Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Planta ; 260(4): 77, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164400

RESUMEN

MAIN CONCLUSIONS: The albino phenotype of Agave angustifolia Haw. accumulates higher levels of phenylalanine and phenylpropanoids, while the green phenotype has a greater concentration of phenolic compounds. The metabolic consequences of chlorophyll deficiency in plants continue to be a captivating field of research, especially in relation to production of metabolic compounds. This study conducts a thorough analysis of the metabolome in green (G), variegated (V), and albino (A) phenotypes of Agave angustifolia Haw. Specifically, it examines the differences in the accumulation of compounds related to the phenylpropanoid and flavonoid biosynthesis pathways. Methanol extracts of leaf and meristem tissues from the three phenotypes grown in vitro were analyzed using liquid chromatography coupled with quadrupole time-of-flight high-resolution mass spectrometry (UPLC-MS-QTOF) for untargeted metabolomics and triple quadrupole (QqQ) mass spectrometry for targeted metabolomic analyses. By employing these methods, we discovered notable differences in the levels of important metabolites such as L-phenylalanine, 4-hydroxyphenylpyruvic acid, and various flavonoids among the different phenotypes. The results of our study indicate that the A phenotype shows a significant increase in the levels of phenylalanine and phenylpropanoids in both leaf and meristem tissues. This is in contrast to a decrease in flavonoids, suggesting a metabolic reprogramming to compensate for the lack of chlorophyll. Significantly, compounds such as kaempferol-3-O-glucoside and rutin exhibited significant quantitative reduction in the A leaves, suggesting a subtle modification in the production of flavonols and potentially a changed mechanism for antioxidant protection. This study emphasizes the complex metabolic changes in A. angustifolia´s chlorophyll-deficient phenotypes, providing insight into the complex interplay between primary and secondary metabolism in response to chlorophyll deficiency. Our research not only enhances the comprehension of plant metabolism in albino phenotypes but also opens new avenues for exploring the biochemical and genetic basis of such adaptations, with potential biotechnological applications of these distinct plant variants.


Asunto(s)
Agave , Clorofila , Hojas de la Planta , Metabolismo Secundario , Clorofila/metabolismo , Hojas de la Planta/metabolismo , Agave/metabolismo , Flavonoides/metabolismo , Fenotipo , Metabolómica , Metaboloma , Fenilalanina/metabolismo , Meristema/metabolismo
2.
Int J Mol Sci ; 25(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-39000470

RESUMEN

Agave tequilana stems store fructan polymers, the main carbon source for tequila production. This crop takes six or more years for industrial maturity. In conducive conditions, agave wilt disease increases the incidence of dead plants after the fourth year. Plant susceptibility induced for limited photosynthates for defense is recognized in many crops and is known as "sink-induced loss of resistance". To establish whether A. tequilana is more prone to agave wilt as it ages, because the reduction of water-soluble carbohydrates in roots, as a consequence of greater assembly of highly polymerized fructans, were quantified roots sucrose, fructose, and glucose, as well as fructans in stems of agave plants of different ages. The damage induced by inoculation with Fusarium solani or F. oxysporum in the roots or xylem bundles, respectively, was recorded. As the agave plant accumulated fructans in the stem as the main sink, the amount of these hexoses diminished in the roots of older plants, and root rot severity increased when plants were inoculated with F. solani, as evidence of more susceptibility. This knowledge could help to structure disease management that reduces the dispersion of agave wilt, dead plants, and economic losses at the end of agave's long crop cycle.


Asunto(s)
Agave , Fructanos , Fusarium , Enfermedades de las Plantas , Raíces de Plantas , Agave/microbiología , Agave/metabolismo , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Fructanos/metabolismo , Enfermedades de las Plantas/microbiología , Fusarium/patogenicidad , Hexosas/metabolismo , Tallos de la Planta/microbiología , Tallos de la Planta/metabolismo
3.
New Phytol ; 239(6): 2180-2196, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37537720

RESUMEN

Terrestrial CAM plants typically occur in hot semiarid regions, yet can show high crop productivity under favorable conditions. To achieve a more mechanistic understanding of CAM plant productivity, a biochemical model of diel metabolism was developed and integrated with 3-D shoot morphology to predict the energetics of light interception and photosynthetic carbon assimilation. Using Agave tequilana as an example, this biochemical model faithfully simulated the four diel phases of CO2 and metabolite dynamics during the CAM rhythm. After capturing the 3-D form over an 8-yr production cycle, a ray-tracing method allowed the prediction of the light microclimate across all photosynthetic surfaces. Integration with the biochemical model thereby enabled the simulation of plant and stand carbon uptake over daily and annual courses. The theoretical maximum energy conversion efficiency of Agave spp. is calculated at 0.045-0.049, up to 7% higher than for C3 photosynthesis. Actual light interception, and biochemical and anatomical limitations, reduced this to 0.0069, or 15.6 Mg ha-1 yr-1 dry mass annualized over an 8-yr cropping cycle, consistent with observation. This is comparable to the productivity of many C3 crops, demonstrating the potential of CAM plants in climates where little else may be grown while indicating strategies that could raise their productivity.


Asunto(s)
Agave , Metabolismo Ácido de las Crasuláceas , Agave/metabolismo , Fotosíntesis , Productos Agrícolas/metabolismo , Carbono/metabolismo
4.
Ann Bot ; 132(4): 819-833, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37279950

RESUMEN

BACKGROUND AND SCOPE: Crassulacean acid metabolism (CAM) is an intriguing physiological adaptation in plants that are widespread throughout many ecosystems. Despite the relatively recent mechanistic understanding of CAM in plant physiology, evidence from historical records suggests that ancient cultures in the Americas also recognized the value of CAM plants. Agave species, in particular, have a rich cultural legacy that provides a foundation for commercially valued products. Here, we review that legacy and potential relationships between ancient values and the needs of modern-day climate adaptation strategies. CONCLUSIONS: There are many products that can be produced from Agave species, including food, sugar, fibre and medicines. Traditional knowledge about agricultural management and preparation of plant products can be combined with new ecophysiological knowledge and agronomic techniques to develop these resources in the borderland region of the southwestern USA and Mexico. Historical records of pre-Columbian practices in the Sonoran desert and remnants of centuries-old agriculture in Baja California and Sonora demonstrate the climate resilience of Agave agriculture. Commercial growth of both tequila and bacanora indicates the potential for large-scale production today, but also underscores the importance of adopting regenerative agricultural practices to accomplish environmentally sustainable production. Recent international recognition of the Appellation of Origin for several Agave species produced for spirits in Mexico might provide opportunities for agricultural diversification. In contrast, fibre is currently produced from several Agave species on many continents. Projections of growth with future climate change suggest that Agave spp. will be viable alternatives for commodity crops that suffer declines during drought and increased temperatures. Historical cultivation of Agave affirms that these CAM plants can supply sugar, soft and hard fibres, medicines and food supplements.


Asunto(s)
Agave , Metabolismo Ácido de las Crasuláceas , Agave/metabolismo , Ecosistema , México , Azúcares/metabolismo
5.
BMC Plant Biol ; 22(1): 352, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35850575

RESUMEN

BACKGROUND: Pentatricopeptide repeat (PPR) proteins play an essential role in the post-transcriptional regulation of genes in plastid genomes. Although important advances have been made in understanding the functions of these genes, there is little information available on chloroplastic PPR genes in non-model plants and less in plants without chloroplasts. In the present study, a comprehensive and multifactorial bioinformatic strategy was applied to search for putative PPR genes in the foliar and meristematic tissues of green and albino plantlets of the non-model plant Agave angustifolia Haw. RESULTS: A total of 1581 PPR transcripts were identified, of which 282 were chloroplastic. Leaf tissue in the albino plantlets showed the highest levels of expression of chloroplastic PPRs. The search for hypothetical targets of 12 PPR sequences in the chloroplast genes of A. angustifolia revealed their action on transcripts related to ribosomes and translation, photosystems, ATP synthase, plastid-encoded RNA polymerase and RuBisCO. CONCLUSIONS: Our results suggest that the expression of PPR genes depends on the state of cell differentiation and plastid development. In the case of the albino leaf tissue, which lacks functional chloroplasts, it is possible that anterograde and retrograde signaling networks are severely compromised, leading to a compensatory anterograde response characterized by an increase in the expression of PPR genes.


Asunto(s)
Agave , Proteínas de Cloroplastos , Agave/metabolismo , Proteínas de Cloroplastos/genética , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
6.
Plant Mol Biol ; 106(6): 533-554, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34263437

RESUMEN

KEY MESSAGE: The role of central carbon metabolism in the synthesis and emission of scent volatiles in tuberose flowers was revealed through measurement of changes in transcripts and metabolites levels. Tuberose or Agave amica (Medikus) Thiede & Govaerts is a widely cultivated ornamental plant in several subtropical countries. Little is known about metabolite networking involved in biosynthesis of specialized metabolites utilizing primary metabolites. In this study, metabolite profiling and gene expression analyses were carried out from six stages of maturation throughout floral lifespan. Multivariate analysis indicated distinction between early and late maturation stages. Further, the roles of sugars viz. sucrose, glucose and fructose in synthesis, glycosylation and emission of floral scent volatiles were studied. Transcript levels of an ABC G family transporter (picked up from the floral transcriptome) was in synchronization with terpene volatiles emission during the anthesis stage. A diversion from phenylpropanoid/benzenoid to flavonoid metabolism was observed as flowers mature. Further, it was suggested that this metabolic shift could be mediated by isoforms of 4-Coumarate-CoA ligase along with Myb308 transcription factor. Maximum glycosylation of floral scent volatiles was shown to occur at the late mature stage when emission declined, facilitating both storage and export from the floral tissues. Thus, this study provides an insight into floral scent volatiles synthesis, storage and emission by measuring changes at transcripts and metabolites levels in tuberose throughout floral lifespan.


Asunto(s)
Agave/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Odorantes/análisis , Transcriptoma , Compuestos Orgánicos Volátiles/metabolismo , Agave/crecimiento & desarrollo , Agave/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/análisis , Flores/crecimiento & desarrollo , Flores/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , Perfilación de la Expresión Génica/métodos , Hidroxibenzoatos/análisis , RNA-Seq/métodos
7.
Plant Cell Environ ; 44(1): 34-48, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33073369

RESUMEN

Crassulacean acid metabolism (CAM) crops are important agricultural commodities in water-limited environments across the globe, yet modelling of CAM productivity lacks the sophistication of widely used C3 and C4 crop models, in part due to the complex responses of the CAM cycle to environmental conditions. This work builds on recent advances in CAM modelling to provide a framework for estimating CAM biomass yield and water use efficiency from basic principles. These advances, which integrate the CAM circadian rhythm with established models of carbon fixation, stomatal conductance and the soil-plant-atmosphere continuum, are coupled to models of light attenuation, plant respiration and biomass partitioning. Resulting biomass yield and transpiration for Opuntia ficus-indica and Agave tequilana are validated against field data and compared with predictions of CAM productivity obtained using the empirically based environmental productivity index. By representing regulation of the circadian state as a nonlinear oscillator, the modelling approach captures the diurnal dynamics of CAM stomatal conductance, allowing the prediction of CAM transpiration and water use efficiency for the first time at the plot scale. This approach may improve estimates of CAM productivity under light-limiting conditions when compared with previous methods.


Asunto(s)
Metabolismo Ácido de las Crasuláceas , Agua , Agave/metabolismo , Biomasa , Carbono/metabolismo , Dinámicas no Lineales , Opuntia/metabolismo , Fotosíntesis , Transpiración de Plantas , Agua/metabolismo
8.
Bioprocess Biosyst Eng ; 44(11): 2245-2255, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34156516

RESUMEN

An industrial process is profitable when its individual unit operations are efficient and thus, this work shows a guideline for designing efficient fermentation-industrial processes for agave distilled production based on a sequential approach of optimization, beginning in the laboratory and followed by the adjustment of the variable values using the evolutionary operation method for successful process scaling. The results at the laboratory showed that a starter inoculum containing a 5 × 106 cells/mL mixture of Kluyveromyces marxianus, Clavispora lusitaniae, and Kluyveromyces marxianus var. drosophilarum strains in a bioreactor containing agave syrup with 120 g/L fermented sugar, processed at a constant temperature of 33 °C and 1.0 VVM aeration for 1.6 h, led to a fermented product with a 4.18% (v/v) alcohol content after 72 h of processing time. The scale-up process results showed that the best operating conditions at the pilot-plant level were a temperature of 35 °C and aeration at 1.0 VVM for 1.2 h, which led to a fermented product with a 4.22% (v/v) total alcohol content after 72 h of processing time. These represent similar performance values for both production processes, but each one worked with their specific values of process variables, which demonstrates that each level of production had its own specific values for process variables. The volatile compound analysis shows that both distilled products contained a similar profile of volatile components that provide fruity and ethereal aromatic notes pleasant to the palate. Therefore, the process design for agave spirit production at the semi-industrial level was successfully achieved.


Asunto(s)
Agave/metabolismo , Bebidas Alcohólicas , Fermentación , Reactores Biológicos , Cromatografía de Gases/métodos , Kluyveromyces/metabolismo , Espectrometría de Masas/métodos , Saccharomycetales/metabolismo
9.
Molecules ; 26(22)2021 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-34833879

RESUMEN

Agaves are plants used in the production of alcoholic beverages and fibers. Ever since ancient times, pre-Hispanic cultures in Mexico have used them in traditional medicine to cure different ailments. Over the years, studies of the active principles responsible for the therapeutic benefits of agaves have increased. Leaves and fibers are the main agro-wastes generated in tequila and mezcal production, while fibers are the main waste product in the textile sector. Different investigations have referred to the agro-waste from agave processing as a source of bioactive molecules called secondary metabolites (SM). Among them, phenols, flavonoids, phytosterols, and saponins have been extracted, identified, and isolated from these plants. The role of these molecules in pest control and the prospect of metabolites with the biological potential to develop novel drugs for chronic and acute diseases represent new opportunities to add value to these agro-wastes. This review aims to update the biological activities and recent applications of the secondary metabolites of the genus Agave.


Asunto(s)
Agave/química , Agave/metabolismo , Extractos Vegetales/farmacología , Flavonoides , México , Fenoles , Hojas de la Planta/química , Saponinas , Metabolismo Secundario/fisiología , Residuos/análisis
10.
Water Sci Technol ; 84(3): 656-666, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34388125

RESUMEN

This study compares the H2 production from glucose, xylose, and acidic hydrolysates of Agave tequilana bagasse as substrates. The fermentation was performed in a granular sludge reactor operated in two phases: (1) model substrates (glucose and xylose) and (2) acidic hydrolysates at 35 °C, pH 4.5 and a hydraulic retention time of 5.5 h with glucose (10 g L-1) and xylose (12 g L-1). A sequencing batch reactor was used to acclimate the biomass between the glucose and xylose continuous fermentation (with a mixture of xylose-glucose) and acidic hydrolysates. During the discontinuous acclimating step, the xylose/glucose ratio increment negatively affected the H2 productivity. Although the continuous H2 production with xylose was negligible, the co-fermentation with glucose (88-12%) allowed H2 productivity of 2,889 ± 502 mL H2 L-1d-1. An acidic hydrolysate concentration of 3.3 gcarbohydrate L-1 showed a three-fold higher H2 productivity than with a concentration of 10 g L-1. The results indicated that xylose, as the only substrate, was challenging to metabolize by the inoculum, and its mixture with glucose improved the H2 productivity. Therefore, the low H2 productivity with hydrolysates could be related to the presence of xylose.


Asunto(s)
Agave , Xilosa , Agave/metabolismo , Celulosa/metabolismo , Fermentación , Glucosa
11.
BMC Genomics ; 20(1): 473, 2019 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-31182030

RESUMEN

BACKGROUND: Reliable indicators for the onset of flowering are not available for most perennial monocarpic species, representing a drawback for crops such as bamboo, agave and banana. The ability to predict and control the transition to the reproductive stage in A. tequilana would represent an advantage for field management of agaves for tequila production and for the development of a laboratory model for agave species. RESULTS: Consistent morphological features could not be determined for the vegetative to reproductive transition in A. tequilana. However, changes in carbohydrate metabolism where sucrose decreased and fructans of higher degree of polymerization increased in leaves before and after the vegetative to reproductive transition were observed. At the molecular level, transcriptome analysis from leaf and shoot apical meristem tissue of A. tequilana plants from different developmental stages identified OASES as the most effective assembly program and revealed evidence for incomplete transcript processing in the highly redundant assembly obtained. Gene ontology analysis uncovered enrichment for terms associated with carbohydrate and hormone metabolism and detailed analysis of expression patterns for individual genes revealed roles for specific Flowering locus T (florigen), MADS box proteins, gibberellins and fructans in the transition to flowering. CONCLUSIONS: Based on the data obtained, a preliminary model was developed to describe the regulatory mechanisms underlying the initiation of flowering in A. tequilana. Identification of specific promoter and repressor Flowering Locus T and MADS box genes facilitates functional analysis and the development of strategies to modulate the vegetative to reproductive transition in A. tequilana.


Asunto(s)
Agave/crecimiento & desarrollo , Agave/genética , Agave/anatomía & histología , Agave/metabolismo , Florigena/metabolismo , Flores/crecimiento & desarrollo , Fructanos/metabolismo , Giberelinas/metabolismo , Proteínas de Dominio MADS/genética , Familia de Multigenes , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Procesamiento Postranscripcional del ARN , ARN Mensajero/metabolismo , RNA-Seq , Azúcares/análisis , Transcriptoma
12.
Plant Cell Environ ; 42(4): 1368-1380, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30378133

RESUMEN

The plant microbiota can affect host fitness via the emission of microbial volatile organic compounds (mVOCs) that influence growth and development. However, evidence of these molecules and their effects in plants from arid ecosystems is limited. We screened the mVOCs produced by 40 core and representative members of the microbiome of agaves and cacti in their interaction with Arabidopsis thaliana and Nicotiana benthamiana. We used SPME-GC-MS to characterize the chemical diversity of mVOCs and tested the effects of selected compounds on growth and development of model and host plants. Our study revealed that approximately 90% of the bacterial strains promoted plant growth both in A. thaliana and N. benthamiana. Bacterial VOCs were mainly composed of esters, alcohols, and S-containing compounds with 25% of them not previously characterized. Remarkably, ethyl isovalerate, isoamyl acetate, 3-methyl-1-butanol, benzyl alcohol, 2-phenylethyl alcohol, and 3-(methylthio)-1-propanol, and some of their mixtures, displayed beneficial effects in A. thaliana and also improved growth and development of Agave tequilana and Agave salmiana in just 60 days. Volatiles produced by bacteria isolated from agaves and cacti are promising molecules for the sustainable production of crops in arid and semi-arid regions.


Asunto(s)
Agave/metabolismo , Arabidopsis/metabolismo , Microbiota , Nicotiana/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Agave/crecimiento & desarrollo , Agave/microbiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/microbiología , Clorofila/metabolismo , Clima Desértico , Cromatografía de Gases y Espectrometría de Masas , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Plantones/microbiología , Nicotiana/crecimiento & desarrollo , Nicotiana/microbiología
13.
J Appl Microbiol ; 126(5): 1618-1630, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30803104

RESUMEN

AIMS: The purpose of this study was to apply cDNA approach for the characterization of active prokaryotic community to understand microbial scenarios and performance of an AnSBR digester fed with acid hydrolysates of Agave tequilana var. azul bagasse (ATAB). METHODS AND RESULTS: The digester was implemented for methane production under organic loading rate (OLR) disturbances to correlate physicochemical variables with changes in abundance, diversity and population dynamics of active Bacteria and Archaea by principal components analysis (PCA). Results indicated that methane yield increased as well as active syntrophic relationships for interspecies hydrogen/formate (Anaerolinaceae-Methanobacterium beijingense) and acetate (Anaerolinaceae-Methanosaeta concilii) transfers at 8 g-COD l-1  day-1 . However, methane yield was negatively affected at 16 g-COD l-1  day-1 due to the competition for acetate by active Desulfovibrio marrakechensis and volatile fatty acids inhibition. CONCLUSIONS: Microbial scenarios obtained by PCA correlations indicated that methane production from acid hydrolysates of ATAB was feasible at 8 g-COD l-1  day-1 . The digester operation at higher OLR only favoured methanogenesis by the hydrogenotrophic pathway. SIGNIFICANCE AND IMPACT OF THE STUDY: Only cDNA analysis showed Archaea population dynamics, exhibiting high correlation with physicochemical variables towards the understanding of the methanogenic digester performance during OLR disturbances.


Asunto(s)
Agave , Archaea/metabolismo , Bacterias/metabolismo , Reactores Biológicos/microbiología , Metano , Agave/química , Agave/metabolismo , Metano/análisis , Metano/metabolismo
14.
J Sci Food Agric ; 99(14): 6601-6607, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31347166

RESUMEN

BACKGROUND: Phosphate-solubilizing bacteria (PSB) can be an environment-friendly strategy to improve crop production in low-phosphorus (P) or P-deficient soils. The effect of indigenous mixed inocula of PSB on Agave angustifolia Haw. growth was assessed. The four treatments evaluated were T1 (Pseudomonas luteola + Enterobacter sp.), T2 (Pseudomonas luteola + Bacillus sp.), T3 (Pseudomonas luteola + Acinetobacter sp.), and T4 (control); each was replicated 25 times using a completely randomized design during 12 months under rain-fed conditions. Additionally, P solubilization in vitro of the mixed inocula with three different sources of inorganic P was tested. RESULTS: The mixed inocula were able to solubilize more P from tricalcium phosphate Ca3 (PO4 )2 than from aluminum phosphate (AlPO4 ) and iron phosphate (FePO4 ). Relative to the control, T2 increased plant height by 22.9%, leaf dry weight by 391.4%, plant stem diameter by 49.6%, and root dry weight by 193.9%. The stem solid soluble content increased 50.0% with T1. Plant-available soil P increased 94.6% with T3 and 77.3% with T1. Soil alkaline phosphatase activity increased 85.9% with T1. CONCLUSION: T2 was the mixed inoculum that most improved Agave angustifolia plant growth. The indigenous mixed inocula of PSB evaluated appears to be a practical and efficient option for promoting field growth of Agave angustifolia plants. However, further research is necessary to achieve a deeper understanding of the relationships between different PSB species and their effects on agave, which may reveal some of the mechanisms of the synergistic interactions that are involved in the promotion of plant growth. © 2019 Society of Chemical Industry.


Asunto(s)
Acinetobacter/metabolismo , Agave/crecimiento & desarrollo , Agave/microbiología , Inoculantes Agrícolas/metabolismo , Bacillus/metabolismo , Enterobacter/metabolismo , Fosfatos/metabolismo , Pseudomonas/metabolismo , Agave/metabolismo , Fosfatos/química , Microbiología del Suelo , Solubilidad
15.
J Sci Food Agric ; 99(14): 6307-6314, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31260113

RESUMEN

BACKGROUND: Pulque bread is a traditional Mexican product obtained by fermentation using microflora present only in pulque. In this study, the possibility of creating a pulque microbial consortium under laboratory conditions and its applications were evaluated. A laboratory-made consortium was compared with a consortium originating in Mexico in bread and pulque production. They were tested in various growth medium systems: pulque made from agave sap and malt extract, Mexican wheat and rye pulque bread, and European wheat and rye bread. RESULTS: Depending on the growth medium, consortiums showed differing influence on many factors, such as specific volume, weight loss after baking, soluble proteins, and crust and crumb color. Indigenous starters increased sensorial acceptance of pulque and Mexican rye bread, decreased pH, and increased titratable acidity of the breads at the highest level whereas laboratory consortia improved sensory acceptance of wheat breads. The laboratory-prepared starter in some cases improved antiradical activity. All pulques received similar consumer evaluations. However, malt pulque was the least appreciated beverage. CONCLUSION: The results show the possibility of creating a pulque microbial consortium under laboratory conditions. Depending on the flour type and the breadmaking technique, the use of a particular microbial consortium allowed modification of certain physicochemical parameters. In conclusion, it is feasible to modify bread parameters to obtain features corresponding to consumer demands by using an appropriate microflora, pulque, or flour type. Moreover, this research describes, for the first time, the use of rye malt for pulque and rye flour for pulque bread preparation as raw materials. © 2019 Society of Chemical Industry.


Asunto(s)
Bacterias/metabolismo , Pan/microbiología , Consorcios Microbianos , Agave/metabolismo , Agave/microbiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Pan/análisis , Fermentación , Harina/análisis , Harina/microbiología , Manipulación de Alimentos , Humanos , México , Secale/metabolismo , Secale/microbiología , Gusto , Triticum/metabolismo , Triticum/microbiología
16.
BMC Genomics ; 19(1): 588, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30081833

RESUMEN

BACKGROUND: Crassulacean acid metabolism (CAM) enhances plant water-use efficiency through an inverse day/night pattern of stomatal closure/opening that facilitates nocturnal CO2 uptake. CAM has evolved independently in over 35 plant lineages, accounting for ~ 6% of all higher plants. Agave species are highly heat- and drought-tolerant, and have been domesticated as model CAM crops for beverage, fiber, and biofuel production in semi-arid and arid regions. However, the genomic basis of evolutionary innovation of CAM in genus Agave is largely unknown. RESULTS: Using an approach that integrated genomics, gene co-expression networks, comparative genomics and protein structure analyses, we investigated the molecular evolution of CAM as exemplified in Agave. Comparative genomics analyses among C3, C4 and CAM species revealed that core metabolic components required for CAM have ancient genomic origins traceable to non-vascular plants while regulatory proteins required for diel re-programming of metabolism have a more recent origin shared among C3, C4 and CAM species. We showed that accelerated evolution of key functional domains in proteins responsible for primary metabolism and signaling, together with a diel re-programming of the transcription of genes involved in carbon fixation, carbohydrate processing, redox homeostasis, and circadian control is required for the evolution of CAM in Agave. Furthermore, we highlighted the potential candidates contributing to the adaptation of CAM functional modules. CONCLUSIONS: This work provides evidence of adaptive evolution of CAM related pathways. We showed that the core metabolic components required for CAM are shared by non-vascular plants, but regulatory proteins involved in re-reprogramming of carbon fixation and metabolite transportation appeared more recently. We propose that the accelerated evolution of key proteins together with a diel re-programming of gene expression were required for CAM evolution from C3 ancestors in Agave.


Asunto(s)
Agave/genética , Carbono/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Agave/química , Agave/metabolismo , Ciclo del Carbono , Evolución Molecular , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Genómica , Modelos Moleculares , Fotosíntesis , Filogenia , Estructura Secundaria de Proteína
17.
Planta ; 245(2): 265-281, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27730409

RESUMEN

MAIN CONCLUSION: Biosynthesis of agave fructans occurs in mesontle vacuoles which showed fluctuations in FAZY activities and synthesized a diverse spectrum of fructooligosaccharide isomers. Agave tequilana Weber Blue variety is an important agronomic crop in Mexico. Fructan metabolism in A. tequilana exhibits changes in fructan content, type, degree of polymerization (DP), and molecular structure. Specific activities of vacuolar fructan active enzymes (FAZY) in A. tequilana plants of different age and the biosynthesis of fructooligosaccharides (FOSs) were analyzed in this work. Vacuoles from mesontle (stem) protoplasts were isolated and collected from 2- to 7-year-old plants. For the first time, agave fructans were identified in the vacuolar content by HPAEC-PAD. Several FAZY activities (1-SST, 6-SFT, 6G-FFT, 1-FFT, and FEH) with fluctuations according to the plant age were found in protein vacuolar extracts. Among vacuolar FAZY, 1-SST activities appeared in all plant developmental stages, as well as 1-FFT and FEH activities. The enzymes 6G-FFT and 6-SST showed only minimal activities. Lowest and highest FAZY activities were found in 2- and 6-year-old plants, respectively. Synthesized products (FOS) were analyzed by TLC and HPAEC-PAD. Vacuolar FAZYs yielded large FOS isomers diversity, being 7-year-old plants the ones that synthesized a greater variety of fructans with different DP, linkages, and molecular structures. Based on the above, we are proposing a model for the FAZY activities constituting the FOS biosynthetic pathways in Agave tequilana Weber Blue variety.


Asunto(s)
Agave/fisiología , Oligosacáridos/biosíntesis , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Agave/metabolismo , Conformación de Carbohidratos , Metabolismo de los Hidratos de Carbono , Fructanos/metabolismo , Glicósido Hidrolasas/metabolismo , Hexosiltransferasas/metabolismo , Oligosacáridos/análisis , Oligosacáridos/química , Factores de Tiempo
18.
Plant Cell Environ ; 39(2): 295-309, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26177873

RESUMEN

Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC ) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC ) showed a characteristic four-phase CO2 exchange pattern. Results were cross-validated against diel changes in titratable acidity, leaf-unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m(-2) year(-1) , mean ± 95% confidence interval) indicated the site was a net sink of -333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was -1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha(-1) year(-1) . Average integrated daily FA,EC was -234 ± 5 mmol CO2 m(-2) d(-1) and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA . Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi-arid C3 and C4 bioenergy candidates.


Asunto(s)
Ácidos/metabolismo , Agave/metabolismo , Gases/metabolismo , Biomasa , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Ecosistema , Modelos Biológicos , Hojas de la Planta/metabolismo , Análisis de Regresión , Reproducibilidad de los Resultados , Respiración , Suelo , Análisis Espectral , Termodinámica , Agua
19.
New Phytol ; 208(1): 66-72, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26094655

RESUMEN

Systems-level analyses have become prominent tools for assessing the yield, viability, economic consequences and environmental impacts of agricultural production. Such analyses are well-developed for many commodity crops that are used for food and biofuel, but have not been developed for agricultural production systems based on drought-tolerant plants that use crassulacean acid metabolism (CAM). We review the components of systems-level evaluations, and identify the information available for completing such analyses for CAM cropping systems. Specific needs for developing systems-level evaluations of CAM agricultural production include: improvement of physiological models; assessment of product processing after leaving the farm gate; and application of newly available genetic tools to the optimization of CAM species for commercial production.


Asunto(s)
Adaptación Fisiológica , Agricultura , Productos Agrícolas/metabolismo , Sequías , Fotosíntesis , Análisis de Sistemas , Agua/metabolismo , Agave/metabolismo , Ananas/metabolismo , Modelos Biológicos
20.
J Exp Bot ; 66(13): 3893-905, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911746

RESUMEN

In Agave tequilana, reproductive failure or inadequate flower development stimulates the formation of vegetative bulbils at the bracteoles, ensuring survival in a hostile environment. Little is known about the signals that trigger this probably unique phenomenon in agave species. Here we report that auxin plays a central role in bulbil development and show that the localization of PIN1-related proteins is consistent with altered auxin transport during this process. Analysis of agave transcriptome data led to the identification of the A. tequilana orthologue of PIN1 (denoted AtqPIN1) and a second closely related gene from a distinct clade reported as 'Sister of PIN1' (denoted AtqSoPIN1). Quantitative real-time reverse transcription-PCR (RT-qPCR) analysis showed different patterns of expression for each gene during bulbil formation, and heterologous expression of the A. tequilana PIN1 and SoPIN1 genes in Arabidopsis thaliana confirmed functional differences between these genes. Although no free auxin was detected in induced pedicel samples, changes in the levels of auxin precursors were observed. Taken as a whole, the data support the model that AtqPIN1 and AtqSoPIN1 have co-ordinated but distinct functions in relation to auxin transport during the initial stages of bulbil formation.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Agave/anatomía & histología , Agave/efectos de los fármacos , Agave/genética , Agave/metabolismo , Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , ADN Complementario/genética , Flores/efectos de los fármacos , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Ácidos Indolacéticos/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Filogenia , Plantas Modificadas Genéticamente , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA