RESUMEN
In a recent mechanistic study, octopamine was shown to promote proton transport over the branchial epithelium in green crabs, Carcinus maenas. Here, we follow up on this finding by investigating the involvement of octopamine in an environmental and physiological context that challenges acid-base homeostasis, the response to short-term high pCO2 exposure (400 Pa) in a brackish water environment. We show that hyperregulating green crabs experienced a respiratory acidosis as early as 6 h of exposure to hypercapnia, with a rise in hemolymph pCO2 accompanied by a simultaneous drop of hemolymph pH. The slightly delayed increase in hemolymph HCO3- observed after 24 h helped to restore hemolymph pH to initial values by 48 h. Circulating levels of the biogenic amine octopamine were significantly higher in short-term high pCO2 exposed crabs compared to control crabs after 48 h. Whole animal metabolic rates, intracellular levels of octopamine and cAMP, as well as branchial mitochondrial enzyme activities for complex I + III and citrate synthase were unchanged in posterior gill #7 after 48 h of hypercapnia. However, application of octopamine in gill respirometry experiments suppressed branchial metabolic rate in posterior gills of short-term high pCO2 exposed animals. Furthermore, branchial enzyme activity of cytochrome C oxidase decreased in high pCO2 exposed crabs after 48 h. Our results indicate that hyperregulating green crabs are capable of quickly counteracting a hypercapnia-induced respiratory acidosis. The role of octopamine in the acclimation of green crabs to short-term hypercapnia seems to entail the alteration of branchial metabolic pathways, possibly targeting mitochondrial cytochrome C in the gill. Our findings help advancing our current limited understanding of endocrine components in hypercapnia acclimation. SUMMARY STATEMENT: Acid-base compensation upon short-term high pCO2 exposure in hyperregulating green crabs started after 6 h and was accomplished by 48 h with the involvement of the biogenic amine octopamine, accumulation of hemolymph HCO3-, and regulation of mitochondrial complex IV (cytochrome C oxidase).
Asunto(s)
Acidosis Respiratoria , Braquiuros , Decápodos , Animales , Hipercapnia/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Octopamina/metabolismo , Acidosis Respiratoria/metabolismo , Braquiuros/fisiología , Branquias/metabolismoRESUMEN
BACKGROUND: Salbutamol-induced lactic acidosis is a rare presentation that could manifest in specific clinical context as acute asthmatic attack treatment. An increase of glycolysis pathway leading to pyruvate escalation is the mechanism of hyperlactatemia in ß2-adrenergic agonist drug. CASE PRESENTATION: A 40-year-old man who had poor-controlled asthma, presented with progressive dyspnea with coryza symptom for 6 days. He was intubated and admitted into medical intensive care unit due to deteriorated respiratory symptom. Severe asthmatic attack was diagnosed and approximate 1.5 canisters of salbutamol inhaler was administrated within 24 h of admission. Initial severe acidosis consisted of acute respiratory acidosis from ventilation-perfusion mismatch and acute metabolic acidosis resulting from bronchospasm and hypoxia-related lactic acidosis, respectively. The lactate level was normalized in 6 h after hypoxemia and ventilation correction. Given the lactate level re-elevated into a peak of 4.6 mmol/L without signs of tissue hypoxia nor other possible etiologies, the salbutamol toxicity was suspected and the inhaler was discontinued that contributed to rapid lactate clearance. The patient was safely discharged on the 6th day of admission. CONCLUSION: The re-elevation of serum lactate in status asthmaticus patient who had been administrated with the vast amount of ß2-adrenergic agonist should be considered for salbutamol-induced lactic acidosis and promptly discontinued especially when there were no common potentials.
Asunto(s)
Acidosis Láctica/inducido químicamente , Agonistas de Receptores Adrenérgicos beta 2/efectos adversos , Albuterol/efectos adversos , Ácido Láctico/sangre , Estado Asmático/tratamiento farmacológico , Acidosis/metabolismo , Acidosis/terapia , Acidosis Láctica/sangre , Acidosis Respiratoria/metabolismo , Acidosis Respiratoria/terapia , Adulto , Espasmo Bronquial/tratamiento farmacológico , Espasmo Bronquial/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/terapia , Masculino , Estado Asmático/metabolismo , Relación Ventilacion-PerfusiónRESUMEN
Breathing less than 50 kPa of oxygen over time can lead to pulmonary oxygen toxicity (POT). Vital capacity (VC) as the sole parameter for POT has its limitations. In this study we try to find out the changes of acid-base status in a POT rat model. Fifty male rats were randomly divided into five groups, exposed to 230 kPa oxygen for three, six, nine and 12 hours, respectively. Rats exposed to air were used as controls. After exposure the mortality and behavior of rats were observed. Arterial blood samples were collected for acid-base status detection and wet-dry (W/D) ratios of lung tissues were tested. Results showed that the acid-base status in rats exposed to 230 kPa oxygen presented a dynamic change. The primary status was in the compensatory period when primary respiratory acidosis was mixed with compensated metabolic alkalosis. Then the status changed to decompensated alkalosis and developed to decompensated acidosis in the end. pH, PCO2, HCO3-, TCO2, and BE values had two phases: an increase and a later decrease with increasing oxygen exposure time, while PaO2 and lung W/D ratio showed continuously increasing trends with the extension of oxygen exposure time. Lung W/D ratio was significantly associated with PaO2 (r = 0.6385, p = 0.002), while other parameters did not show a significant correlation. It is concluded that acid-base status in POT rats presents a dynamic change: in the compensatory period first, then turns to decompensated alkalosis and ends up with decompensated acidosis status. Blood gas analysis is a useful method to monitor the development of POT.
Asunto(s)
Desequilibrio Ácido-Base/sangre , Acidosis Respiratoria/metabolismo , Alcalosis Respiratoria/metabolismo , Oxigenoterapia Hiperbárica/efectos adversos , Oxígeno/toxicidad , Desequilibrio Ácido-Base/etiología , Animales , Presión Atmosférica , Bicarbonatos/sangre , Análisis Químico de la Sangre , Análisis de los Gases de la Sangre , Dióxido de Carbono/sangre , Oxigenoterapia Hiperbárica/métodos , Pulmón/patología , Masculino , Modelos Animales , Tamaño de los Órganos , Presión Parcial , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Capacidad VitalRESUMEN
The swamp eel (Monopterus albus) uses its buccal cavity to air breathe, while the gills are strongly reduced. It burrows into mud during the dry season, is highly tolerant of air exposure, and experiences severe hypoxia both in its natural habitat and in aquaculture. To study the ability of M. albus to compensate for respiratory acidosis, we implanted catheters to sample both arterial blood and urine during hypercapnia (4% CO2) in either water or air, or during whole-animal air exposure. These hypercapnic challenges caused an immediate reduction in arterial pH, followed by progressive compensation through a marked elevation of plasma HCO3- over the course of 72â h. There was no appreciable rise in urinary acid excretion in fish exposed to hypercapnia in water, although urine pH was reduced and ammonia excretion did increase. In the air-exposed fish, however, hypercapnia was attended by a large elevation of ammonia in the urine and a large rise in titratable acid excretion. The time course of the increased renal acid excretion overlapped with the time period required to elevate plasma HCO3-, and we estimate that the renal compensation contributed significantly to whole-body acid-base compensation.
Asunto(s)
Equilibrio Ácido-Base , Acidosis Respiratoria/veterinaria , Enfermedades de los Peces/metabolismo , Hipercapnia/veterinaria , Eliminación Renal , Smegmamorpha , Acidosis Respiratoria/metabolismo , Ácidos/metabolismo , Animales , Hipercapnia/metabolismoRESUMEN
OBJECTIVE: Diverse effects of hypercapnic acidosis are mediated via inhibition of nuclear factor-κB, a pivotal transcription factor, in the setting of injury, inflammation, and repair, but the underlying mechanisms of action of hypercapnic acidosis on this pathway is unclear. We aim to examine the effect of hypercapnic acidosis on the nuclear factor-κB pathway in the setting of Escherichia coli-induced lung injury and characterize the underlying mechanisms in subsequent in vitro studies. DESIGN: In vivo animal study and subsequent in vitro studies. SETTING: University Research Laboratory. SUBJECTS: Adult male Sprague-Dawley rats and pulmonary epithelial cells. INTERVENTIONS: Following pulmonary IκBα-SuperRepressor transgene overexpression or sham and intratracheal E. coli inoculation, rats underwent 4 hours of mechanical ventilation under normocapnia or hypercapnic acidosis, and nuclear factor-κB activation, animal survival, lung injury, and cytokine profile were assessed. Subsequent in vitro studies examined the effect of hypercapnic acidosis on specific nuclear factor-κB canonical pathway kinases via overexpression of these components and in vitro kinase activity assays. The effect of hypercapnic acidosis on the p50/p65 nuclear factor-κB heterodimer was then assessed. MEASUREMENTS AND MAIN RESULTS: Hypercapnic acidosis and IκBα-SuperRepressor transgene overexpression reduced E. coli-induced lung inflammation and injury, decreased nuclear factor-κB activity, and increased animal survival. Hypercapnic acidosis inhibited canonical nuclear factor-κB signaling via reduced phosphorylative activation, reducing IκB kinase-ß activation and intrinsic activity, thereby decreasing IκBα degradation, and subsequent nuclear factor-κB translocation. Hypercapnic acidosis also directly reduced DNA binding of the nuclear factor-κB p65 subunit, although this effect was less marked. CONCLUSIONS: Hypercapnic acidosis reduced E. coli inflammation and lung injury in vivo and reduced nuclear factor-κB activation predominantly by inhibiting the activation and intrinsic activity of IκB kinase-ß.
Asunto(s)
Acidosis Respiratoria/metabolismo , Hipercapnia/metabolismo , Proteínas I-kappa B/metabolismo , FN-kappa B/metabolismo , Animales , Escherichia coli , Quinasa I-kappa B/metabolismo , Lesión Pulmonar/metabolismo , Masculino , Inhibidor NF-kappaB alfa , FN-kappa B/genética , Ratas , Ratas Sprague-Dawley , Respiración Artificial , Síndrome de Dificultad Respiratoria/metabolismo , Sepsis , Transducción de SeñalRESUMEN
BACKGROUND: Acute respiratory acidosis is associated with alterations in diaphragm performance. The authors compared the effects of respiratory acidosis and metabolic acidosis in the rat diaphragm in vitro. METHODS: Diaphragmatic strips were stimulated in vitro, and mechanical and energetic variables were measured, cross-bridge kinetics calculated, and the effects of fatigue evaluated. An extracellular pH of 7.00 was obtained by increasing carbon dioxide tension (from 25 to 104 mmHg) in the respiratory acidosis group (n = 12) or lowering bicarbonate concentration (from 24.5 to 5.5 mM) in the metabolic acidosis group (n = 12) and the results compared with a control group (n = 12, pH = 7.40) after 20-min exposure. RESULTS: Respiratory acidosis induced a significant decrease in maximum shortening velocity (-33%, P < 0.001), active isometric force (-36%, P < 0.001), and peak power output (-59%, P < 0.001), slowed relaxation, and decreased the number of cross-bridges (-35%, P < 0.001) but not the force per cross-bridge, and impaired recovery from fatigue. Respiratory acidosis impaired more relaxation than contraction, as shown by impairment in contraction-relaxation coupling under isotonic (-26%, P < 0.001) or isometric (-44%, P < 0.001) conditions. In contrast, no significant differences in diaphragmatic contraction, relaxation, or contraction-relaxation coupling were observed in the metabolic acidosis group. CONCLUSIONS: In rat diaphragm, acute (20 min) respiratory acidosis induced a marked decrease in the diaphragm contractility, which was not observed in metabolic acidosis.
Asunto(s)
Acidosis Respiratoria/metabolismo , Acidosis Respiratoria/fisiopatología , Diafragma/fisiopatología , Contracción Muscular/fisiología , Acidosis/metabolismo , Acidosis/fisiopatología , Animales , Diafragma/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas WistarRESUMEN
BACKGROUND: We have proved that hypercapnic acidosis (a PaCO2 of 80-100 mmHg) protects against ventilator-induced lung injury in rats. However, there remains uncertainty regarding the appropriate target PaCO2 or if greater CO2 "doses" (PaCO2 > 100 mmHg) demonstrate this effect. We wished to determine whether severe acute hypercapnic acidosis can reduce stretch-induced injury, as well as the role of nuclear factor-κB (NF-κB) in the effects of acute hypercapnic acidosis. METHODS: Fifty-four rats were ventilated for 4 hours with a pressure-controlled ventilation mode set at a peak inspiratory pressure (PIP) of 30 cmH2O. A gas mixture of carbon dioxide with oxygen (FiCO2 = 4-5%, FiCO2 = 11-12% or FiCO2 = 16-17%; FiO2 = 0.7; balance N2) was immediately administered to maintain the target PaCO2 in the NC (a PaCO2 of 35-45 mmHg), MHA (a PaCO2 of 80-100 mmHg) and SHA (a PaCO2 of 130-150 mmHg) groups. Nine normal or non-ventilated rats served as controls. The hemodynamics, gas exchange and inflammatory parameters were measured. The role of NF-κB pathway in hypercapnic acidosis-mediated protection from high-pressure stretch injury was then determined. RESULTS: In the NC group, high-pressure ventilation resulted in a decrease in PaO2/FiO2 from 415.6 (37.1) mmHg to 179.1 (23.5) mmHg (p < 0.001), but improved by MHA (379.9 ± 34.5 mmHg) and SHA (298.6 ± 35.3 mmHg). The lung injury score in the SHA group (7.8 ± 1.6) was lower than the NC group (11.8 ± 2.3, P < 0.05) but was higher than the MHA group (4.4 ± 1.3, P < 0.05). Compared with the NC group, after 4 h of high pressure ventilation, the MHA and SHA groups had decreases in MPO activity of 67% and 33%, respectively, and also declined the levels of TNF-α (58% versus 72%) and MIP-2 (76% versus 60%) in the BALF. Additionally, both hypercapnic acidosis groups reduced stretch-induced NF-κB activation (p < 0.05) and significantly decreased lung ICAM-1 expression (p < 0.05). CONCLUSIONS: Moderate hypercapnic acidosis (PaCO2 maintained at 80-100 mmHg) has a greater protective effect on high-pressure ventilation-induced inflammatory injury. The potential mechanisms may involve alterations in NF-κB activity.
Asunto(s)
Acidosis Respiratoria/metabolismo , Hipercapnia/metabolismo , FN-kappa B/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Acidosis Respiratoria/fisiopatología , Animales , Dióxido de Carbono/metabolismo , Modelos Animales de Enfermedad , Hipercapnia/fisiopatología , Molécula 1 de Adhesión Intercelular/metabolismo , Intercambio Gaseoso Pulmonar/fisiología , Ratas , Ratas Wistar , Índice de Severidad de la Enfermedad , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
PURPOSE: Acute exacerbation of chronic obstructive pulmonary disease (AECOPD) can result in severe respiratory acidosis. Metabolic compensation is primarily achieved by renal retention of bicarbonate. The extent to which acute kidney injury (AKI) impairs the kidney's capacity to compensate for respiratory acidosis remains unclear. MATERIALS AND METHODS: This retrospective analysis covers clinical data between January 2009 and December 2021 for 498 ICU patients with AECOPD and need for respiratory support. RESULTS: 278 patients (55.8%) presented with or developed AKI. Patients with AKI exhibited higher 30-day-mortality rates (14.5% vs. 4.5% p = 0.001), longer duration of mechanical ventilation (median 90 h vs. 14 h; p = 0.001) and more severe hypercapnic acidosis (pH 7.23 vs. 7.28; pCO2 68.5 mmHg vs. 61.8 mmHg). Patients with higher AKI stages exhibited lower HCO3-/pCO2 ratios and did not reach expected HCO3- levels. In a mixed model analysis with random intercept per patient we analyzed the association of pCO2 (independent) and HCO3- (dependent variable). Lower estimates for averaged change in HCO3- were observed in patients with more severe AKI. CONCLUSION: AKI leads to poor outcomes and compromises metabolic compensation of respiratory acidosis in ICU patients with AECOPD. While buffering agents may aid compensation for severe AKI, their use should be approached with caution.
Asunto(s)
Acidosis Respiratoria , Lesión Renal Aguda , Unidades de Cuidados Intensivos , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Retrospectivos , Masculino , Lesión Renal Aguda/metabolismo , Femenino , Acidosis Respiratoria/metabolismo , Anciano , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/complicaciones , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología , Persona de Mediana Edad , Respiración Artificial , Bicarbonatos/metabolismoRESUMEN
A cellular compartment was added to our previous mathematical model of steady-state acid-base and fluid-electrolyte chemistry to gain further understanding and aid diagnosis of complex disorders involving cellular involvement in critically ill patients. An important hypothesis to be validated was that the thermodynamic, standard free-energy of cellular H(+) and Na(+) pumps remained constant under all conditions. In addition, a hydrostatic-osmotic pressure balance was assumed to describe fluid exchange between plasma and interstitial fluid, including incorporation of compliance curves of vascular and interstitial spaces. The description of the cellular compartment was validated by close comparison of measured and model-predicted cellular pH and electrolyte changes in vitro and in vivo. The new description of plasma-interstitial fluid exchange was validated using measured changes in fluid volumes after isoosmotic and hyperosmotic fluid infusions of NaCl and NaHCO3. The validated model was used to explain the role of cells in the mechanism of saline or dilutional acidosis and acid-base effects of acidic or basic fluid infusions and the acid-base disorder due to potassium depletion. A module was created that would allow users, who do not possess the software, to determine, for free, the results of fluid infusions and urinary losses of water and solutes to the whole body.
Asunto(s)
Equilibrio Ácido-Base , Electrólitos/química , Modelos Químicos , Equilibrio Hidroelectrolítico , Acidosis Respiratoria/metabolismo , Animales , Compartimento Celular/fisiología , Cloruros/química , Cloruros/metabolismo , Perros , Electrólitos/metabolismo , Potasio/química , Potasio/metabolismo , Ratas , TermodinámicaRESUMEN
Severe coronavirus disease 2019 (COVID-19) infection can lead to extensive lung infiltrate, a significant increase in the respiratory rate, and respiratory failure, which can affect the acid-base balance. No research in the Middle East has previously examined acid-base imbalance in COVID-19 patients. The present study aimed to describe the acid-base imbalance in hospitalized COVID-19 patients, determine its causes, and assess its impact on mortality in a Jordanian hospital. The study divided patients into 11 groups based on arterial blood gas data. Patients in normal group were defined as having a pH of 7.35-7.45, PaCO2 of 35-45 mmHg, and HCO3- of 21-27 mEq/L. Other patients were divided into 10 additional groups: mixed acidosis and alkalosis, respiratory and metabolic acidosis with or without compensation, and respiratory and metabolic alkalosis with or without compensation. This is the first study to categorize patients in this way. The results showed that acid-base imbalance was a significant risk factor for mortality (P<0.0001). Mixed acidosis nearly quadruples the risk of death when compared with those with normal levels (OR = 3.61, P=0.05). Furthermore, the risk of death was twice as high (OR = 2) for metabolic acidosis with respiratory compensation (P=0.002), respiratory alkalosis with metabolic compensation (P=0.002), or respiratory acidosis with no compensation (P=0.002). In conclusion, acid-base abnormalities, particularly mixed metabolic and respiratory acidosis, were associated with increased mortality in hospitalized COVID-19 patients. Clinicians should be aware of the significance of these abnormalities and address their underlying causes.
Asunto(s)
Desequilibrio Ácido-Base , Acidosis Respiratoria , Acidosis , Alcalosis , COVID-19 , Humanos , Acidosis Respiratoria/metabolismo , Desequilibrio Ácido-Base/metabolismo , Alcalosis/metabolismo , Acidosis/metabolismo , Factores de RiesgoRESUMEN
The Na(+/)H(+) exchanger isoform 3 (NHE3) is essential for HCO(3)(-) reabsorption in renal proximal tubules. The expression and function of NHE3 must adapt to acid-base conditions. The goal of this study was to elucidate the mechanisms responsible for higher proton secretion in proximal tubules during acidosis and to evaluate whether there are differences between metabolic and respiratory acidosis with regard to NHE3 modulation and, if so, to identify the relevant parameters that may trigger these distinct adaptive responses. We achieved metabolic acidosis by lowering HCO(3)(-) concentration in the cell culture medium and respiratory acidosis by increasing CO(2) tension in the incubator chamber. We found that cell-surface NHE3 expression was increased in response to both forms of acidosis. Mild (pH 7.21 ± 0.02) and severe (6.95 ± 0.07) metabolic acidosis increased mRNA levels, at least in part due to up-regulation of transcription, whilst mild (7.11 ± 0.03) and severe (6.86 ± 0.01) respiratory acidosis did not up-regulate NHE3 expression. Analyses of the Nhe3 promoter region suggested that the regulatory elements sensitive to metabolic acidosis are located between -466 and -153 bp, where two consensus binding sites for SP1, a transcription factor up-regulated in metabolic acidosis, were localised. We conclude that metabolic acidosis induces Nhe3 promoter activation, which results in higher mRNA and total protein level. At the plasma membrane surface, NHE3 expression was increased in metabolic and respiratory acidosis alike, suggesting that low pH is responsible for NHE3 displacement to the cell surface.
Asunto(s)
Acidosis Respiratoria/metabolismo , Acidosis/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Acidosis/genética , Acidosis/patología , Acidosis Respiratoria/genética , Acidosis Respiratoria/patología , Adaptación Fisiológica/genética , Animales , Secuencia de Bases , Sitios de Unión , Dióxido de Carbono/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Células Cultivadas , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Zarigüeyas , Regiones Promotoras Genéticas , Isoformas de Proteínas , Protones , ARN Mensajero/genética , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Regulación hacia Arriba/genéticaRESUMEN
OBJECTIVES: Hypercapnic acidosis protects against ventilation-induced lung injury. We wished to determine whether the beneficial effects of hypercapnic acidosis in reducing stretch-induced injury were mediated via inhibition of nuclear factor-κB, a key transcriptional regulator in inflammation, injury, and repair. DESIGN: Prospective randomized animal study. SETTING: University research laboratory. SUBJECTS: Adult male Sprague-Dawley rats. INTERVENTIONS: In separate experimental series, the potential for hypercapnic acidosis to attenuate moderate and severe ventilation-induced lung injury was determined. In each series, following induction of anesthesia and tracheostomy, Sprague-Dawley rats were randomized to (normocapnia; FICO2 0.00) or (hypercapnic acidosis; FICO2 0.05), subjected to high stretch ventilation, and the severity of lung injury and indices of activation of the nuclear factor-κB pathway were assessed. Subsequent in vitro experiments examined the potential for hypercapnic acidosis to reduce pulmonary epithelial inflammation and injury induced by cyclic mechanical stretch. The role of the nuclear factor-κB pathway in hypercapnic acidosis-mediated protection from stretch injury was then determined. MEASUREMENTS AND MAIN RESULTS: Hypercapnic acidosis attenuated moderate and severe ventilation-induced lung injury, as evidenced by improved oxygenation, compliance, and reduced histologic injury compared to normocapnic conditions. Hypercapnic acidosis reduced indices of inflammation such as interleukin-6 and bronchoalveolar lavage neutrophil infiltration. Hypercapnic acidosis reduced the decrement of the nuclear factor-κB inhibitor IκBα and reduced the generation of cytokine-induced neutrophil chemoattractant-1. Hypercapnic acidosis reduced cyclic mechanical stretch-induced nuclear factor-κB activation, reduced interleukin-8 production, and decreased epithelial injury and cell death compared to normocapnia. CONCLUSIONS: Hypercapnic acidosis attenuated ventilation-induced lung injury independent of injury severity and decreased mechanical stretch-induced epithelial injury and death, via a nuclear factor-κB-dependent mechanism.
Asunto(s)
Acidosis Respiratoria/metabolismo , FN-kappa B/metabolismo , Intercambio Gaseoso Pulmonar/fisiología , Lesión Pulmonar Inducida por Ventilación Mecánica/prevención & control , Acidosis Respiratoria/mortalidad , Acidosis Respiratoria/fisiopatología , Animales , Biopsia con Aguja , Análisis de los Gases de la Sangre , Modelos Animales de Enfermedad , Hemodinámica/fisiología , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Inmunohistoquímica , Puntaje de Gravedad del Traumatismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad , Tasa de Supervivencia , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/mortalidad , Lesión Pulmonar Inducida por Ventilación Mecánica/patologíaRESUMEN
BACKGROUND: The effects of acute respiratory versus metabolic acidosis on the myocardium and their consequences on adrenoceptor stimulation remain poorly described. We compared the effects of metabolic and respiratory acidosis on inotropy and lusitropy in rat myocardium and their effects on the responses to α- and ß-adrenoceptor stimulations. METHODS: The effects of acute respiratory and metabolic acidosis (pH 7.10) and their interactions with α and ß-adrenoceptor stimulations were studied in isolated rat left ventricular papillary muscle (n=8 per group). Intracellular pH was measured using confocal microscopy and a pH-sensitive fluorophore in isolated rat cardiomyocytes. Data are mean percentages of baseline±SD. RESULTS: Respiratory acidosis induced more pronounced negative inotropic effects than metabolic acidosis did both in isotonic (45±3 versus 63±6%, P<0.001) and isometric (44±5 versus 64±3%, P<0.001) conditions concomitant with a greater decrease in intracellular pH (6.85±0.07 versus 7.12±0.07, P<0.001). The response to α-adrenergic stimulation was not modified by respiratory or metabolic acidosis. The inotropic response to ß-adrenergic stimulation was impaired only in metabolic acidosis (137±12 versus 200±33%, P<0.001), but this effect was not observed with administration of forskolin or dibutiryl-cyclic adenosine monophosphate. This effect might be explained by a change in transmembrane pH gradient only observed with metabolic acidosis. The lusitropic response to ß-adrenergic stimulation was not modified by respiratory or metabolic acidosis. CONCLUSION: Acute metabolic and respiratory acidosis induce different myocardial effects related to different decreases in intracellular pH. Only metabolic acidosis impairs the positive inotropic effect of ß-adrenergic stimulation.
Asunto(s)
Acidosis/metabolismo , Miocitos Cardíacos/metabolismo , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta/metabolismo , Acidosis Respiratoria/metabolismo , Agonistas alfa-Adrenérgicos/farmacología , Agonistas Adrenérgicos beta/farmacología , Animales , Relación Dosis-Respuesta a Droga , Líquido Intracelular/metabolismo , Masculino , Miocardio , Miocitos Cardíacos/efectos de los fármacos , Técnicas de Cultivo de Órganos , Músculos Papilares/efectos de los fármacos , Músculos Papilares/metabolismo , Ratas , Ratas WistarRESUMEN
Socially subordinate rainbow trout (Oncorhynchus mykiss) experience chronic stress that impacts upon a variety of physiological functions, including Na(+) regulation. Owing to the tight coupling between Na(+) and Cl(-) uptake and, respectively, H(+) and HCO(3)(-) loss at the gill, ionoregulatory changes associated with social status may affect acid-base regulation. The present study assessed the responses of dominant, subordinate and control trout to hypercapnia (1% CO(2)) to test this hypothesis. Social status appeared to impact net acid excretion (J(net)H(+)) as subordinate individuals failed to increase net acid flux in response to hypercapnia. However, blood acid-base status was found to be unaffected by social status before or during hypercapnic exposure, indicating that subordinate fish were as effective as dominant or control trout in achieving compensation for the acid-base disturbance induced by hypercapnic exposure. Compensation in all groups involved decreasing Cl(-) uptake in response to hypercapnia. The branchial activities of both Na(+),K(+)-ATPase (NKA) and V-type H(+)-ATPase were affected by social interactions and/or exposure to hypercapnia. Branchial NKA activity was higher but V-ATPase activity was lower in control fish than in dominant or subordinate trout. In addition, control and subordinate but not dominant trout exposed to 24h of hypercapnia exhibited significantly higher branchial V-ATPase activity than fish maintained in normocapnia. Collectively, the data suggest that subordinate trout are able to regulate blood pH during a respiratory acidosis.
Asunto(s)
Conducta Animal/fisiología , Oncorhynchus mykiss/metabolismo , Conducta Social , Equilibrio Ácido-Base , Acidosis Respiratoria/sangre , Acidosis Respiratoria/metabolismo , Acidosis Respiratoria/fisiopatología , Animales , Cloruros/metabolismo , Concentración de Iones de Hidrógeno , Hipercapnia/sangre , Hipercapnia/metabolismo , Sodio/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , ATPasas de Translocación de Protón Vacuolares/metabolismoRESUMEN
The toxicity of carbon dioxide has been established for close to a century. A number of animal experiments have explored both acute and long-term toxicity with respect to the lungs, the cardiovascular system, and the bladder, showing inflammatory and possible carcinogenic effects. Carbon dioxide also induces multiple fetal malformations and probably reduces fertility in animals. The aim of the review is to recapitulate the physiological and metabolic mechanisms resulting from CO(2) inhalation. As smokers are exposed to a high level of carbon dioxide (13%) that is about 350 times the level in normal air, we propose the hypothesis that carbon dioxide plays a major role in the long term toxicity of tobacco smoke.
Asunto(s)
Dióxido de Carbono/toxicidad , Acidosis Respiratoria/metabolismo , Acidosis Respiratoria/patología , Animales , Bicarbonatos/química , Carcinógenos/toxicidad , Sistema Cardiovascular/efectos de los fármacos , Sistema Cardiovascular/metabolismo , Sistema Nervioso Central/efectos de los fármacos , Sistema Nervioso Central/metabolismo , Humanos , Hipercapnia/metabolismo , Hipercapnia/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Reproducción/efectos de los fármacosRESUMEN
Renal strong ion compensation to chronic respiratory acidosis has been established, but the nature of the response to acute respiratory acidosis is not well defined. We hypothesized that the response to acute respiratory acidosis in sheep is a rapid increase in the difference in renal fractional excretions of chloride and sodium (Fe(Cl) - Fe(Na)). Inspired CO(2) concentrations were increased for 1 h to significantly alter P(a)CO(2) and pH(a) from 32 ± 1 mm Hg and 7.52 ± 0.02 to 74 ± 2 mm Hg and 7.22 ± 0.02, respectively. Fe(Cl) - Fe(Na) increased significantly from 0.372 ± 0.206 to 1.240 ± 0.217% and returned to baseline at 2 h when P(a)CO(2) and pH(a) were 37 ± 0.6 mm Hg and 7.49 ± 0.01, respectively. Arterial pH and Fe(Cl) - Fe(Na) were significantly correlated. We conclude that the kidney responds rapidly to acute respiratory acidosis, within 30 min of onset, by differential reabsorption of sodium and chloride.
Asunto(s)
Acidosis Respiratoria/metabolismo , Riñón/metabolismo , Acidosis Respiratoria/fisiopatología , Enfermedad Aguda , Animales , Cloruros/metabolismo , Riñón/fisiopatología , Ovinos , Sodio/metabolismo , Factores de TiempoRESUMEN
Each of the four canonical acid-base disorders expresses as a primary change in carbon dioxide tension or plasma bicarbonate concentration followed by a secondary response in the countervailing variable. Quantified empirically, these secondary responses are directional and proportional to the primary changes, run a variable time course, and tend to minimize the impact on body acidity engendered by the primary changes. Absence of an appropriate secondary response denotes the coexistence of an additional acid-base disorder. Here we address the expected magnitude of the secondary response to each cardinal acid-base disorder in humans and offer caveats for judging the appropriateness of each secondary response.
Asunto(s)
Desequilibrio Ácido-Base/metabolismo , Bicarbonatos/sangre , Dióxido de Carbono/metabolismo , Equilibrio Ácido-Base/fisiología , Acidosis/metabolismo , Acidosis Respiratoria/metabolismo , Humanos , Hipocapnia/metabolismo , Factores de TiempoRESUMEN
In vivo, metabolic acidosis {decreased pH from decreased bicarbonate concentration ([HCO(3)(-)])} increases urine calcium (Ca) without increased intestinal Ca absorption, resulting in a loss of bone Ca. Conversely, respiratory acidosis [decreased pH from increased partial pressure of carbon dioxide (Pco(2))] does not appreciably alter Ca homeostasis. In cultured bone, chronic metabolic acidosis (Met) significantly increases cell-mediated net Ca efflux while isohydric respiratory acidosis (Resp) does not. The proton receptor, OGR1, appears critical for cell-mediated, metabolic acid-induced bone resorption. Perfusion of primary bone cells or OGR1-transfected Chinese hamster ovary (CHO) cells with Met induces transient peaks of intracellular Ca (Ca(i)). To determine whether Resp increases Ca(i), as does Met, we imaged Ca(i) in primary cultures of bone cells. pH for Met = 7.07 ([HCO(3)(-)] = 11.8 mM) and for Resp = 7.13 (Pco(2) = 88.4 mmHg) were similar and lower than neutral (7.41). Both Met and Resp induced a marked, transient increase in Ca(i) in individual bone cells; however, Met stimulated Ca(i) to a greater extent than Resp. We used OGR1-transfected CHO cells to determine whether OGR1 was responsible for the greater increase in Ca(i) in Met than Resp. Both Met and Resp induced a marked, transient increase in Ca(i) in OGR1-transfected CHO cells; however, in these cells Met was not different than Resp. Thus, the greater induction of Ca(i) by Met in primary bone cells is not a function of OGR1 alone, but must involve H(+) receptors other than OGR1, or pathways sensitive to Pco(2), HCO(3)(-), or total CO(2) that modify the effect of H(+) in primary bone cells.
Asunto(s)
Acidosis Respiratoria/metabolismo , Acidosis/metabolismo , Calcio/metabolismo , Osteoblastos/metabolismo , Animales , Animales Recién Nacidos , Bicarbonatos/metabolismo , Resorción Ósea/metabolismo , Células CHO , Cricetinae , Cricetulus , Concentración de Iones de Hidrógeno , Ratones , Microscopía Fluorescente , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , TransfecciónRESUMEN
BACKGROUND: Hypercapnic acidosis frequently occurs when patients with acute lung injury are initially ventilated with low tidal volume "protective" strategies. Hypercapnic acidosis per se, in the absence of any change in tidal volume or airway pressure, is protective when instituted before the onset of injury. However, the mechanisms by which hypercapnic acidosis confers this protection are incompletely understood, in particular, the effects on pulmonary oxidative reactions, which are potent mediators of tissue damage, have not been previously examined in vivo. METHODS: After anesthesia, tracheostomy, and the intratracheal instillation of endotoxin to establish lung injury, rats were mechanically ventilated for 6 h in normocapnia (21% O2, 0% CO2). Rats were then randomized to either normocapnic (21% O2, 0% CO2) or hypercapnic (21% O2, 5% CO2) ventilation and a nonspecific nitric oxide synthase inhibitor (N-monomethyl-L-arginine) or vehicle. Dihydrorhodamine was administered intravenously, and the lungs were removed for determination of the oxidative formation of rhodamine by spectrofluorimetry after 20 min. Thus, rats were randomly assigned to either: normocapnia-endotoxin (n = 12), normocapnia-endotoxin-N-monomethyl-L-arginine (n = 9), hypercapnia-endotoxin (n = 11), or hypercapnia-endotoxin-N-monomethyl-L-arginine (n = 10). RESULTS: Hypercapnic acidosis significantly reduced the pulmonary oxidative reactions in the inflamed lung compared with normocapnia. Nitric oxide synthase blockade did not alter endotoxin-induced oxidative reactions. CONCLUSIONS: Hypercapnic acidosis reduced oxidative reactions in the acutely injured lung in vivo, within minutes of onset and was not reliant on nitric oxide-dependent peroxynitrite production. This rapid onset antioxidant action is a previously undescribed mechanism by which hypercapnic acidosis could act, even when acute lung injury is well established.