Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.124
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220458

RESUMEN

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Asunto(s)
Nefritis Intersticial/virología , Parvovirus/aislamiento & purificación , Parvovirus/patogenicidad , Animales , Australia , Progresión de la Enfermedad , Femenino , Fibrosis/patología , Fibrosis/virología , Humanos , Riñón/metabolismo , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nefritis Intersticial/fisiopatología , América del Norte , Infecciones por Parvoviridae/metabolismo
2.
Nature ; 627(8003): 321-327, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38480963

RESUMEN

Overnight fires are emerging in North America with previously unknown drivers and implications. This notable phenomenon challenges the traditional understanding of the 'active day, quiet night' model of the diurnal fire cycle1-3 and current fire management practices4,5. Here we demonstrate that drought conditions promote overnight burning, which is a key mechanism fostering large active fires. We examined the hourly diurnal cycle of 23,557 fires and identified 1,095 overnight burning events (OBEs, each defined as a night when a fire burned through the night) in North America during 2017-2020 using geostationary satellite data and terrestrial fire records. A total of 99% of OBEs were associated with large fires (>1,000 ha) and at least one OBE was identified in 20% of these large fires. OBEs were early onset after ignition and OBE frequency was positively correlated with fire size. Although warming is weakening the climatological barrier to night-time fires6, we found that the main driver of recent OBEs in large fires was the accumulated fuel dryness and availability (that is, drought conditions), which tended to lead to consecutive OBEs in a single wildfire for several days and even weeks. Critically, we show that daytime drought indicators can predict whether an OBE will occur the following night, which could facilitate early detection and management of night-time fires. We also observed increases in fire weather conditions conducive to OBEs over recent decades, suggesting an accelerated disruption of the diurnal fire cycle.


Asunto(s)
Oscuridad , Sequías , Incendios Forestales , Sequías/estadística & datos numéricos , Ecosistema , América del Norte , Incendios Forestales/estadística & datos numéricos
3.
Nature ; 621(7978): 324-329, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648851

RESUMEN

Marine heatwaves have been linked to negative ecological effects in recent decades1,2. If marine heatwaves regularly induce community reorganization and biomass collapses in fishes, the consequences could be catastrophic for ecosystems, fisheries and human communities3,4. However, the extent to which marine heatwaves have negative impacts on fish biomass or community composition, or even whether their effects can be distinguished from natural and sampling variability, remains unclear. We investigated the effects of 248 sea-bottom heatwaves from 1993 to 2019 on marine fishes by analysing 82,322 hauls (samples) from long-term scientific surveys of continental shelf ecosystems in North America and Europe spanning the subtropics to the Arctic. Here we show that the effects of marine heatwaves on fish biomass were often minimal and could not be distinguished from natural and sampling variability. Furthermore, marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated species) or deborealization (loss of cold-affiliated species) in these ecosystems. Although steep declines in biomass occasionally occurred after marine heatwaves, these were the exception, not the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not driven biomass change or community turnover in fish communities that support many of the world's largest and most productive fisheries.


Asunto(s)
Biomasa , Calor Extremo , Peces , Animales , Europa (Continente) , Explotaciones Pesqueras/estadística & datos numéricos , Peces/clasificación , Peces/fisiología , Calor Extremo/efectos adversos , América del Norte , Biodiversidad
4.
Nature ; 615(7953): 640-645, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890233

RESUMEN

The Devonian-Carboniferous transition marks a fundamental shift in the surface environment primarily related to changes in ocean-atmosphere oxidation states1,2, resulting from the continued proliferation of vascular land plants that stimulated the hydrological cycle and continental weathering3,4, glacioeustasy5,6, eutrophication and anoxic expansion in epicontinental seas3,4, and mass extinction events2,7,8. Here we present a comprehensive spatial and temporal compilation of geochemical data from 90 cores across the entire Bakken Shale (Williston Basin, North America). Our dataset allows for the detailed documentation of stepwise transgressions of toxic euxinic waters into the shallow oceans that drove a series of Late Devonian extinction events. Other Phanerozoic extinctions have also been related to the expansion of shallow-water euxinia, indicating that hydrogen sulfide toxicity was a key driver of Phanerozoic biodiversity.


Asunto(s)
Extinción Biológica , Sulfuro de Hidrógeno , Océanos y Mares , Oxígeno , Análisis Espacio-Temporal , Biodiversidad , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/envenenamiento , Atmósfera/química , Ciclo Hidrológico , Eutrofización , Conjuntos de Datos como Asunto , Oxígeno/análisis , Oxígeno/metabolismo , Oxidación-Reducción , Plantas/metabolismo , América del Norte , Historia Antigua , Sedimentos Geológicos/química , Animales
5.
Nature ; 608(7923): 540-545, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948640

RESUMEN

The sensitivity of forests to near-term warming and associated precipitation shifts remains uncertain1-9. Herein, using a 5-year open-air experiment in southern boreal forest, we show divergent responses to modest climate alteration among juveniles of nine co-occurring North American tree species. Warming alone (+1.6 °C or +3.1 °C above ambient temperature) or combined with reduced rainfall increased the juvenile mortality of all species, especially boreal conifers. Species differed in growth responses to warming, ranging from enhanced growth in Acer rubrum and Acer saccharum to severe growth reductions in Abies balsamea, Picea glauca and Pinus strobus. Moreover, treatment-induced changes in both photosynthesis and growth help explain treatment-driven changes in survival. Treatments in which species experienced conditions warmer or drier than at their range margins resulted in the most adverse impacts on growth and survival. Species abundant in southern boreal forests had the largest reductions in growth and survival due to climate manipulations. By contrast, temperate species that experienced little mortality and substantial growth enhancement in response to warming are rare throughout southern boreal forest and unlikely to rapidly expand their density and distribution. Therefore, projected climate change will probably cause regeneration failure of currently dominant southern boreal species and, coupled with their slow replacement by temperate species, lead to tree regeneration shortfalls with potential adverse impacts on the health, diversity and ecosystem services of regional forests.


Asunto(s)
Calentamiento Global , Taiga , Árboles , Aclimatación , Biodiversidad , Modelos Climáticos , Calentamiento Global/estadística & datos numéricos , Modelos Biológicos , América del Norte , Fotosíntesis , Lluvia , Temperatura , Árboles/clasificación , Árboles/crecimiento & desarrollo
6.
Nature ; 607(7918): 313-320, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768506

RESUMEN

The grey wolf (Canis lupus) was the first species to give rise to a domestic population, and they remained widespread throughout the last Ice Age when many other large mammal species went extinct. Little is known, however, about the history and possible extinction of past wolf populations or when and where the wolf progenitors of the present-day dog lineage (Canis familiaris) lived1-8. Here we analysed 72 ancient wolf genomes spanning the last 100,000 years from Europe, Siberia and North America. We found that wolf populations were highly connected throughout the Late Pleistocene, with levels of differentiation an order of magnitude lower than they are today. This population connectivity allowed us to detect natural selection across the time series, including rapid fixation of mutations in the gene IFT88 40,000-30,000 years ago. We show that dogs are overall more closely related to ancient wolves from eastern Eurasia than to those from western Eurasia, suggesting a domestication process in the east. However, we also found that dogs in the Near East and Africa derive up to half of their ancestry from a distinct population related to modern southwest Eurasian wolves, reflecting either an independent domestication process or admixture from local wolves. None of the analysed ancient wolf genomes is a direct match for either of these dog ancestries, meaning that the exact progenitor populations remain to be located.


Asunto(s)
Perros , Genoma , Genómica , Filogenia , Lobos , África , Animales , ADN Antiguo/análisis , Perros/genética , Domesticación , Europa (Continente) , Genoma/genética , Historia Antigua , Medio Oriente , Mutación , América del Norte , Selección Genética , Siberia , Proteínas Supresoras de Tumor/genética , Lobos/clasificación , Lobos/genética
7.
Nature ; 608(7923): 552-557, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35948636

RESUMEN

As the climate changes, warmer spring temperatures are causing earlier leaf-out1-3 and commencement of CO2 uptake1,3 in temperate deciduous forests, resulting in a tendency towards increased growing season length3 and annual CO2 uptake1,3-7. However, less is known about how spring temperatures affect tree stem growth8,9, which sequesters carbon in wood that has a long residence time in the ecosystem10,11. Here we show that warmer spring temperatures shifted stem diameter growth of deciduous trees earlier but had no consistent effect on peak growing season length, maximum growth rates, or annual growth, using dendrometer band measurements from 440 trees across two forests. The latter finding was confirmed on the centennial scale by 207 tree-ring chronologies from 108 forests across eastern North America, where annual ring width was far more sensitive to temperatures during the peak growing season than in the spring. These findings imply that any extra CO2 uptake in years with warmer spring temperatures4,5 does not significantly contribute to increased sequestration in long-lived woody stem biomass. Rather, contradicting projections from global carbon cycle models1,12, our empirical results imply that warming spring temperatures are unlikely to increase woody productivity enough to strengthen the long-term CO2 sink of temperate deciduous forests.


Asunto(s)
Calentamiento Global , Estaciones del Año , Temperatura , Árboles , Aclimatación , Biomasa , Dióxido de Carbono/metabolismo , Secuestro de Carbono , Modelos Climáticos , Bosques , Calentamiento Global/estadística & datos numéricos , América del Norte , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Factores de Tiempo , Árboles/anatomía & histología , Árboles/clasificación , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Madera/crecimiento & desarrollo , Madera/metabolismo
8.
N Engl J Med ; 390(18): 1663-1676, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38657265

RESUMEN

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS: We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent ß-thalassemia and a ß0/ß0, ß0/ß0-like, or non-ß0/ß0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS: A total of 52 patients with transfusion-dependent ß-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS: Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent ß-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).


Asunto(s)
Hemoglobina Fetal , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Talasemia beta , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Antígenos CD34 , Talasemia beta/terapia , Talasemia beta/genética , Transfusión Sanguínea , Busulfano/uso terapéutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Edición Génica/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas , Proteínas Represoras/genética , Acondicionamiento Pretrasplante , Trasplante Autólogo , Agonistas Mieloablativos/uso terapéutico , América del Norte , Europa (Continente)
9.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38661449

RESUMEN

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Trasplante de Células Madre Hematopoyéticas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antígenos CD34 , Busulfano/uso terapéutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Edición Génica , Células Madre Hematopoyéticas , Proteínas Represoras , Acondicionamiento Pretrasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Agonistas Mieloablativos/uso terapéutico , Europa (Continente) , América del Norte
10.
Nature ; 591(7848): 87-91, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33442059

RESUMEN

Dire wolves are considered to be one of the most common and widespread large carnivores in Pleistocene America1, yet relatively little is known about their evolution or extinction. Here, to reconstruct the evolutionary history of dire wolves, we sequenced five genomes from sub-fossil remains dating from 13,000 to more than 50,000 years ago. Our results indicate that although they were similar morphologically to the extant grey wolf, dire wolves were a highly divergent lineage that split from living canids around 5.7 million years ago. In contrast to numerous examples of hybridization across Canidae2,3, there is no evidence for gene flow between dire wolves and either North American grey wolves or coyotes. This suggests that dire wolves evolved in isolation from the Pleistocene ancestors of these species. Our results also support an early New World origin of dire wolves, while the ancestors of grey wolves, coyotes and dholes evolved in Eurasia and colonized North America only relatively recently.


Asunto(s)
Extinción Biológica , Filogenia , Lobos/clasificación , Animales , Fósiles , Flujo Génico , Genoma/genética , Genómica , Mapeo Geográfico , América del Norte , Paleontología , Fenotipo , Lobos/genética
11.
Nature ; 591(7849): 265-269, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33597750

RESUMEN

Temporal genomic data hold great potential for studying evolutionary processes such as speciation. However, sampling across speciation events would, in many cases, require genomic time series that stretch well back into the Early Pleistocene subepoch. Although theoretical models suggest that DNA should survive on this timescale1, the oldest genomic data recovered so far are from a horse specimen dated to 780-560 thousand years ago2. Here we report the recovery of genome-wide data from three mammoth specimens dating to the Early and Middle Pleistocene subepochs, two of which are more than one million years old. We find that two distinct mammoth lineages were present in eastern Siberia during the Early Pleistocene. One of these lineages gave rise to the woolly mammoth and the other represents a previously unrecognized lineage that was ancestral to the first mammoths to colonize North America. Our analyses reveal that the Columbian mammoth of North America traces its ancestry to a Middle Pleistocene hybridization between these two lineages, with roughly equal admixture proportions. Finally, we show that the majority of protein-coding changes associated with cold adaptation in woolly mammoths were already present one million years ago. These findings highlight the potential of deep-time palaeogenomics to expand our understanding of speciation and long-term adaptive evolution.


Asunto(s)
ADN Antiguo/análisis , Evolución Molecular , Genoma Mitocondrial/genética , Genómica , Mamuts/genética , Filogenia , Aclimatación/genética , Alelos , Animales , Teorema de Bayes , ADN Antiguo/aislamiento & purificación , Elefantes/genética , Europa (Continente) , Femenino , Fósiles , Variación Genética/genética , Cadenas de Markov , Diente Molar , América del Norte , Datación Radiométrica , Siberia , Factores de Tiempo
12.
Proc Natl Acad Sci U S A ; 121(15): e2307525121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38557189

RESUMEN

Changes in climate can alter environmental conditions faster than most species can adapt. A prediction under a warming climate is that species will shift their distributions poleward through time. While many studies focus on range shifts, latitudinal shifts in species' optima can occur without detectable changes in their range. We quantified shifts in latitudinal optima for 209 North American bird species over the last 55 y. The latitudinal optimum (m) for each species in each year was estimated using a bespoke flexible non-linear zero-inflated model of abundance vs. latitude, and the annual shift in m through time was quantified. One-third (70) of the bird species showed a significant shift in their optimum. Overall, mean peak abundances of North American birds have shifted northward, on average, at a rate of 1.5 km per year (±0.58 SE), corresponding to a total distance moved of 82.5 km (±31.9 SE) over the last 55 y. Stronger poleward shifts at the continental scale were linked to key species' traits, including thermal optimum, habitat specialization, and territoriality. Shifts in the western region were larger and less variable than in the eastern region, and they were linked to species' thermal optimum, habitat density preference, and habitat specialization. Individual species' latitudinal shifts were most strongly linked to their estimated thermal optimum, clearly indicating a climate-driven response. Displacement of species from their historically optimal realized niches can have dramatic ecological consequences. Effective conservation must consider within-range abundance shifts. Areas currently deemed "optimal" are unlikely to remain so.


Asunto(s)
Cambio Climático , Clima , Animales , Aves/fisiología , Ecosistema , América del Norte
13.
Proc Natl Acad Sci U S A ; 121(23): e2308811121, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38805274

RESUMEN

Climate change will likely shift plant and microbial distributions, creating geographic mismatches between plant hosts and essential microbial symbionts (e.g., ectomycorrhizal fungi, EMF). The loss of historical interactions, or the gain of novel associations, can have important consequences for biodiversity, ecosystem processes, and plant migration potential, yet few analyses exist that measure where mycorrhizal symbioses could be lost or gained across landscapes. Here, we examine climate change impacts on tree-EMF codistributions at the continent scale. We built species distribution models for 400 EMF species and 50 tree species, integrating fungal sequencing data from North American forest ecosystems with tree species occurrence records and long-term forest inventory data. Our results show the following: 1) tree and EMF climate suitability to shift toward higher latitudes; 2) climate shifts increase the size of shared tree-EMF habitat overall, but 35% of tree-EMF pairs are at risk of declining habitat overlap; 3) climate mismatches between trees and EMF are projected to be greater at northern vs. southern boundaries; and 4) tree migration lag is correlated with lower richness of climatically suitable EMF partners. This work represents a concentrated effort to quantify the spatial extent and location of tree-EMF climate envelope mismatches. Our findings also support a biotic mechanism partially explaining the failure of northward tree species migrations with climate change: reduced diversity of co-occurring and climate-compatible EMF symbionts at higher latitudes. We highlight the conservation implications for identifying areas where tree and EMF responses to climate change may be highly divergent.


Asunto(s)
Cambio Climático , Micorrizas , Simbiosis , Árboles , Micorrizas/fisiología , Árboles/microbiología , América del Norte , Bosques , Biodiversidad , Ecosistema
14.
PLoS Biol ; 21(11): e3002361, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37963110

RESUMEN

More species live outside their native range than at any point in human history. Yet, there is little understanding of the geographic regions that will be threatened if these species continue to spread, nor of whether they will spread. We predict the world's terrestrial regions to which 833 naturalised plants, birds, and mammals are most imminently likely to spread, and investigate what factors have hastened or slowed their spread to date. There is huge potential for further spread of naturalised birds in North America, mammals in Eastern Europe, and plants in North America, Eastern Europe, and Australia. Introduction history, dispersal, and the spatial distribution of suitable areas are more important predictors of species spread than traits corresponding to habitat usage or biotic interactions. Natural dispersal has driven spread in birds more than in plants. Whether these taxa continue to spread more widely depends partially on connectivity of suitable environments. Plants show the clearest invasion lag, and the putative importance of human transportation indicates opportunities to slow their spread. Despite strong predictive effects, questions remain, particularly why so many birds in North America do not occupy climatically suitable areas close to their existing ranges.


Asunto(s)
Mariposas Nocturnas , Plantas , Animales , Aves , Ecosistema , Mamíferos , América del Norte
15.
Nature ; 584(7819): 93-97, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32699413

RESUMEN

The peopling of the Americas marks a major expansion of humans across the planet. However, questions regarding the timing and mechanisms of this dispersal remain, and the previously accepted model (termed 'Clovis-first')-suggesting that the first inhabitants of the Americas were linked with the Clovis tradition, a complex marked by distinctive fluted lithic points1-has been effectively refuted. Here we analyse chronometric data from 42 North American and Beringian archaeological sites using a Bayesian age modelling approach, and use the resulting chronological framework to elucidate spatiotemporal patterns of human dispersal. We then integrate these patterns with the available genetic and climatic evidence. The data obtained show that humans were probably present before, during and immediately after the Last Glacial Maximum (about 26.5-19 thousand years ago)2,3 but that more widespread occupation began during a period of abrupt warming, Greenland Interstadial 1 (about 14.7-12.9 thousand years before AD 2000)4. We also identify the near-synchronous commencement of Beringian, Clovis and Western Stemmed cultural traditions, and an overlap of each with the last dates for the appearance of 18 now-extinct faunal genera. Our analysis suggests that the widespread expansion of humans through North America was a key factor in the extinction of large terrestrial mammals.


Asunto(s)
Extinción Biológica , Migración Humana/historia , Mamíferos , Animales , Arqueología , Teorema de Bayes , Mapeo Geográfico , Historia Antigua , Humanos , Mamíferos/clasificación , América del Norte , Factores de Tiempo
16.
Nature ; 581(7808): 294-298, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32433620

RESUMEN

Warming surface temperatures have driven a substantial reduction in the extent and duration of Northern Hemisphere snow cover1-3. These changes in snow cover affect Earth's climate system via the surface energy budget, and influence freshwater resources across a large proportion of the Northern Hemisphere4-6. In contrast to snow extent, reliable quantitative knowledge on seasonal snow mass and its trend is lacking7-9. Here we use the new GlobSnow 3.0 dataset to show that the 1980-2018 annual maximum snow mass in the Northern Hemisphere was, on average, 3,062 ± 35 billion tonnes (gigatonnes). Our quantification is for March (the month that most closely corresponds to peak snow mass), covers non-alpine regions above 40° N and, crucially, includes a bias correction based on in-field snow observations. We compare our GlobSnow 3.0 estimates with three independent estimates of snow mass, each with and without the bias correction. Across the four datasets, the bias correction decreased the range from 2,433-3,380 gigatonnes (mean 2,867) to 2,846-3,062 gigatonnes (mean 2,938)-a reduction in uncertainty from 33% to 7.4%. On the basis of our bias-corrected GlobSnow 3.0 estimates, we find different continental trends over the 39-year satellite record. For example, snow mass decreased by 46 gigatonnes per decade across North America but had a negligible trend across Eurasia; both continents exhibit high regional variability. Our results enable a better estimation of the role of seasonal snow mass in Earth's energy, water and carbon budgets.


Asunto(s)
Mapeo Geográfico , Nieve , Análisis Espacio-Temporal , Sesgo , Carbono/análisis , Planeta Tierra , Calentamiento Global/estadística & datos numéricos , Historia del Siglo XX , Historia del Siglo XXI , América del Norte , Estaciones del Año , Siberia , Nieve/química , Temperatura , Incertidumbre , Agua/análisis
17.
Proc Natl Acad Sci U S A ; 120(7): e2201946119, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745797

RESUMEN

Plants will experience considerable changes in climate within their geographic ranges over the next several decades. They may respond by exhibiting niche flexibility and adapting to changing climates. Alternatively, plant taxa may exhibit climate fidelity, shifting their geographic distributions to track their preferred climates. Here, we examine the responses of plant taxa to changing climates over the past 18,000 y to evaluate the extent to which the 16 dominant plant taxa of North America have exhibited climate fidelity. We find that 75% of plant taxa consistently exhibit climate fidelity over the past 18,000 y, even during the times of most extreme climate change. Of the four taxa that do not consistently exhibit climate fidelity, three-elm (Ulmus), beech (Fagus), and ash (Fraxinus)-experience a long-term shift in their realized climatic niche between the early Holocene and present day. Plant taxa that migrate longer distances better maintain consistent climatic niches across transition periods during times of the most extreme climate change. Today, plant communities with the highest climate fidelity are found in regions with high topographic and microclimate heterogeneity that are expected to exhibit high climate resilience, allowing plants to shift distributions locally and adjust to some amount of climate change. However, once the climate change buffering of the region is exceeded, these plant communities will need to track climates across broader landscapes but be challenged to do so because of the low habitat connectivity of the regions.


Asunto(s)
Cambio Climático , Plantas , Ecosistema , América del Norte , Microclima
18.
Proc Natl Acad Sci U S A ; 120(10): e2217564120, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36853942

RESUMEN

The field of plant science has grown dramatically in the past two decades, but global disparities and systemic inequalities persist. Here, we analyzed ~300,000 papers published over the past two decades to quantify disparities across nations, genders, and taxonomy in the plant science literature. Our analyses reveal striking geographical biases-affluent nations dominate the publishing landscape and vast areas of the globe have virtually no footprint in the literature. Authors in Northern America are cited nearly twice as many times as authors based in Sub-Saharan Africa and Latin America, despite publishing in journals with similar impact factors. Gender imbalances are similarly stark and show remarkably little improvement over time. Some of the most affluent nations have extremely male biased publication records, despite supposed improvements in gender equality. In addition, we find that most studies focus on economically important crop and model species, and a wealth of biodiversity is underrepresented in the literature. Taken together, our analyses reveal a problematic system of publication, with persistent imbalances that poorly capture the global wealth of scientific knowledge and biological diversity. We conclude by highlighting disparities that can be addressed immediately and offer suggestions for long-term solutions to improve equity in the plant sciences.


Asunto(s)
Biodiversidad , Equidad de Género , Femenino , Masculino , Humanos , Geografía , Conocimiento , América del Norte
19.
Proc Natl Acad Sci U S A ; 120(7): e2208738120, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36745804

RESUMEN

Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.


Asunto(s)
Ecosistema , Agua Dulce , Humanos , América del Norte , Migración Humana , Océanos y Mares , Cubierta de Hielo
20.
Proc Natl Acad Sci U S A ; 120(50): e2310855120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38048453

RESUMEN

Mammals play important ecological roles in terrestrial ecosystems, with their particular niches and their impacts on energy flow and nutrient cycling being strongly influenced by one of their most fundamental traits-their body size. Body size influences nearly all of the physiological, behavioral, and ecological traits of mammals, and thus, shifts in body size often serve as key mechanisms of adaptation to variation in environmental conditions over space and time. Along with shifts in phenology and distributions, declining body size has been purported to be one of the three universal responses to anthropogenic climate change, yet few studies have been conducted at the spatial and temporal scales appropriate to test this claim. Here, we report that in response to warming of terrestrial ecosystems across North America over the past century, small mammals are decreasing in body size. We further estimate that by 2100 (when global temperatures may have risen some 2.5 to 5.5 °C since 1880), the total anthropogenic decline in body mass of these ecologically and economically important species may range from 10 to 21%. Such shifts in body size of the great multitudes of small mammal populations are, in turn, likely to have major impacts on the structural and functional diversity of terrestrial assemblages across the globe.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Tamaño Corporal , Mamíferos/fisiología , América del Norte
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA