e6, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625041

RESUMEN

Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Cruciforme , ADN de Hongos/genética , Meiosis , Ácidos Nucleicos Heterodúplex/genética , Recombinación Genética , Saccharomyces cerevisiae/genética , ADN de Hongos/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-30449723

RESUMEN

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Asunto(s)
Proliferación Celular , Senescencia Celular , Daño del ADN , Replicación del ADN , ADN de Neoplasias/biosíntesis , ARN Largo no Codificante/metabolismo , ARN Neoplásico/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Uterinas/metabolismo , Animales , Ensamble y Desensamble de Cromatina , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , ADN de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica , Células HeLa , Histonas/metabolismo , Humanos , Metilación , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Estabilidad del ARN , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , Factores de Transcripción/genética , Transcripción Genética , Neoplasias Uterinas/genética
7.
EMBO J ; 40(22): e103787, 2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34585421

RESUMEN

Repair of DNA double-stranded breaks by homologous recombination (HR) is dependent on DNA end resection and on post-translational modification of repair factors. In budding yeast, single-stranded DNA is coated by replication protein A (RPA) following DNA end resection, and DNA-RPA complexes are then SUMO-modified by the E3 ligase Siz2 to promote repair. Here, we show using enzymatic assays that DNA duplexes containing 3' single-stranded DNA overhangs increase the rate of RPA SUMO modification by Siz2. The SAP domain of Siz2 binds DNA duplexes and makes a key contribution to this process as highlighted by models and a crystal structure of Siz2 and by assays performed using protein mutants. Enzymatic assays performed using DNA that can accommodate multiple RPA proteins suggest a model in which the SUMO-RPA signal is amplified by successive rounds of Siz2-dependent SUMO modification of RPA and dissociation of SUMO-RPA at the junction between single- and double-stranded DNA. Our results provide insights on how DNA architecture scaffolds a substrate and E3 ligase to promote SUMO modification in the context of DNA repair.


Asunto(s)
Ácidos Nucleicos Heterodúplex/metabolismo , Proteína de Replicación A/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Cristalografía por Rayos X , ADN de Hongos/química , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Polarización de Fluorescencia , Mutación , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Dominios Proteicos , Proteína de Replicación A/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Sumoilación , Ubiquitina-Proteína Ligasas/química
8.
Mol Cell ; 68(4): 745-757.e5, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29104020

RESUMEN

R-loop, a three-stranded RNA/DNA structure, has been linked to induced genome instability and regulated gene expression. To enable precision analysis of R-loops in vivo, we develop an RNase-H-based approach; this reveals predominant R-loop formation near gene promoters with strong G/C skew and propensity to form G-quadruplex in non-template DNA, corroborating with all biochemically established properties of R-loops. Transcription perturbation experiments further indicate that R-loop induction correlates to transcriptional pausing. Interestingly, we note that most mapped R-loops are each linked to a nearby free RNA end; by using a ribozyme to co-transcriptionally cleave nascent RNA, we demonstrate that such a free RNA end coupled with a G/C-skewed sequence is necessary and sufficient to induce R-loop. These findings provide a topological solution for RNA invasion into duplex DNA and suggest an order for R-loop initiation and elongation in an opposite direction to that previously proposed.


Asunto(s)
ADN/química , Ácidos Nucleicos Heterodúplex/química , Regiones Promotoras Genéticas/fisiología , ARN/química , Ribonucleasa H/química , Transcripción Genética , ADN/biosíntesis , Células HEK293 , Humanos , Células K562 , Ácidos Nucleicos Heterodúplex/metabolismo , ARN/biosíntesis
9.
Mol Cell ; 68(5): 926-939.e4, 2017 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-29153391

RESUMEN

Bacterial group II intron reverse transcriptases (RTs) function in both intron mobility and RNA splicing and are evolutionary predecessors of retrotransposon, telomerase, and retroviral RTs as well as the spliceosomal protein Prp8 in eukaryotes. Here we determined a crystal structure of a full-length thermostable group II intron RT in complex with an RNA template-DNA primer duplex and incoming deoxynucleotide triphosphate (dNTP) at 3.0-Å resolution. We find that the binding of template-primer and key aspects of the RT active site are surprisingly different from retroviral RTs but remarkably similar to viral RNA-dependent RNA polymerases. The structure reveals a host of features not seen previously in RTs that may contribute to distinctive biochemical properties of group II intron RTs, and it provides a prototype for many related bacterial and eukaryotic non-LTR retroelement RTs. It also reveals how protein structural features used for reverse transcription evolved to promote the splicing of both group II and spliceosomal introns.


Asunto(s)
Proteínas Bacterianas/química , Evolución Molecular , Empalme del ARN , ADN Polimerasa Dirigida por ARN/química , Temperatura , Transcripción Genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Estabilidad de Enzimas , Intrones , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Unión Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/química , ARN/genética , ARN/metabolismo , ADN Polimerasa Dirigida por ARN/genética , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos , Empalmosomas/química , Empalmosomas/enzimología , Empalmosomas/genética , Relación Estructura-Actividad
10.
Mol Cell ; 67(4): 539-549.e4, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28781235

RESUMEN

Heteroduplex DNA (hetDNA) is a key molecular intermediate during the repair of mitotic double-strand breaks by homologous recombination, but its relationship to 5' end resection and/or 3' end extension is poorly understood. In the current study, we examined how perturbations in these processes affect the hetDNA profile associated with repair of a defined double-strand break (DSB) by the synthesis-dependent strand-annealing (SDSA) pathway. Loss of either the Exo1 or Sgs1 long-range resection pathway significantly shortened hetDNA, suggesting that these pathways normally collaborate during DSB repair. In addition, altering the processivity or proofreading activity of DNA polymerase δ shortened hetDNA length or reduced break-adjacent mismatch removal, respectively, demonstrating that this is the primary polymerase that extends both 3' ends. Data are most consistent with the extent of DNA synthesis from the invading end being the primary determinant of hetDNA length during SDSA.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , ADN de Hongos/metabolismo , Mitosis , Ácidos Nucleicos Heterodúplex/metabolismo , Saccharomyces cerevisiae/metabolismo , ADN Polimerasa III/genética , ADN Polimerasa III/metabolismo , ADN de Hongos/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Genotipo , Mutación , Ácidos Nucleicos Heterodúplex/genética , Fenotipo , Polimorfismo de Nucleótido Simple , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Mol Cell ; 65(2): 310-322, 2017 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-27989439

RESUMEN

C2c1 is a type V-B CRISPR-Cas system dual-RNA-guided DNA endonuclease. Here, we report the crystal structure of Alicyclobacillus acidoterrestris C2c1 in complex with a chimeric single-molecule guide RNA (sgRNA). AacC2c1 exhibits a bi-lobed architecture consisting of a REC and NUC lobe. The sgRNA scaffold forms a tetra-helical structure, distinct from previous predictions. The crRNA is located in the central channel of C2c1, and the tracrRNA resides in an external surface groove. Although AacC2c1 lacks a PAM-interacting domain, our analysis revealed that the PAM duplex has a similar binding position found in Cpf1. Importantly, C2c1-sgRNA system is highly sensitive to single-nucleotide mismatches between guide RNA and target DNA. The resulting reduction in off-target cleavage renders C2c1 a valuable addition to the current arsenal of genome-editing tools. Together, our findings indicate that sgRNA assembly is achieved through a mechanism distinct from that reported previously for Cas9 or Cpf1 endonucleases.


Asunto(s)
Alicyclobacillus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Roturas del ADN de Doble Cadena , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , ARN Bacteriano/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Alicyclobacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN Bacteriano/química , ADN Bacteriano/genética , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad
12.
Mol Cell ; 67(4): 622-632.e4, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28781236

RESUMEN

CRISPR-Cas systems are prokaryotic immune systems against invading nucleic acids. Type I CRISPR-Cas systems employ highly diverse, multi-subunit surveillance Cascade complexes that facilitate duplex formation between crRNA and complementary target DNA for R-loop formation, retention, and DNA degradation by the subsequently recruited nuclease Cas3. Typically, the large subunit recognizes bona fide targets through the PAM (protospacer adjacent motif), and the small subunit guides the non-target DNA strand. Here, we present the Apo- and target-DNA-bound structures of the I-Fv (type I-F variant) Cascade lacking the small and large subunits. Large and small subunits are functionally replaced by the 5' terminal crRNA cap Cas5fv and the backbone protein Cas7fv, respectively. Cas5fv facilitates PAM recognition from the DNA major groove site, in contrast to all other described type I systems. Comparison of the type I-Fv Cascade with an anti-CRISPR protein-bound I-F Cascade reveals that the type I-Fv structure differs substantially at known anti-CRISPR protein target sites and might therefore be resistant to viral Cascade interception.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Endonucleasas/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Unión Proteica , Conformación Proteica , Caperuzas de ARN/metabolismo , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Shewanella putrefaciens/enzimología , Shewanella putrefaciens/genética , Relación Estructura-Actividad
13.
Mol Cell ; 67(4): 633-645.e3, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28781234

RESUMEN

The RNA-guided Cpf1 (also known as Cas12a) nuclease associates with a CRISPR RNA (crRNA) and cleaves the double-stranded DNA target complementary to the crRNA guide. The two Cpf1 orthologs from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae bacterium (LbCpf1) have been harnessed for eukaryotic genome editing. Cpf1 requires a specific nucleotide sequence, called a protospacer adjacent motif (PAM), for target recognition. Besides the canonical TTTV PAM, Cpf1 recognizes suboptimal C-containing PAMs. Here, we report four crystal structures of LbCpf1 in complex with the crRNA and its target DNA containing either TTTA, TCTA, TCCA, or CCCA as the PAM. These structures revealed that, depending on the PAM sequences, LbCpf1 undergoes conformational changes to form altered interactions with the PAM-containing DNA duplexes, thereby achieving the relaxed PAM recognition. Collectively, the present structures advance our mechanistic understanding of the PAM-dependent, crRNA-guided DNA cleavage by the Cpf1 family nucleases.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/metabolismo , Endonucleasas/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , ARN Guía de Kinetoplastida/metabolismo , Acidaminococcus/enzimología , Acidaminococcus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/genética , Clostridiales/enzimología , Clostridiales/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/enzimología , Escherichia coli/genética , Células HEK293 , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/genética , Unión Proteica , Conformación Proteica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , Relación Estructura-Actividad
14.
Mol Cell ; 67(4): 608-621.e6, 2017 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-28757210

RESUMEN

Transcription is a source of genetic instability that can notably result from the formation of genotoxic DNA:RNA hybrids, or R-loops, between the nascent mRNA and its template. Here we report an unexpected function for introns in counteracting R-loop accumulation in eukaryotic genomes. Deletion of endogenous introns increases R-loop formation, while insertion of an intron into an intronless gene suppresses R-loop accumulation and its deleterious impact on transcription and recombination in yeast. Recruitment of the spliceosome onto the mRNA, but not splicing per se, is shown to be critical to attenuate R-loop formation and transcription-associated genetic instability. Genome-wide analyses in a number of distant species differing in their intron content, including human, further revealed that intron-containing genes and the intron-richest genomes are best protected against R-loop accumulation and subsequent genetic instability. Our results thereby provide a possible rationale for the conservation of introns throughout the eukaryotic lineage.


Asunto(s)
ADN de Hongos/genética , Inestabilidad Genómica , Intrones , Ácidos Nucleicos Heterodúplex/genética , ARN de Hongos/genética , Transcripción Genética , Candida glabrata/genética , Candida glabrata/metabolismo , Línea Celular , Biología Computacional , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Daño del ADN , ADN de Hongos/química , ADN de Hongos/metabolismo , Bases de Datos Genéticas , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genotipo , Humanos , Conformación de Ácido Nucleico , Ácidos Nucleicos Heterodúplex/química , Ácidos Nucleicos Heterodúplex/metabolismo , Fenotipo , Empalme del ARN , ARN de Hongos/química , ARN de Hongos/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Relación Estructura-Actividad
15.
Nature ; 544(7650): 377-380, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405019

RESUMEN

The Rad51 (also known as RecA) family of recombinases executes the critical step in homologous recombination: the search for homologous DNA to serve as a template during the repair of DNA double-strand breaks (DSBs). Although budding yeast Rad51 has been extensively characterized in vitro, the stringency of its search and sensitivity to mismatched sequences in vivo remain poorly defined. Here, in Saccharomyces cerevisiae, we analysed Rad51-dependent break-induced replication in which the invading DSB end and its donor template share a 108-base-pair homology region and the donor carries different densities of single-base-pair mismatches. With every eighth base pair mismatched, repair was about 14% of that of completely homologous sequences. With every sixth base pair mismatched, repair was still more than 5%. Thus, completing break-induced replication in vivo overcomes the apparent requirement for at least 6-8 consecutive paired bases that has been inferred from in vitro studies. When recombination occurs without a protruding nonhomologous 3' tail, the mismatch repair protein Msh2 does not discourage homeologous recombination. However, when the DSB end contains a 3' protruding nonhomologous tail, Msh2 promotes the rejection of mismatched substrates. Mismatch correction of strand invasion heteroduplex DNA is strongly polar, favouring correction close to the DSB end. Nearly all mismatch correction depends on the proofreading activity of DNA polymerase-δ, although the repair proteins Msh2, Mlh1 and Exo1 influence the extent of correction.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación de la Incompatibilidad de ADN , Recombinasa Rad51/metabolismo , Reparación del ADN por Recombinación , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Emparejamiento Base , Secuencia de Bases , ADN Polimerasa III/metabolismo , Replicación del ADN , ADN de Hongos/genética , ADN de Hongos/metabolismo , Exodesoxirribonucleasas/metabolismo , Homólogo 1 de la Proteína MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Ácido Nucleico , Especificidad por Sustrato , Moldes Genéticos
16.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-26593718

RESUMEN

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , Replicación del ADN , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Inestabilidad Genómica , Ácidos Nucleicos Heterodúplex/metabolismo , Animales , ADN Helicasas/genética , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patología , Ratones , Ratones Noqueados , Mutación , Ácidos Nucleicos Heterodúplex/genética
17.
Nucleic Acids Res ; 49(7): 4120-4128, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33764415

RESUMEN

Cas12f, also known as Cas14, is an exceptionally small type V-F CRISPR-Cas nuclease that is roughly half the size of comparable nucleases of this type. To reveal the mechanisms underlying substrate recognition and cleavage, we determined the cryo-EM structures of the Cas12f-sgRNA-target DNA and Cas12f-sgRNA complexes at 3.1 and 3.9 Å, respectively. An asymmetric Cas12f dimer is bound to one sgRNA for recognition and cleavage of dsDNA substrate with a T-rich PAM sequence. Despite its dimerization, Cas12f adopts a conserved activation mechanism among the type V nucleases which requires coordinated conformational changes induced by the formation of the crRNA-target DNA heteroduplex, including the close-to-open transition in the lid motif of the RuvC domain. Only one RuvC domain in the Cas12f dimer is activated by substrate recognition, and the substrate bound to the activated RuvC domain is captured in the structure. Structure-assisted truncated sgRNA, which is less than half the length of the original sgRNA, is still active for target DNA cleavage. Our results expand our understanding of the diverse type V CRISPR-Cas nucleases and facilitate potential genome editing applications using the miniature Cas12f.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR , Endodesoxirribonucleasas/metabolismo , Ácidos Nucleicos Heterodúplex/metabolismo , Proteínas Bacterianas/química , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , ADN/metabolismo , División del ADN , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/farmacocinética , Edición Génica , Modelos Moleculares , Unión Proteica
18.
Mol Cell ; 53(3): 420-32, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24486020

RESUMEN

The displacement loop (D loop) is the product of homology search and DNA strand invasion, constituting a central intermediate in homologous recombination (HR). In eukaryotes, the Rad51 DNA strand exchange protein is assisted in D loop formation by the Rad54 motor protein. Curiously, Rad54 also disrupts D loops. How these opposing activities are coordinated toward productive recombination is unknown. Moreover, a seemingly disparate function of Rad54 is removal of Rad51 from heteroduplex DNA (hDNA) to allow HR-associated DNA synthesis. Here, we uncover features of D loop formation/dissociation dynamics, employing Rad51 filaments formed on ssDNAs that mimic the physiological length and structure of in vivo substrates. The Rad54 motor is activated by Rad51 bound to synapsed DNAs and guided by a ssDNA-binding domain. We present a unified model wherein Rad54 acts as an hDNA pump that drives D loop formation while simultaneously removing Rad51 from hDNA, consolidating both ATP-dependent activities of Rad54 into a single mechanistic step.


Asunto(s)
ADN Helicasas/fisiología , Enzimas Reparadoras del ADN/fisiología , Recombinación Homóloga/fisiología , Ácidos Nucleicos Heterodúplex/metabolismo , Recombinasa Rad51/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , ADN Helicasas/genética , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , ADN de Cadena Simple/metabolismo , ADN Superhelicoidal/metabolismo , Modelos Genéticos , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Mol Cell ; 51(5): 691-701, 2013 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-23973328

RESUMEN

The Plk1-interacting checkpoint helicase (PICH) protein localizes to ultrafine anaphase bridges (UFBs) in mitosis alongside a complex of DNA repair proteins, including the Bloom's syndrome protein (BLM). However, very little is known about the function of PICH or how it is recruited to UFBs. Using a combination of microfluidics, fluorescence microscopy, and optical tweezers, we have defined the properties of PICH in an in vitro model of an anaphase bridge. We show that PICH binds with a remarkably high affinity to duplex DNA, resulting in ATP-dependent protein translocation and extension of the DNA. Most strikingly, the affinity of PICH for binding DNA increases with tension-induced DNA stretching, which mimics the effect of the mitotic spindle on a UFB. PICH binding also appears to diminish force-induced DNA melting. We propose a model in which PICH recognizes and stabilizes DNA under tension during anaphase, thereby facilitating the resolution of entangled sister chromatids.


Asunto(s)
Anafase/genética , ADN Helicasas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Cromátides/metabolismo , ADN Helicasas/química , ADN Helicasas/genética , Humanos , Microscopía Fluorescente/métodos , Ácidos Nucleicos Heterodúplex/metabolismo , Nucleosomas/metabolismo , Transporte de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
20.
Biochem J ; 477(18): 3567-3582, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32886094

RESUMEN

Recombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination. However, deletion of NBD did not affect RAG cleavage on non-B DNA structures. In the present study, we investigated the involvement of other RAG domains when RAGs act as a structure-specific nuclease. Studies using purified central domain (CD) and C-terminal domain (CTD) of the RAG1 showed that CD of RAG1 exhibited high affinity and specific binding to heteroduplex DNA, which was irrespective of the sequence of single-stranded DNA, unlike CTD which showed minimal binding. Furthermore, we show that ZnC2 of RAG1 is crucial for its binding to DNA structures as deletion and point mutations abrogated the binding of CD to heteroduplex DNA. Our results also provide evidence that unlike RAG cleavage on RSS, central domain of RAG1 is sufficient to cleave heteroduplex DNA harbouring pyrimidines, but not purines. Finally, we show that a point mutation in the DDE catalytic motif is sufficient to block the cleavage of CD on heteroduplex DNA. Therefore, in the present study we demonstrate that the while ZnC2 module in central domain of RAG1 is required for binding to non-B DNA structures, active site amino acids are important for RAGs to function as a structure-specific nuclease.


Asunto(s)
Proteínas de Homeodominio/química , Ácidos Nucleicos Heterodúplex/química , Secuencias de Aminoácidos , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heterodúplex/genética , Ácidos Nucleicos Heterodúplex/metabolismo , Dominios Proteicos , Relación Estructura-Actividad , Recombinación V(D)J
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA