Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 981
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 92: 145-173, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37068770

RESUMEN

Over the past decade, mRNA modifications have emerged as important regulators of gene expression control in cells. Fueled in large part by the development of tools for detecting RNA modifications transcriptome wide, researchers have uncovered a diverse epitranscriptome that serves as an additional layer of gene regulation beyond simple RNA sequence. Here, we review the proteins that write, read, and erase these marks, with a particular focus on the most abundant internal modification, N6-methyladenosine (m6A). We first describe the discovery of the key enzymes that deposit and remove m6A and other modifications and discuss how our understanding of these proteins has shaped our views of modification dynamics. We then review current models for the function of m6A reader proteins and how our knowledge of these proteins has evolved. Finally, we highlight important future directions for the field and discuss key questions that remain unanswered.


Asunto(s)
Adenosina , Regulación de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/genética , Adenosina/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transcriptoma
2.
Cell ; 181(7): 1582-1595.e18, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32492408

RESUMEN

N6-methyladenosine (m6A) is the most abundant mRNA nucleotide modification and regulates critical aspects of cellular physiology and differentiation. m6A is thought to mediate its effects through a complex network of interactions between different m6A sites and three functionally distinct cytoplasmic YTHDF m6A-binding proteins (DF1, DF2, and DF3). In contrast to the prevailing model, we show that DF proteins bind the same m6A-modified mRNAs rather than different mRNAs. Furthermore, we find that DF proteins do not induce translation in HeLa cells. Instead, the DF paralogs act redundantly to mediate mRNA degradation and cellular differentiation. The ability of DF proteins to regulate stability and differentiation becomes evident only when all three DF paralogs are depleted simultaneously. Our study reveals a unified model of m6A function in which all m6A-modified mRNAs are subjected to the combined action of YTHDF proteins in proportion to the number of m6A sites.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Unión al ARN/metabolismo , Adenosina/genética , Adenosina/metabolismo , Diferenciación Celular , Células HeLa , Humanos , Metilación , Metiltransferasas/metabolismo , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética
3.
Nat Immunol ; 21(5): 501-512, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284591

RESUMEN

Protection from harmful pathogens depends on activation of the immune system, which relies on tight regulation of gene expression. Recently, the RNA modification N6-methyladenosine (m6A) has been found to play an essential role in such regulation. Here, we summarize newly discovered functions of m6A in controlling various aspects of immunity, including immune recognition, activation of innate and adaptive immune responses, and cell fate decisions. We then discuss some of the current challenges in the field and describe future directions for uncovering the immunological functions of m6A and its mechanisms of action.


Asunto(s)
Procesamiento Postranscripcional del ARN/inmunología , ARN/genética , Inmunidad Adaptativa/genética , Adenosina/análogos & derivados , Adenosina/genética , Animales , Diferenciación Celular , Humanos , Sistema Inmunológico , Inmunidad Innata/genética , Inmunomodulación
4.
Mol Cell ; 84(9): 1711-1726.e11, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38569554

RESUMEN

N6-methyladenosine (m6A) is a crucial RNA modification that regulates diverse biological processes in human cells, but its co-transcriptional deposition and functions remain poorly understood. Here, we identified the RNA helicase DDX21 with a previously unrecognized role in directing m6A modification on nascent RNA for co-transcriptional regulation. DDX21 interacts with METTL3 for co-recruitment to chromatin through its recognition of R-loops, which can be formed co-transcriptionally as nascent transcripts hybridize onto the template DNA strand. Moreover, DDX21's helicase activity is needed for METTL3-mediated m6A deposition onto nascent RNA following recruitment. At transcription termination regions, this nexus of actions promotes XRN2-mediated termination of RNAPII transcription. Disruption of any of these steps, including the loss of DDX21, METTL3, or their enzymatic activities, leads to defective termination that can induce DNA damage. Therefore, we propose that the R-loop-DDX21-METTL3 nexus forges the missing link for co-transcriptional modification of m6A, coordinating transcription termination and genome stability.


Asunto(s)
Adenosina , Adenosina/análogos & derivados , ARN Helicasas DEAD-box , Exorribonucleasas , Inestabilidad Genómica , Metiltransferasas , Estructuras R-Loop , ARN Polimerasa II , Terminación de la Transcripción Genética , Humanos , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Adenosina/metabolismo , Adenosina/genética , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Células HEK293 , Cromatina/metabolismo , Cromatina/genética , Daño del ADN , Células HeLa , ARN/metabolismo , ARN/genética , Transcripción Genética , Metilación de ARN
5.
Nat Rev Mol Cell Biol ; 20(10): 608-624, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31520073

RESUMEN

RNA methylation to form N6-methyladenosine (m6A) in mRNA accounts for the most abundant mRNA internal modification and has emerged as a widespread regulatory mechanism that controls gene expression in diverse physiological processes. Transcriptome-wide m6A mapping has revealed the distribution and pattern of m6A in cellular RNAs, referred to as the epitranscriptome. These maps have revealed the specific mRNAs that are regulated by m6A, providing mechanistic links connecting m6A to cellular differentiation, cancer progression and other processes. The effects of m6A on mRNA are mediated by an expanding list of m6A readers and m6A writer-complex components, as well as potential erasers that currently have unclear relevance to m6A prevalence in the transcriptome. Here we review new and emerging methods to characterize and quantify the epitranscriptome, and we discuss new concepts - in some cases, controversies - regarding our understanding of the mechanisms and functions of m6A readers, writers and erasers.


Asunto(s)
Adenosina/análogos & derivados , Regulación Neoplásica de la Expresión Génica , Neoplasias/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , ARN Neoplásico/metabolismo , Adenosina/genética , Adenosina/metabolismo , Animales , Humanos , Metilación , Neoplasias/genética , Neoplasias/patología , ARN Mensajero/genética , ARN Neoplásico/genética
6.
Mol Cell ; 83(12): 1956-1958, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327770

RESUMEN

In this issue of Molecular Cell, Yu et al.1 identify RBM33 as a previously unrecognized m6A (N-6-methyladenosine) RNA binding protein that plays a critical role in ALKBH5-mediated m6A demethylation of a subset of mRNA transcripts by forming a complex with ALKBH5.


Asunto(s)
Adenosina , Desmetilasa de ARN, Homólogo 5 de AlkB , Metilación , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Adenosina/genética , Adenosina/metabolismo
7.
Immunity ; 54(9): 1961-1975.e5, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525337

RESUMEN

Nucleic acids are powerful triggers of innate immunity and can adopt the Z-conformation, an unusual left-handed double helix. Here, we studied the biological function(s) of Z-RNA recognition by the adenosine deaminase ADAR1, mutations in which cause Aicardi-Goutières syndrome. Adar1mZα/mZα mice, bearing two point mutations in the Z-nucleic acid binding (Zα) domain that abolish Z-RNA binding, displayed spontaneous induction of type I interferons (IFNs) in multiple organs, including in the lung, where both stromal and hematopoietic cells showed IFN-stimulated gene (ISG) induction. Lung neutrophils expressed ISGs induced by the transcription factor IRF3, indicating an initiating role for neutrophils in this IFN response. The IFN response in Adar1mZα/mZα mice required the adaptor MAVS, implicating cytosolic RNA sensing. Adenosine-to-inosine changes were enriched in transposable elements and revealed a specific requirement of ADAR1's Zα domain in editing of a subset of RNAs. Thus, endogenous RNAs in Z-conformation have immunostimulatory potential curtailed by ADAR1, with relevance to autoinflammatory disease in humans.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Adenosina Desaminasa/genética , Interferón Tipo I/inmunología , ARN Bicatenario/genética , Adenosina/genética , Adenosina/metabolismo , Animales , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Inosina/genética , Inosina/metabolismo , Interferón Tipo I/genética , Ratones , Mutación , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/inmunología , Edición de ARN/genética , ARN Bicatenario/metabolismo
8.
Mol Cell ; 82(12): 2236-2251, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35714585

RESUMEN

Information in mRNA has largely been thought to be confined to its nucleotide sequence. However, the advent of mapping techniques to detect modified nucleotides has revealed that mRNA contains additional information in the form of chemical modifications. The most abundant modified nucleotide is N6-methyladenosine (m6A), a methyl modification of adenosine. Although early studies viewed m6A as a dynamic and tissue-specific modification, it is now clear that the mRNAs that contain m6A and the location of m6A in those transcripts are largely universal and are influenced by gene architecture, i.e., the size and location of exons and introns. m6A can affect nuclear processes such as splicing and epigenetic regulation, but the major effect of m6A on mRNAs is to promote degradation in the cytoplasm. m6A marks a functionally related cohort of mRNAs linked to certain biological processes, including cell differentiation and cell fate determination. m6A is also enriched in other cohorts of mRNAs and can therefore affect their respective cellular processes and pathways. Future work will focus on understanding how the m6A pathway is regulated to achieve control of m6A-containing mRNAs.


Asunto(s)
Adenosina , Epigénesis Genética , Adenosina/genética , Adenosina/metabolismo , Expresión Génica , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Nucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Mol Cell ; 81(4): 659-674.e7, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33472058

RESUMEN

About 150 post-transcriptional RNA modifications have been identified in all kingdoms of life. During RNA catabolism, most modified nucleosides are resistant to degradation and are released into the extracellular space. In this study, we explored the physiological role of these extracellular modified nucleosides and found that N6-methyladenosine (m6A), widely recognized as an epigenetic mark in RNA, acts as a ligand for the human adenosine A3 receptor, for which it has greater affinity than unmodified adenosine. We used structural modeling to define the amino acids required for specific binding of m6A to the human A3 receptor. We also demonstrated that m6A was dynamically released in response to cytotoxic stimuli and facilitated type I allergy in vivo. Our findings implicate m6A as a signaling molecule capable of activating G protein-coupled receptors (GPCRs) and triggering pathophysiological responses, a previously unreported property of RNA modifications.


Asunto(s)
Adenosina/análogos & derivados , Epigénesis Genética , Procesamiento Postranscripcional del ARN , Receptor de Adenosina A3/metabolismo , Transducción de Señal , Adenosina/genética , Adenosina/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Conejos , Receptor de Adenosina A3/genética
10.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-34375583

RESUMEN

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas del Tejido Nervioso/genética , Factores de Empalme de ARN/genética , ARN/genética , Factores de Transcripción/genética , Adenosina/genética , Elementos de Facilitación Genéticos/genética , Regulación de la Expresión Génica/genética , Humanos , Metilación , Elementos Reguladores de la Transcripción/genética , Activación Transcripcional/genética
11.
Mol Cell ; 81(11): 2374-2387.e3, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33905683

RESUMEN

Adenosine-to-inosine editing is catalyzed by ADAR1 at thousands of sites transcriptome-wide. Despite intense interest in ADAR1 from physiological, bioengineering, and therapeutic perspectives, the rules of ADAR1 substrate selection are poorly understood. Here, we used large-scale systematic probing of ∼2,000 synthetic constructs to explore the structure and sequence context determining editability. We uncover two structural layers determining the formation and propagation of A-to-I editing, independent of sequence. First, editing is robustly induced at fixed intervals of 35 bp upstream and 30 bp downstream of structural disruptions. Second, editing is symmetrically introduced on opposite sites on a double-stranded structure. Our findings suggest a recursive model for RNA editing, whereby the structural alteration induced by the editing at one site iteratively gives rise to the formation of an additional editing site at a fixed periodicity, serving as a basis for the propagation of editing along and across both strands of double-stranded RNA structures.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina/metabolismo , Inosina/metabolismo , Edición de ARN , ARN Bicatenario/genética , Proteínas de Unión al ARN/genética , Células A549 , Adenosina/genética , Adenosina Desaminasa/metabolismo , Animales , Emparejamiento Base , Células HEK293 , Humanos , Inosina/genética , Células MCF-7 , Ratones , Células 3T3 NIH , Conformación de Ácido Nucleico , ARN Bicatenario/química , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/metabolismo
12.
Genes Dev ; 35(13-14): 1005-1019, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34168039

RESUMEN

N6-methyladenosine (m6A) is an abundant internal RNA modification, influencing transcript fate and function in uninfected and virus-infected cells. Installation of m6A by the nuclear RNA methyltransferase METTL3 occurs cotranscriptionally; however, the genomes of some cytoplasmic RNA viruses are also m6A-modified. How the cellular m6A modification machinery impacts coronavirus replication, which occurs exclusively in the cytoplasm, is unknown. Here we show that replication of SARS-CoV-2, the agent responsible for the COVID-19 pandemic, and a seasonal human ß-coronavirus HCoV-OC43, can be suppressed by depletion of METTL3 or cytoplasmic m6A reader proteins YTHDF1 and YTHDF3 and by a highly specific small molecule METTL3 inhibitor. Reduction of infectious titer correlates with decreased synthesis of viral RNAs and the essential nucleocapsid (N) protein. Sites of m6A modification on genomic and subgenomic RNAs of both viruses were mapped by methylated RNA immunoprecipitation sequencing (meRIP-seq). Levels of host factors involved in m6A installation, removal, and recognition were unchanged by HCoV-OC43 infection; however, nuclear localization of METTL3 and cytoplasmic m6A readers YTHDF1 and YTHDF2 increased. This establishes that coronavirus RNAs are m6A-modified and host m6A pathway components control ß-coronavirus replication. Moreover, it illustrates the therapeutic potential of targeting the m6A pathway to restrict coronavirus reproduction.


Asunto(s)
Coronavirus Humano OC43/fisiología , Procesamiento Postranscripcional del ARN/genética , SARS-CoV-2/fisiología , Replicación Viral/genética , Adenosina/análogos & derivados , Adenosina/genética , Adenosina/metabolismo , Línea Celular , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/virología , Regulación de la Expresión Génica/efectos de los fármacos , Interacciones Huésped-Patógeno/efectos de los fármacos , Humanos , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Proteínas de la Nucleocápside , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Replicación Viral/efectos de los fármacos
13.
EMBO J ; 43(10): 1990-2014, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38605226

RESUMEN

Prenatal lethality associated with mouse knockout of Mettl16, a recently identified RNA N6-methyladenosine (m6A) methyltransferase, has hampered characterization of the essential role of METTL16-mediated RNA m6A modification in early embryonic development. Here, using cross-species single-cell RNA sequencing analysis, we found that during early embryonic development, METTL16 is more highly expressed in vertebrate hematopoietic stem and progenitor cells (HSPCs) than other methyltransferases. In Mettl16-deficient zebrafish, proliferation capacity of embryonic HSPCs is compromised due to G1/S cell cycle arrest, an effect whose rescue requires Mettl16 with intact methyltransferase activity. We further identify the cell-cycle transcription factor mybl2b as a directly regulated by Mettl16-mediated m6A modification. Mettl16 deficiency resulted in the destabilization of mybl2b mRNA, likely due to lost binding by the m6A reader Igf2bp1 in vivo. Moreover, we found that the METTL16-m6A-MYBL2-IGF2BP1 axis controlling G1/S progression is conserved in humans. Collectively, our findings elucidate the critical function of METTL16-mediated m6A modification in HSPC cell cycle progression during early embryonic development.


Asunto(s)
Células Madre Hematopoyéticas , Metiltransferasas , Proteínas de Unión al ARN , Pez Cebra , Animales , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Humanos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/citología , Ciclo Celular , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Desarrollo Embrionario/genética , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proliferación Celular
14.
Mol Cell ; 77(3): 542-555.e8, 2020 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-31810760

RESUMEN

The RNA modification N6-methyladenosine (m6A) modulates mRNA fate and thus affects many biological processes. We analyzed m6A across the transcriptome following infection by dengue virus (DENV), Zika virus (ZIKV), West Nile virus (WNV), and hepatitis C virus (HCV). We found that infection by these viruses in the Flaviviridae family alters m6A modification of specific cellular transcripts, including RIOK3 and CIRBP. During viral infection, the addition of m6A to RIOK3 promotes its translation, while loss of m6A in CIRBP promotes alternative splicing. Importantly, viral activation of innate immune sensing or the endoplasmic reticulum (ER) stress response contributes to the changes in m6A in RIOK3 or CIRBP, respectively. Further, several transcripts with infection-altered m6A profiles, including RIOK3 and CIRBP, encode proteins that influence DENV, ZIKV, and HCV infection. Overall, this work reveals that cellular signaling pathways activated during viral infection lead to alterations in m6A modification of host mRNAs to regulate infection.


Asunto(s)
Adenosina/análogos & derivados , Infecciones por Flaviviridae/genética , ARN Mensajero/genética , Adenosina/genética , Línea Celular , Dengue/virología , Virus del Dengue/genética , Flaviviridae/genética , Hepacivirus/genética , Hepatitis C/virología , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Replicación Viral/genética , Virus Zika/genética , Infección por el Virus Zika/genética
15.
Mol Cell ; 75(3): 631-643.e8, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31279658

RESUMEN

mRNAs are regulated by nucleotide modifications that influence their cellular fate. Two of the most abundant modified nucleotides are N6-methyladenosine (m6A), found within mRNAs, and N6,2'-O-dimethyladenosine (m6Am), which is found at the first transcribed nucleotide. Distinguishing these modifications in mapping studies has been difficult. Here, we identify and biochemically characterize PCIF1, the methyltransferase that generates m6Am. We find that PCIF1 binds and is dependent on the m7G cap. By depleting PCIF1, we generated transcriptome-wide maps that distinguish m6Am and m6A. We find that m6A and m6Am misannotations arise from mRNA isoforms with alternative transcription start sites (TSSs). These isoforms contain m6Am that maps to "internal" sites, increasing the likelihood of misannotation. We find that depleting PCIF1 does not substantially affect mRNA translation but is associated with reduced stability of a subset of m6Am-annotated mRNAs. The discovery of PCIF1 and our accurate mapping technique will facilitate future studies to characterize m6Am's function.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Nucleares/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , Transcriptoma/genética , Adenosina/genética , Humanos , Metilación , Metiltransferasas/genética , Biosíntesis de Proteínas/genética , Sitio de Iniciación de la Transcripción
16.
Mol Cell ; 75(3): 620-630.e9, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31279659

RESUMEN

mRNA modifications play important roles in regulating gene expression. One of the most abundant mRNA modifications is N6,2-O-dimethyladenosine (m6Am). Here, we demonstrate that m6Am is an evolutionarily conserved mRNA modification mediated by the Phosphorylated CTD Interacting Factor 1 (PCIF1), which catalyzes m6A methylation on 2-O-methylated adenine located at the 5' ends of mRNAs. Furthermore, PCIF1 catalyzes only 5' m6Am methylation of capped mRNAs but not internal m6A methylation in vitro and in vivo. To study the biological role of m6Am, we developed a robust methodology (m6Am-Exo-Seq) to map its transcriptome-wide distribution, which revealed no global crosstalk between m6Am and m6A under assayed conditions, suggesting that m6Am is functionally distinct from m6A. Importantly, we find that m6Am does not alter mRNA transcription or stability but negatively impacts cap-dependent translation of methylated mRNAs. Together, we identify the only human mRNA m6Am methyltransferase and demonstrate a mechanism of gene expression regulation through PCIF1-mediated m6Am mRNA methylation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Nucleares/genética , Procesamiento Postranscripcional del ARN/genética , ARN Mensajero/genética , Transcripción Genética , Adenosina/genética , Regulación de la Expresión Génica/genética , Humanos , Metilación , Metiltransferasas/genética , Fosforilación , Transcriptoma/genética
17.
Mol Cell ; 74(4): 640-650, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-31100245

RESUMEN

Cellular RNAs are naturally decorated with a variety of chemical modifications. The structural diversity of the modified nucleosides provides regulatory potential to sort groups of RNAs for organized metabolism and functions, thus affecting gene expression. Recent years have witnessed a burst of interest in and understanding of RNA modification biology, thanks to the emerging transcriptome-wide sequencing methods for mapping modified sites, highly sensitive mass spectrometry for precise modification detection and quantification, and extensive characterization of the modification "effectors," including enzymes ("writers" and "erasers") that alter the modification level and binding proteins ("readers") that recognize the chemical marks. However, challenges remain due to the vast heterogeneity in expression abundance of different RNA species, further complicated by divergent cell-type-specific and tissue-specific expression and localization of the effectors as well as modifications. In this review, we highlight recent progress in understanding the function of N6-methyladenosine (m6A), the most abundant internal mark on eukaryotic mRNA, in light of the specific biological contexts of m6A effectors. We emphasize the importance of context for RNA modification regulation and function.


Asunto(s)
Adenosina/análogos & derivados , Metilación , ARN Mensajero/genética , ARN/genética , Adenosina/genética , Células Eucariotas/metabolismo , Regulación de la Expresión Génica/genética , Especificidad de Órganos/genética , Procesamiento Postranscripcional del ARN/genética , Transcriptoma
18.
Mol Cell ; 75(3): 511-522.e4, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31178353

RESUMEN

Many microRNAs (miRNAs) exist alongside abundant miRNA isoforms (isomiRs), most of which arise from post-maturation sequence modifications such as 3' uridylation. However, the ways in which these sequence modifications affect miRNA function remain poorly understood. Here, using human miR-27a in cell lines as a model, we discovered that a nonfunctional target site unable to base-pair extensively with the miRNA seed sequence can regain function when an upstream adenosine is able to base-pair with a post-transcriptionally added uridine in the miR-27a tail. This tail-U-mediated repression (TUMR) is abolished in cells lacking the uridylation enzymes TUT4 and TUT7, indicating that uridylation alters miRNA function by modulating target recognition. We identified a set of non-canonical targets in human cells that are specifically regulated by uridylated miR-27a. We provide evidence that TUMR expands the targets of other endogenous miRNAs. Our study reveals a function of uridylated isomiRs in regulating non-canonical miRNA targets.


Asunto(s)
Proteínas de Unión al ADN/genética , MicroARNs/genética , ARN Nucleotidiltransferasas/genética , Uridina/genética , Adenosina/genética , Emparejamiento Base/genética , Células HeLa , Humanos , Estabilidad del ARN , Uridina/metabolismo
19.
Mol Cell ; 74(3): 494-507.e8, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-30930054

RESUMEN

N6-methyladenosine (m6A) is the most abundant internal modification in RNAs and plays regulatory roles in a variety of biological and physiological processes. Despite its important roles, the molecular mechanism underlying m6A-mediated gene regulation is poorly understood. Here, we show that m6A-containing RNAs are subject to endoribonucleolytic cleavage via YTHDF2 (m6A reader protein), HRSP12 (adaptor protein), and RNase P/MRP (endoribonucleases). We demonstrate that HRSP12 functions as an adaptor to bridge YTHDF2 and RNase P/MRP, eliciting rapid degradation of YTHDF2-bound RNAs. Transcriptome-wide analyses show that m6A RNAs that are preferentially targeted for endoribonucleolytic cleavage have an HRSP12-binding site and a RNase P/MRP-directed cleavage site upstream and downstream of the YTHDF2-binding site, respectively. We also find that a subset of m6A-containing circular RNAs associates with YTHDF2 in an HRSP12-dependent manner and is selectively downregulated by RNase P/MRP. Thus, our data expand the known functions of RNase P/MRP to endoribonucleolytic cleavage of m6A RNAs.


Asunto(s)
Adenosina/análogos & derivados , Proteínas de Choque Térmico/genética , Estabilidad del ARN/genética , Proteínas de Unión al ARN/genética , Ribonucleasa P/genética , Ribonucleasas/genética , Adenosina/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Sitios de Unión/genética , Escherichia coli/genética , Regulación de la Expresión Génica/genética , Células HeLa , Humanos , Metiltransferasas/genética , ARN/genética , Procesamiento Postranscripcional del ARN/genética , ARN Circular , Transcriptoma/genética
20.
Hum Mol Genet ; 33(11): 969-980, 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38483349

RESUMEN

RNA methylation of N6-methyladenosine (m6A) is emerging as a fundamental regulator of every aspect of RNA biology. RNA methylation directly impacts protein production to achieve quick modulation of dynamic biological processes. However, whether RNA methylation regulates mitochondrial function is not known, especially in neuronal cells which require a high energy supply and quick reactive responses. Here we show that m6A RNA methylation regulates mitochondrial function through promoting nuclear-encoded mitochondrial complex subunit RNA translation. Conditional genetic knockout of m6A RNA methyltransferase Mettl14 (Methyltransferase like 14) by Nestin-Cre together with metabolomic analysis reveals that Mettl14 knockout-induced m6A depletion significantly downregulates metabolites related to energy metabolism. Furthermore, transcriptome-wide RNA methylation profiling of wild type and Mettl14 knockout mouse brains by m6A-Seq shows enrichment of methylation on mitochondria-related RNA. Importantly, loss of m6A leads to a significant reduction in mitochondrial respiratory capacity and membrane potential. These functional defects are paralleled by the reduced expression of mitochondrial electron transport chain complexes, as well as decreased mitochondrial super-complex assembly and activity. Mechanistically, m6A depletion decreases the translational efficiency of methylated RNA encoding mitochondrial complex subunits through reducing their association with polysomes, while not affecting RNA stability. Together, these findings reveal a novel role for RNA methylation in regulating mitochondrial function. Given that mitochondrial dysfunction and RNA methylation have been increasingly implicate in neurodegenerative disorders, our findings not only provide insights into fundamental mechanisms regulating mitochondrial function, but also open up new avenues for understanding the pathogenesis of neurological diseases.


Asunto(s)
Adenosina , Metiltransferasas , Ratones Noqueados , Mitocondrias , Animales , Mitocondrias/metabolismo , Mitocondrias/genética , Ratones , Metilación , Metiltransferasas/genética , Metiltransferasas/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , ARN/genética , ARN/metabolismo , Humanos , Biosíntesis de Proteínas , Metabolismo Energético/genética , Neuronas/metabolismo , Metilación de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA