Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(2): 308-323.e6, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33421362

RESUMEN

Th17 cells are known to exert pathogenic and non-pathogenic functions. Although the cytokine transforming growth factor ß1 (TGF-ß1) is instrumental for Th17 cell differentiation, it is dispensable for generation of pathogenic Th17 cells. Here, we examined the T cell-intrinsic role of Activin-A, a TGF-ß superfamily member closely related to TGF-ß1, in pathogenic Th17 cell differentiation. Activin-A expression was increased in individuals with relapsing-remitting multiple sclerosis and in mice with experimental autoimmune encephalomyelitis. Stimulation with interleukin-6 and Activin-A induced a molecular program that mirrored that of pathogenic Th17 cells and was inhibited by blocking Activin-A signaling. Genetic disruption of Activin-A and its receptor ALK4 in T cells impaired pathogenic Th17 cell differentiation in vitro and in vivo. Mechanistically, extracellular-signal-regulated kinase (ERK) phosphorylation, which was essential for pathogenic Th17 cell differentiation, was suppressed by TGF-ß1-ALK5 but not Activin-A-ALK4 signaling. Thus, Activin-A drives pathogenic Th17 cell differentiation, implicating the Activin-A-ALK4-ERK axis as a therapeutic target for Th17 cell-related diseases.


Asunto(s)
Activinas/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Esclerosis Múltiple/inmunología , Inflamación Neurogénica/inmunología , Células Th17/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Activinas/genética , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Ratones , Ratones Noqueados , Terapia Molecular Dirigida , Transducción de Señal
2.
PLoS Genet ; 20(6): e1011324, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875298

RESUMEN

The Transforming Growth Factor beta (TGF-ß) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that may enhance, repress, or generate novel functions. In the nematode Caenorhabditis elegans, there are only five TGF-ß ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-ß/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-ß ligands play a role in survival on bacterial pathogens. We also demonstrate that multiple TGF-ß ligand pairs act nonredundantly as part of this response. We show that the two BMP-like ligands-DBL-1 and TIG-2-function independently of each other in the immune response, while TIG-2/BMP and the TGF-ß/Activin-like ligand TIG-3 function together. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Additionally, we identify TIG-2 and TIG-3 as members of a rare subset of TGF-ß ligands lacking the conserved cysteine responsible for disulfide linking mature dimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-ß/Activin signaling pathway do not play a major role in survival. These results demonstrate a novel potential for BMP and TGF-ß/Activin subfamily ligands to interact and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.


Asunto(s)
Proteínas Morfogenéticas Óseas , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Inmunidad Innata , Transducción de Señal , Factor de Crecimiento Transformador beta , Animales , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Inmunidad Innata/genética , Ligandos , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas Morfogenéticas Óseas/genética , Activinas/metabolismo , Activinas/genética , Neuropéptidos
3.
PLoS Genet ; 19(9): e1010954, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37713421

RESUMEN

As an oocyte-specific growth factor, bone morphogenetic protein 15 (BMP15) plays a critical role in controlling folliculogenesis. However, the mechanism of BMP15 action remains elusive. Using zebrafish as the model, we created a bmp15 mutant using CRISPR/Cas9 and demonstrated that bmp15 deficiency caused a significant delay in follicle activation and puberty onset followed by a complete arrest of follicle development at previtellogenic (PV) stage without yolk accumulation. The mutant females eventually underwent female-to-male sex reversal to become functional males, which was accompanied by a series of changes in secondary sexual characteristics. Interestingly, the blockade of folliculogenesis and sex reversal in bmp15 mutant could be partially rescued by the loss of inhibin (inha-/-). The follicles of double mutant (bmp15-/-;inha-/-) could progress to mid-vitellogenic (MV) stage with yolk accumulation and the fish maintained their femaleness without sex reversal. Transcriptome analysis revealed up-regulation of pathways related to TGF-ß signaling and endocytosis in the double mutant follicles. Interestingly, the expression of inhibin/activin ßAa subunit (inhbaa) increased significantly in the double mutant ovary. Further knockout of inhbaa in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-) resulted in the loss of yolk granules again. The serum levels of estradiol (E2) and vitellogenin (Vtg) both decreased significantly in bmp15 single mutant females (bmp15-/-), returned to normal in the double mutant (bmp15-/-;inha-/-), but reduced again significantly in the triple mutant (bmp15-/-;inha-/-;inhbaa-/-). E2 treatment could rescue the arrested follicles in bmp15-/-, and fadrozole (a nonsteroidal aromatase inhibitor) treatment blocked yolk accumulation in bmp15-/-;inha-/- fish. The loss of inhbaa also caused a reduction of Vtg receptor-like molecules (e.g., lrp1ab and lrp2a). In summary, the present study provided comprehensive genetic evidence that Bmp15 acts together with the activin-inhibin system in the follicle to control E2 production from the follicle, Vtg biosynthesis in the liver and its uptake by the developing oocytes.


Asunto(s)
Proteína Morfogenética Ósea 15 , Inhibinas , Proteínas de Pez Cebra , Pez Cebra , Animales , Femenino , Masculino , Activinas/genética , Proteína Morfogenética Ósea 15/genética , Proteína Morfogenética Ósea 15/metabolismo , Inhibinas/genética , Inhibinas/metabolismo , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
EMBO J ; 40(14): e106317, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34003511

RESUMEN

Fibrodysplasia ossificans progressiva (FOP) and diffuse intrinsic pontine glioma (DIPG) are debilitating diseases that share causal mutations in ACVR1, a TGF-ß family type I receptor. ACVR1R206H is a frequent mutation in both diseases. Pathogenic signaling via the SMAD1/5 pathway is mediated by Activin A, but how the mutation triggers aberrant signaling is not known. We show that ACVR1 is essential for Activin A-mediated SMAD1/5 phosphorylation and is activated by two distinct mechanisms. Wild-type ACVR1 is activated by the Activin type I receptors, ACVR1B/C. In contrast, ACVR1R206H activation does not require upstream kinases, but is predominantly activated via Activin A-dependent receptor clustering, which induces its auto-activation. We use optogenetics and live-imaging approaches to demonstrate Activin A-induced receptor clustering and show it requires the type II receptors ACVR2A/B. Our data provide molecular mechanistic insight into the pathogenesis of FOP and DIPG by linking the causal activating genetic mutation to disrupted signaling.


Asunto(s)
Receptores de Activinas Tipo I/genética , Receptores de Activinas Tipo I/metabolismo , Activinas/genética , Activinas/metabolismo , Fosforilación/genética , Animales , Línea Celular , Análisis por Conglomerados , Células HEK293 , Humanos , Ratones , Mutación/genética , Miositis Osificante/genética , Células 3T3 NIH , Transducción de Señal/genética
5.
PLoS Genet ; 18(12): e1010523, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36469526

RESUMEN

Activin and inhibin are both dimeric proteins sharing the same ß subunits that belong to the TGF-ß superfamily. They are well known for stimulating and inhibiting pituitary FSH secretion, respectively, in mammals. In addition, activin also acts as a mesoderm-inducing factor in frogs. However, their functions in development and reproduction of other species are poorly defined. In this study, we disrupted all three activin/inhibin ß subunits (ßAa, inhbaa; ßAb, inhbab; and ßB, inhbb) in zebrafish using CRISPR/Cas9. The loss of ßAa/b but not ßB led to a high mortality rate in the post-hatching stage. Surprisingly, the expression of fshb but not lhb in the pituitary increased in the female ßA mutant together with aromatase (cyp19a1a) in the ovary. The single mutant of ßAa/b showed normal folliculogenesis in young females; however, their double mutant (inhbaa-/-;inhbab-/-) showed delayed follicle activation, granulosa cell hypertrophy, stromal cell accumulation and tissue fibrosis. The ovary of inhbaa-/- deteriorated progressively after 180 dpf with reduced fecundity and the folliculogenesis ceased completely around 540 dpf. In addition, tumor- or cyst-like tissues started to appear in the inhbaa-/- ovary after about one year. In contrast to females, activin ßAa/b mutant males showed normal spermatogenesis and fertility. As for activin ßB subunit, the inhbb-/- mutant exhibited normal folliculogenesis, spermatogenesis and fertility in both sexes; however, the fecundity of mutant females decreased dramatically at 270 dpf with accumulation of early follicles. In summary, the activin-inhibin system plays an indispensable role in fish reproduction, in particular folliculogenesis and ovarian homeostasis.


Asunto(s)
Subunidades beta de Inhibinas , Inhibinas , Animales , Femenino , Inhibinas/genética , Inhibinas/metabolismo , Subunidades beta de Inhibinas/genética , Subunidades beta de Inhibinas/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo , Activinas/genética , Activinas/metabolismo , Reproducción/genética , Mamíferos/metabolismo
6.
PLoS Genet ; 18(12): e1010318, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36520929

RESUMEN

Growth differentiation factor 9 (GDF9) was the first oocyte-specific growth factor identified; however, most information about GDF9 functions comes from studies in the mouse model. In this study, we created a mutant for Gdf9 gene (gdf9-/-) in zebrafish using TALEN approach. The loss of Gdf9 caused a complete arrest of follicle development at primary growth (PG) stage. These follicles eventually degenerated, and all mutant females gradually changed to males through sex reversal, which could be prevented by mutation of the male-promoting gene dmrt1. Interestingly, the phenotypes of gdf9-/- could be rescued by simultaneous mutation of inhibin α (inha-/-) but not estradiol treatment, suggesting a potential role for the activin-inhibin system or its signaling pathway in Gdf9 actions. In gdf9-null follicles, the expression of activin ßAa (inhbaa), but not ßAb (inhbab) and ßB (inhbb), decreased dramatically; however, its expression rebounded in the double mutant (gdf9-/-;inha-/-). These results indicate clearly that the activation of PG follicles to enter the secondary growth (SG) requires intrinsic factors from the oocyte, such as Gdf9, which in turn works on the neighboring follicle cells to trigger follicle activation, probably involving activins. In addition, our data also support the view that estrogens are not involved in follicle activation as recently reported.


Asunto(s)
Factor 9 de Diferenciación de Crecimiento , Pez Cebra , Ratones , Femenino , Animales , Masculino , Pez Cebra/genética , Pez Cebra/metabolismo , Factor 9 de Diferenciación de Crecimiento/genética , Factor 9 de Diferenciación de Crecimiento/metabolismo , Inhibinas/genética , Inhibinas/metabolismo , Folículo Ovárico/metabolismo , Activinas/genética , Activinas/metabolismo
7.
Am J Physiol Renal Physiol ; 326(5): F751-F767, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38385175

RESUMEN

Conduit arterial disease in chronic kidney disease (CKD) is an important cause of cardiac complications. Cardiac function in CKD has not been studied in the absence of arterial disease. In an Alport syndrome model bred not to have conduit arterial disease, mice at 225 days of life (dol) had CKD equivalent to humans with CKD stage 4-5. Parathyroid hormone (PTH) and FGF23 levels were one log order elevated, circulating sclerostin was elevated, and renal activin A was strongly induced. Aortic Ca levels were not increased, and vascular smooth muscle cell (VSMC) transdifferentiation was absent. The CKD mice were not hypertensive, and cardiac hypertrophy was absent. Freshly excised cardiac tissue respirometry (Oroboros) showed that ADP-stimulated O2 flux was diminished from 52 to 22 pmol/mg (P = 0.022). RNA-Seq of cardiac tissue from CKD mice revealed significantly decreased levels of cardiac mitochondrial oxidative phosphorylation genes. To examine the effect of activin A signaling, some Alport mice were treated with a monoclonal Ab to activin A or an isotype-matched IgG beginning at 75 days of life until euthanasia. Treatment with the activin A antibody (Ab) did not affect cardiac oxidative phosphorylation. However, the activin A antibody was active in the skeleton, disrupting the effect of CKD to stimulate osteoclast number, eroded surfaces, and the stimulation of osteoclast-driven remodeling. The data reported here show that cardiac mitochondrial respiration is impaired in CKD in the absence of conduit arterial disease. This is the first report of the direct effect of CKD on cardiac respiration.NEW & NOTEWORTHY Heart disease is an important morbidity of chronic kidney disease (CKD). Hypertension, vascular stiffness, and vascular calcification all contribute to cardiac pathophysiology. However, cardiac function in CKD devoid of vascular disease has not been studied. Here, in an animal model of human CKD without conduit arterial disease, we analyze cardiac respiration and discover that CKD directly impairs cardiac mitochondrial function by decreasing oxidative phosphorylation. Protection of cardiac oxidative phosphorylation may be a therapeutic target in CKD.


Asunto(s)
Cardiomegalia , Factor-23 de Crecimiento de Fibroblastos , Miocardio , Insuficiencia Renal Crónica , Animales , Factor-23 de Crecimiento de Fibroblastos/metabolismo , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/patología , Cardiomegalia/metabolismo , Cardiomegalia/patología , Miocardio/metabolismo , Miocardio/patología , Modelos Animales de Enfermedad , Activinas/metabolismo , Activinas/genética , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Ratones , Masculino , Fosforilación Oxidativa , Nefritis Hereditaria/metabolismo , Nefritis Hereditaria/patología , Nefritis Hereditaria/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Hormona Paratiroidea/metabolismo
8.
Arterioscler Thromb Vasc Biol ; 43(2): 330-349, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36453275

RESUMEN

BACKGROUND: Atherosclerosis is an inflammatory vascular disease marked by hyperlipidemia and hematopoietic stem cell expansion. Activin A, a member of the Activin/GDF/TGFß/BMP (growth/differentiation factor/transforming growth factor beta/bone morphogenetic protein) family is broadly expressed and increases in human atherosclerosis, but its functional effects in vivo in this context remain unclear. METHODS: We studied LDLR-/- mice on a Western diet for 12 weeks and used adeno-associated viral vectors with a liver-specific TBG (thyroxine-binding globulin) promoter to express Activin A or GFP (control). Atherosclerotic lesions were analyzed by oil red staining. Blood lipid profiling was performed by high-performance liquid chromatography, and immune cells were evaluated by flow cytometry. Liver RNA-sequencing was performed to explore the underlying mechanisms. RESULTS: Activin A expression decreased in both livers and aortae from LDLR-/- mice fed a Western diet compared with standard laboratory diet. Adenoassociated virus-TBG-Activin A increased Activin A hepatic expression ≈10-fold at 12 weeks; P<0.001) and circulating Activin A levels ≈2000 pg/ml versus ≈50 pg/ml; P<0.001, compared with controls). Hepatic Activin A expression decreased plasma total and LDL (low-density lipoprotein) cholesterol ≈60% and ≈40%, respectively), reduced inflammatory cells in aortae and proliferating hematopoietic stem cells in bone marrow, and reduced atherosclerotic lesion and necrotic core area in aortae. Activin A also attenuated liver steatosis and expression of the lipogenesis genes, Srebp1 and Srebp2. RNA sequencing revealed Activin A not only blocked expression of genes involved in hepatic de novo lipogenesis but also fatty acid uptake and liver inflammation. In addition, Activin A expressed in the liver also reduced white fat tissue accumulation, decreased adipocyte size, and improved glucose tolerance. CONCLUSIONS: Our studies reveal hepatic Activin A expression reduces inflammation, hematopoietic stem cell expansion, liver steatosis, circulating cholesterol, and fat accumulation, which likely all contribute to the observed protection against atherosclerosis. The reduced Activin A observed in LDLR-/- mice on a Western diet seems maladaptive and deleterious for atherogenesis.


Asunto(s)
Aterosclerosis , Hígado Graso , Humanos , Animales , Ratones , Hígado/metabolismo , Inflamación/genética , Inflamación/prevención & control , Inflamación/metabolismo , Aterosclerosis/genética , Aterosclerosis/prevención & control , Aterosclerosis/metabolismo , Activinas/genética , Activinas/metabolismo , Hígado Graso/genética , Hígado Graso/prevención & control , Colesterol/metabolismo , Redes y Vías Metabólicas , Receptores de LDL/genética , Receptores de LDL/metabolismo , Ratones Noqueados , Ratones Endogámicos C57BL
9.
Scand J Gastroenterol ; 59(6): 737-741, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563432

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver condition worldwide. There is an urgent need to develop new biomarkers to assess disease severity and to define patients with a progressive phenotype. Activin A is a new promising biomarker with conflicting results about liver fibrosis. In this study we investigate levels of Activin A in patients with biopsy proven MASLD. We assess levels of Activin A in regard to fibrosis stage and genetic variant I148M in the patatin-like phospholipase domain-containing protein 3 (PNPLA3). METHODS: Activin A levels were assessed in plasma samples from patients with biopsy-proven MASLD in a cross-sectional study. All patients were clinically evaluated and the PNPLA3 I148M genotype of the cohort was assessed. FINDINGS: 41 patients were included and 27% of these had advanced fibrosis. In MASLD patients with advanced fibrosis, Activin A levels was higher (p < 0.001) and could classify advanced fibrosis with an AUROC for activin A of 0.836 (p < 0.001). Patients homozygous for PNPLA3 I148M G/G had higher levels of activin A than non-homozygotes (p = 0.027). CONCLUSIONS: Circulating activin A levels were associated with advanced fibrosis and could be a potential blood biomarker for identifying advanced fibrosis in MASLD. Patients with the risk genotype PNPLA3 I148M G/G had higher levels of activin A proposing activin A as a contributor of the transition from simple steatosis to a fibrotic phenotype.


Asunto(s)
Activinas , Biomarcadores , Hígado Graso , Lipasa , Cirrosis Hepática , Proteínas de la Membrana , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/sangre , Femenino , Persona de Mediana Edad , Lipasa/genética , Lipasa/sangre , Cirrosis Hepática/genética , Cirrosis Hepática/sangre , Estudios Transversales , Activinas/sangre , Activinas/genética , Biomarcadores/sangre , Adulto , Hígado Graso/genética , Hígado Graso/sangre , Hígado Graso/patología , Anciano , Genotipo , Hígado/patología , Índice de Severidad de la Enfermedad , Aciltransferasas , Fosfolipasas A2 Calcio-Independiente
10.
PLoS Genet ; 17(3): e1009466, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780442

RESUMEN

Planarians are flatworms and can perform whole-body regeneration. This ability involves a mechanism to distinguish between anterior-facing wounds that require head regeneration and posterior-facing wounds that require tail regeneration. How this head-tail regeneration polarity decision is made is studied to identify principles underlying tissue-identity specification in regeneration. We report that inhibition of activin-2, which encodes an Activin-like signaling ligand, resulted in the regeneration of ectopic posterior-facing heads following amputation. During tissue turnover in uninjured planarians, positional information is constitutively expressed in muscle to maintain proper patterning. Positional information includes Wnts expressed in the posterior and Wnt antagonists expressed in the anterior. Upon amputation, several wound-induced genes promote re-establishment of positional information. The head-versus-tail regeneration decision involves preferential wound induction of the Wnt antagonist notum at anterior-facing over posterior-facing wounds. Asymmetric activation of notum represents the earliest known molecular distinction between head and tail regeneration, yet how it occurs is unknown. activin-2 RNAi animals displayed symmetric wound-induced activation of notum at anterior- and posterior-facing wounds, providing a molecular explanation for their ectopic posterior-head phenotype. activin-2 RNAi animals also displayed anterior-posterior (AP) axis splitting, with two heads appearing in anterior blastemas, and various combinations of heads and tails appearing in posterior blastemas. This was associated with ectopic nucleation of anterior poles, which are head-tip muscle cells that facilitate AP and medial-lateral (ML) pattern at posterior-facing wounds. These findings reveal a role for Activin signaling in determining the outcome of AP-axis-patterning events that are specific to regeneration.


Asunto(s)
Activinas/genética , Activinas/metabolismo , Tipificación del Cuerpo/genética , Planarias/fisiología , Regeneración/genética , Animales , Técnica del Anticuerpo Fluorescente , Expresión Génica , Inmunohistoquímica , Hibridación in Situ , Interferencia de ARN , Proteínas Wnt/metabolismo
11.
Am J Physiol Cell Physiol ; 324(2): C428-C437, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36622068

RESUMEN

Activins and inhibins are unique members of the transforming growth factor-ß (TGFß) family of growth factors, with the ability to exert autocrine, endocrine, and paracrine effects in a wide range of complex physiologic and pathologic processes. Although first isolated within the pituitary, emerging evidence suggests broader influence beyond reproductive development and function. Known roles of activin and inhibin in angiogenesis and immunity along with correlations between gene expression and cancer prognosis suggest potential roles in tumorigenesis. Here, we present a review of the current understanding of the biological role of activins and inhibins as it relates to ovarian cancers, summarizing the underlying signaling mechanisms and physiologic influence, followed by detailing their roles in cancer progression, diagnosis, and treatment.


Asunto(s)
Inhibinas , Neoplasias Ováricas , Humanos , Femenino , Inhibinas/genética , Inhibinas/metabolismo , Activinas/genética , Activinas/metabolismo , Neoplasias Ováricas/genética , Transducción de Señal , Sistema Endocrino/metabolismo
12.
Int J Cancer ; 153(3): 552-570, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37140208

RESUMEN

Although KMT2D, also known as MLL2, is known to play an essential role in development, differentiation, and tumor suppression, its role in pancreatic cancer development is not well understood. Here, we discovered a novel signaling axis mediated by KMT2D, which links TGF-ß to the activin A pathway. We found that TGF-ß upregulates a microRNA, miR-147b, which in turn leads to post-transcriptional silencing of KMT2D. Loss of KMT2D induces the expression and secretion of activin A, which activates a noncanonical p38 MAPK-mediated pathway to modulate cancer cell plasticity, promote a mesenchymal phenotype, and enhance tumor invasion and metastasis in mice. We observed a decreased KMT2D expression in human primary and metastatic pancreatic cancer. Furthermore, inhibition or knockdown of activin A reversed the protumoral role of KMT2D loss. These findings support a tumor-suppressive role of KMT2D in pancreatic cancer and identify miR-147b and activin A as novel therapeutic targets.


Asunto(s)
MicroARNs , Neoplasias Pancreáticas , Humanos , Animales , Ratones , Plasticidad de la Célula , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias Pancreáticas/patología , Factor de Crecimiento Transformador beta/metabolismo , Activinas/genética , Neoplasias Pancreáticas
13.
Mol Carcinog ; 62(10): 1585-1598, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37378449

RESUMEN

Colorectal cancer is one of the most common malignancies worldwide. Liver metastasis is the major direct cause of colorectal cancer-related deaths. Although radical resection is the most effective treatment for colorectal cancer liver metastasis, several patients are not eligible for surgery. Therefore, there is a need to develop novel treatments based on the understanding of the biological mechanisms underlying liver metastasis in colorectal cancer. This study demonstrated that activin A/ACVR2A inhibits colon cancer cell migration and invasion, as well as suppresses the epithelial-to-mesenchymal transition of mouse colon cancer cells. This finding has been further validated in animal experiments. Mechanistic studies revealed that activin A binds to Smad2 (instead of Smad3) and activates its transcription. Analysis of the paired clinical samples further confirmed that the expression levels of ACVR2A and SMAD2 were the highest in adjacent healthy tissues, followed by primary colon cancer tissues and liver metastasis tissues, suggesting that ACVR2A downregulation may promote colon cancer metastasis. Bioinformatics analysis and clinical studies demonstrated that ACVR2A downregulation was significantly associated with liver metastasis and poor disease-free and progression-free survival of patients with colon cancer. These results suggest that the activin A/ACVR2A axis promotes colon cancer metastasis by selectively activating SMAD2. Thus, targeting ACVR2A is a potential novel therapeutic strategy to prevent colon cancer metastasis.


Asunto(s)
Neoplasias del Colon , Neoplasias Hepáticas , Animales , Ratones , Activinas/genética , Activinas/metabolismo , Línea Celular Tumoral , Movimiento Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Hepáticas/genética , Proteína Smad2/genética , Proteína Smad2/metabolismo , Humanos
14.
Hepatology ; 75(2): 322-337, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34435364

RESUMEN

BACKGROUND AND AIMS: In patients with acute liver failure (ALF) who suffer from massive hepatocyte loss, liver progenitor cells (LPCs) take over key hepatocyte functions, which ultimately determines survival. This study investigated how the expression of hepatocyte nuclear factor 4α (HNF4α), its regulators, and targets in LPCs determines clinical outcome of patients with ALF. APPROACH AND RESULTS: Clinicopathological associations were scrutinized in 19 patients with ALF (9 recovered and 10 receiving liver transplantation). Regulatory mechanisms between follistatin, activin, HNF4α, and coagulation factor expression in LPC were investigated in vitro and in metronidazole-treated zebrafish. A prospective clinical study followed up 186 patients with cirrhosis for 80 months to observe the relevance of follistatin levels in prevalence and mortality of acute-on-chronic liver failure. Recovered patients with ALF robustly express HNF4α in either LPCs or remaining hepatocytes. As in hepatocytes, HNF4α controls the expression of coagulation factors by binding to their promoters in LPC. HNF4α expression in LPCs requires the forkhead box protein H1-Sma and Mad homolog 2/3/4 transcription factor complex, which is promoted by the TGF-ß superfamily member activin. Activin signaling in LPCs is negatively regulated by follistatin, a hepatocyte-derived hormone controlled by insulin and glucagon. In contrast to patients requiring liver transplantation, recovered patients demonstrate a normal activin/follistatin ratio, robust abundance of the activin effectors phosphorylated Sma and Mad homolog 2 and HNF4α in LPCs, leading to significantly improved coagulation function. A follow-up study indicated that serum follistatin levels could predict the incidence and mortality of acute-on-chronic liver failure. CONCLUSIONS: These results highlight a crucial role of the follistatin-controlled activin-HNF4α-coagulation axis in determining the clinical outcome of massive hepatocyte loss-induced ALF. The effects of insulin and glucagon on follistatin suggest a key role of the systemic metabolic state in ALF.


Asunto(s)
Activinas/genética , Folistatina/metabolismo , Factor Nuclear 4 del Hepatocito/metabolismo , Fallo Hepático Agudo/metabolismo , Activinas/metabolismo , Insuficiencia Hepática Crónica Agudizada/sangre , Adulto , Anciano , Animales , Coagulación Sanguínea , Línea Celular , Factor V/genética , Femenino , Folistatina/sangre , Estudios de Seguimiento , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Expresión Génica , Factor Nuclear 4 del Hepatocito/genética , Hepatocitos/metabolismo , Humanos , Fallo Hepático Agudo/inducido químicamente , Fallo Hepático Agudo/patología , Fallo Hepático Agudo/cirugía , Regeneración Hepática , Trasplante de Hígado , Masculino , Metronidazol , Ratones , Persona de Mediana Edad , Pronóstico , Regiones Promotoras Genéticas , Estudios Prospectivos , Protrombina/genética , Transducción de Señal , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína smad3/genética , Proteína smad3/metabolismo , Proteína Smad4/genética , Células Madre/metabolismo , Factor de Crecimiento Transformador beta1/genética , Pez Cebra
15.
BMC Genomics ; 23(1): 723, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36273135

RESUMEN

BACKGROUND: During embryogenesis, the developmental potential of initially pluripotent cells becomes progressively restricted as they transit to lineage restricted states. The pluripotent cells of Xenopus blastula-stage embryos are an ideal system in which to study cell state transitions during developmental decision-making, as gene expression dynamics can be followed at high temporal resolution. RESULTS: Here we use transcriptomics to interrogate the process by which pluripotent cells transit to four different lineage-restricted states: neural progenitors, epidermis, endoderm and ventral mesoderm, providing quantitative insights into the dynamics of Waddington's landscape. Our findings provide novel insights into why the neural progenitor state is the default lineage state for pluripotent cells and uncover novel components of lineage-specific gene regulation. These data reveal an unexpected overlap in the transcriptional responses to BMP4/7 and Activin signaling and provide mechanistic insight into how the timing of signaling inputs such as BMP are temporally controlled to ensure correct lineage decisions. CONCLUSIONS: Together these analyses provide quantitative insights into the logic and dynamics of developmental decision making in early embryos. They also provide valuable lineage-specific time series data following the acquisition of specific lineage states during development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Transcriptoma , Mesodermo , Endodermo/metabolismo , Activinas/genética , Activinas/metabolismo , Diferenciación Celular/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
16.
Eur J Immunol ; 51(4): 824-834, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33169838

RESUMEN

CD28 expression is generally considered to be T lymphocyte specific. We have previously shown CD28 mRNA expression in M-CSF-dependent anti-inflammatory monocyte-derived macrophages (M-MØ), and now demonstrate that CD28 cell surface expression is higher in M-MØ than in GM-CSF-dependent macrophages, and that macrophage CD28 expression is regulated by MAFB and activin A. In vivo, CD28 was found in tumor-associated macrophages and, to a lower extent, in pro-inflammatory synovial fluid macrophages from rheumatoid arthritis patients. Analysis of mouse macrophages confirmed Cd28 expression in bone-marrow derived M-MØ. Indeed, anti-CD28 antibodies triggered ERK1/2 phosphorylation in mouse M-MØ. At the functional level, Cd28KO M-MØ exhibited a significantly higher capacity to activate the OVA-specific proliferation of OT-II CD4+ T cells than WT M-MØ, as well as enhanced LPS-induced IL-6 production. Besides, the Cd28KO M-MØ transcriptome was significantly different from WT M-MØ regarding the expression IFN response, inflammatory response, and TGF-ß signaling related gene sets. Therefore, defective CD28 expression in mouse macrophages associates to changes in gene expression profile, what might contribute to the altered functionality displayed by Cd28KO M-MØ. Thus, CD28 expression appears as a hallmark of anti-inflammatory macrophages and might be a target for immunotherapy.


Asunto(s)
Antígenos CD28/inmunología , Inflamación/inmunología , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Linfocitos T/inmunología , Activinas/genética , Activinas/inmunología , Activinas/metabolismo , Animales , Artritis Reumatoide/genética , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Antígenos CD28/genética , Antígenos CD28/metabolismo , Células Cultivadas , Expresión Génica/inmunología , Perfilación de la Expresión Génica/métodos , Humanos , Inflamación/genética , Inflamación/metabolismo , Activación de Linfocitos/genética , Macrófagos/metabolismo , Factor de Transcripción MafB/genética , Factor de Transcripción MafB/inmunología , Factor de Transcripción MafB/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T/citología , Linfocitos T/metabolismo
17.
Ann Rheum Dis ; 81(8): 1106-1118, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35418478

RESUMEN

OBJECTIVE: The aim of this study was to assess the extent and the mechanism by which activin A contributes to progressive joint destruction in experimental arthritis and which activin A-expressing cell type is important for disease progression. METHODS: Levels of activin A in synovial tissues were evaluated by immunohistochemistry, cell-specific expression and secretion by PCR and ELISA, respectively. Osteoclast (OC) formation was assessed by tartrat-resistant acid phosphatase (TRAP) staining and activity by resorption assay. Quantitative assessment of joint inflammation and bone destruction was performed by histological and micro-CT analysis. Immunoblotting was applied for evaluation of signalling pathways. RESULTS: In this study, we demonstrate that fibroblast-like synoviocytes (FLS) are the main producers of activin A in arthritic joints. Most significantly, we show for the first time that deficiency of activin A in arthritic FLS (ActßAd/d ColVI-Cre) but not in myeloid cells (ActßAd/d LysM-Cre) reduces OC development in vitro, indicating that activin A promotes osteoclastogenesis in a paracrine manner. Mechanistically, activin A enhanced OC formation and activity by promoting the interaction of activated Smad2 with NFATc1, the key transcription factor of osteoclastogenesis. Consistently, ActßAd/d LysM-Cre hTNFtg mice did not show reduced disease severity, whereas deficiency of activin A in ColVI-Cre-expressing cells such as FLS highly diminished joint destruction reflected by less inflammation and less bone destruction. CONCLUSIONS: The results highly suggest that FLS-derived activin A plays a crucial paracrine role in inflammatory joint destruction and may be a promising target for treating inflammatory disorders associated with OC formation and bone destruction like rheumatoid arthritis.


Asunto(s)
Activinas , Artritis Experimental , Sinoviocitos , Activinas/genética , Animales , Artritis Experimental/patología , Fibroblastos/metabolismo , Inflamación/patología , Ratones , Índice de Severidad de la Enfermedad , Membrana Sinovial/metabolismo , Sinoviocitos/metabolismo
18.
Stem Cells ; 39(5): 551-563, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33470497

RESUMEN

Protocols for specifying human primordial germ cell-like cells (hPGCLCs) from human embryonic stem cells (hESCs) remain hindered by differences between hESC lines, their derivation methods, and maintenance culture conditions. This poses significant challenges for establishing reproducible in vitro models of human gametogenesis. Here, we investigated the influence of activin A (ActA) during derivation and maintenance on the propensity of hESCs to differentiate into PGCLCs. We show that continuous ActA supplementation during hESC derivation (from blastocyst until the formation of the post-inner cell mass intermediate [PICMI]) and supplementation (from the first passage of the PICMI onwards) is beneficial to differentiate hESCs to PGCLCs subsequently. Moreover, comparing isogenic primed and naïve states prior to differentiation, we showed that conversion of hESCs to the 4i-state improves differentiation to (TNAP [tissue nonspecific alkaline phosphatase]+/PDPN [podoplanin]+) PGCLCs. Those PGCLCs expressed several germ cell markers, including TFAP2C (transcription factor AP-2 gamma), SOX17 (SRY-box transcription factor 17), and NANOS3 (nanos C2HC-type zinc finger 3), and markers associated with germ cell migration, CXCR4 (C-X-C motif chemokine receptor 4), LAMA4 (laminin subunit alpha 4), ITGA6 (integrin subunit alpha 6), and CDH4 (cadherin 4), suggesting that the large numbers of PGCLCs obtained may be suitable to differentiate further into more mature germ cells. Finally, hESCs derived in the presence of ActA showed higher competence to differentiate to hPGCLC, in particular if transiently converted to the 4i-state. Our work provides insights into the differences in differentiation propensity of hESCs and delivers an optimized protocol to support efficient human germ cell derivation.


Asunto(s)
Activinas/genética , Diferenciación Celular/genética , Células Germinativas/citología , Células Madre Embrionarias Humanas/citología , Blastocisto/citología , Cadherinas/genética , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica/genética , Células Germinativas/crecimiento & desarrollo , Células Madre Embrionarias Humanas/metabolismo , Humanos , Integrina alfa6/genética , Laminina/genética , Proteínas de Unión al ARN/genética , Receptores CXCR4/genética , Factores de Transcripción SOXF/genética , Transducción de Señal/genética , Factor de Transcripción AP-2/genética
19.
FASEB J ; 35(12): e22018, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34731499

RESUMEN

Adipose tissue is the primary site of energy storage, playing important roles in health. While adipose research largely focuses on obesity, fat also has other critical functions, producing adipocytokines and contributing to normal nutrient metabolism, which in turn play important roles in satiety and total energy homeostasis. SMAD2/3 proteins are downstream mediators of activin signaling, which regulate critical preadipocyte and mature adipocyte functions. Smad2 global knockout mice exhibit embryonic lethality, whereas global loss of Smad3 protects mice against diet-induced obesity. The direct contributions of Smad2 and Smad3 in adipose tissues, however, are unknown. Here, we sought to determine the primary effects of adipocyte-selective reduction of Smad2 or Smad3 on diet-induced adiposity using Smad2 or Smad3 "floxed" mice intercrossed with Adiponectin-Cre mice. Additionally, we examined visceral and subcutaneous preadipocyte differentiation efficiency in vitro. Almost all wild type subcutaneous preadipocytes differentiated into mature adipocytes. In contrast, visceral preadipocytes differentiated poorly. Exogenous activin A suppressed differentiation of preadipocytes from both depots. Smad2 conditional knockout (Smad2cKO) mice did not exhibit significant effects on weight gain, irrespective of diet, whereas Smad3 conditional knockout (Smad3cKO) male mice displayed a trend of reduced body weight on high-fat diet. On both diets, Smad3cKO mice displayed an adipose depot-selective phenotype, with a significant reduction in subcutaneous fat mass but not visceral fat mass. Our data suggest that Smad3 is an important contributor to the maintenance of subcutaneous white adipose tissue in a sex-selective fashion. These findings have implications for understanding SMAD-mediated, depot selective regulation of adipocyte growth and differentiation.


Asunto(s)
Adipogénesis , Tejido Adiposo Blanco/citología , Adiposidad , Grasa Intraabdominal/citología , Proteína Smad2/fisiología , Proteína smad3/fisiología , Grasa Subcutánea/citología , Activinas/genética , Activinas/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular , Dieta Alta en Grasa , Femenino , Grasa Intraabdominal/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Grasa Subcutánea/metabolismo
20.
Mol Cell Biochem ; 477(10): 2327-2334, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35536530

RESUMEN

Fibrodysplasia Ossificans Progressiva (FOP) is a rare genetic disease caused by heterozygous missense mutations in Activin A receptor type I which is also known as Activin-like kinase 2 (ALK2), a type I receptor of Bone Morphogenetic Proteins(BMP). Patients with FOP usually undergo episodic flare-ups and the heterotopic ossification in soft and connective tissues. Molecular mechanism study indicates that Activin A, the ligand which normally transduces Transforming Growth Factor Beta signaling, abnormally activates BMP signaling through ALK2 mutants in FOP, leading to heterotopic bone formation. To date, effective therapies to FOP are unavailable. However, significant advances have recently been made in the development of FOP drugs. In this article, we review the recent advances in understanding the FOP mechanism and drug development, with a focus on the small-molecular and antibody drugs currently in the clinical trials for FOP treatment.


Asunto(s)
Miositis Osificante , Osificación Heterotópica , Activinas/genética , Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Desarrollo de Medicamentos , Humanos , Ligandos , Mutación , Miositis Osificante/tratamiento farmacológico , Miositis Osificante/genética , Miositis Osificante/metabolismo , Osificación Heterotópica/genética , Osificación Heterotópica/metabolismo , Factor de Crecimiento Transformador beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA