Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neurosci ; 36(33): 8668-86, 2016 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-27535913

RESUMEN

UNLABELLED: Synaptic vesicle (SV) pools must maintain a functional repertoire of proteins to efficiently release neurotransmitter. The accumulation of old or damaged proteins on SV membranes is linked to synaptic dysfunction and neurodegeneration. However, despite the importance of SV protein turnover for neuronal health, the molecular mechanisms underlying this process are largely unknown. Here, we have used dissociated rat hippocampal neurons to investigate the pathway for SV protein degradation. We find that neuronal activity drives the degradation of a subset of SV proteins and that the endosomal sorting complex required for transport (ESCRT) machinery and SV-associated GTPase Rab35 are key elements of this use-dependent degradative pathway. Specifically, neuronal activity induces Rab35 activation and binding to the ESCRT-0 protein Hrs, which we have identified as a novel Rab35 effector. These actions recruit the downstream ESCRT machinery to SV pools, thereby initiating SV protein degradation via the ESCRT pathway. Our findings show that the Rab35/ESCRT pathway facilitates the activity-dependent removal of specific proteins from SV pools, thereby maintaining presynaptic protein homeostasis. SIGNIFICANCE STATEMENT: Synaptic transmission is mediated by the release of chemical neurotransmitters from synaptic vesicles (SVs). This tightly regulated process requires a functional pool of SVs, necessitating cellular mechanisms for removing old or damaged proteins that could impair SV cycling. Here, we show that a subset of SV proteins is degraded in an activity-dependent manner and that key steps in this degradative pathway are the activation of the small GTPase Rab35 and the subsequent recruitment of the endosomal sorting complex required for transport (ESCRT) machinery to SV pools. Further, we demonstrate that ESCRT-0 component Hrs is an effector of Rab35, thus providing novel mechanistic insight into the coupling of neuronal activity with SV protein degradation and the maintenance of functional SV pools.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Hipocampo/citología , Neuronas/fisiología , Transducción de Señal/fisiología , Vesículas Sinápticas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Animales , Transporte Biológico , Embrión de Mamíferos , Endocitosis/efectos de los fármacos , Endocitosis/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , ARN Citoplasmático Pequeño/metabolismo , ARN Citoplasmático Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/genética , Vesículas Sinápticas/ultraestructura , Valina/análogos & derivados , Valina/farmacología
2.
J Mol Biol ; 353(1): 88-103, 2005 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-16154588

RESUMEN

Regulated protein biosynthesis in dendrites of neurons might be a key mechanism underlying learning and memory. Neuronal dendritic BC1 RNA and BC200 RNA and similar small untranslated RNAs inhibit protein translation in vitro systems, such as rabbit reticulocyte lysate. Likewise, co-transfection of these RNAs with reporter mRNA suppressed translation levels in HeLa cells. The oligo(A)-rich region of all active small RNAs were identified as the RNA domains chiefly responsible for the inhibitory effects. Addition of recombinant human poly(A)-binding protein (PABP) significantly compensated the inhibitory effect of the small oligo(A)-rich RNA. In vivo, all BC1 RNA appears to be complexed with PABP. Nevertheless, in the micro-environment of dendritic spines of neuronal cells, BC1 RNPs or BC200 RNPs might mediate regulatory functions by differential interactions with locally limited PABP and/or directly or indirectly, with other translation initiation factors.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Citoplasmático Pequeño/farmacología , Animales , Línea Celular , Sistema Libre de Células , Escherichia coli/genética , Humanos , Ratones , ARN Citoplasmático Pequeño/genética , Conejos
3.
J Neurosci ; 22(23): 10232-41, 2002 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-12451124

RESUMEN

In neurons, local protein synthesis in synaptodendritic microdomains has been implicated in the growth and plasticity of synapses. Prerequisites for local translation are the targeted transport of RNAs to distal sites of synthesis in dendrites and translational control mechanisms to limit synthesis to times of demand. Here we identify dendritic BC1 RNA as a specific repressor of translation. Experimental use of internal ribosome entry mechanisms and sucrose density gradient centrifugation showed that BC1-mediated repression targets translation at the level of initiation. Specifically, BC1 RNA inhibited formation of the 48S preinitiation complex, i.e., recruitment of the small ribosomal subunit to the messenger RNA (mRNA). However, 48S complex formation that is independent of the eukaryotic initiation factor 4 (eIF4) family of initiation factors was found to be refractory to inhibition by BC1 RNA, a result that implicates at least one of these factors in the BC1 repression pathway. Biochemical experiments indicated a specific interaction of BC1 RNA with eIF4A, an RNA unwinding factor, and with poly(A)-binding protein. Both proteins were found enriched in synaptodendritic microdomains. Significantly, BC1-mediated repression was shown to be effective not only in cap-dependent translation initiation but also in eIF4-dependent internal initiation. The results suggest a functional role of BC1 RNA as a mediator of translational control in local protein synthesis in nerve cells.


Asunto(s)
Dendritas/metabolismo , Regulación de la Expresión Génica/fisiología , Biosíntesis de Proteínas/fisiología , ARN Citoplasmático Pequeño/metabolismo , Proteínas Represoras/metabolismo , Animales , Química Encefálica , Sistema Libre de Células , Células Cultivadas , Ensayo de Cambio de Movilidad Electroforética , Factor 4A Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Sustancias Macromoleculares , Plasticidad Neuronal/fisiología , Neuronas/citología , Iniciación de la Cadena Peptídica Traduccional/fisiología , Proteínas de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Citoplasmático Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA