RESUMEN
NLRP3-inflammasome-driven inflammation is involved in the pathogenesis of a variety of diseases. Identification of endogenous inflammasome activators is essential for the development of new anti-inflammatory treatment strategies. Here, we identified that apolipoprotein C3 (ApoC3) activates the NLRP3 inflammasome in human monocytes by inducing an alternative NLRP3 inflammasome via caspase-8 and dimerization of Toll-like receptors 2 and 4. Alternative inflammasome activation in human monocytes is mediated by the Toll-like receptor adapter protein SCIMP. This triggers Lyn/Syk-dependent calcium entry and the production of reactive oxygen species, leading to activation of caspase-8. In humanized mouse models, ApoC3 activated human monocytes in vivo to impede endothelial regeneration and promote kidney injury in an NLRP3- and caspase-8-dependent manner. These data provide new insights into the regulation of the NLRP3 inflammasome and the pathophysiological role of triglyceride-rich lipoproteins containing ApoC3. Targeting ApoC3 might prevent organ damage and provide an anti-inflammatory treatment for vascular and kidney diseases.
Asunto(s)
Lesión Renal Aguda/inmunología , Apolipoproteína C-III/inmunología , Caspasa 8/metabolismo , Enfermedades Renales/inmunología , Monocitos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Lesión Renal Aguda/patología , Proteínas Adaptadoras Transductoras de Señales , Animales , Apolipoproteína C-III/genética , Línea Celular , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inflamasomas/inmunología , Inflamación/genética , Inflamación/inmunología , Enfermedades Renales/patología , Proteínas de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Especies Reactivas de Oxígeno/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 4/metabolismoRESUMEN
BACKGROUND: Persons with mixed hyperlipidemia are at risk for atherosclerotic cardiovascular disease due to an elevated non-high-density lipoprotein (HDL) cholesterol level, which is driven by remnant cholesterol in triglyceride-rich lipoproteins. The metabolism and clearance of triglyceride-rich lipoproteins are down-regulated through apolipoprotein C3 (APOC3)-mediated inhibition of lipoprotein lipase. METHODS: We carried out a 48-week, phase 2b, double-blind, randomized, placebo-controlled trial evaluating the safety and efficacy of plozasiran, a hepatocyte-targeted APOC3 small interfering RNA, in patients with mixed hyperlipidemia (i.e., a triglyceride level of 150 to 499 mg per deciliter and either a low-density lipoprotein [LDL] cholesterol level of ≥70 mg per deciliter or a non-HDL cholesterol level of ≥100 mg per deciliter). The participants were assigned in a 3:1 ratio to receive plozasiran or placebo within each of four cohorts. In the first three cohorts, the participants received a subcutaneous injection of plozasiran (10 mg, 25 mg, or 50 mg) or placebo on day 1 and at week 12 (quarterly doses). In the fourth cohort, participants received 50 mg of plozasiran or placebo on day 1 and at week 24 (half-yearly dose). The data from the participants who received placebo were pooled. The primary end point was the percent change in fasting triglyceride level at week 24. RESULTS: A total of 353 participants underwent randomization. At week 24, significant reductions in the fasting triglyceride level were observed with plozasiran, with differences, as compared with placebo, in the least-squares mean percent change from baseline of -49.8 percentage points (95% confidence interval [CI], -59.0 to -40.6) with the 10-mg-quarterly dose, -56.0 percentage points (95% CI, -65.1 to -46.8) with the 25-mg-quarterly dose, -62.4 percentage points (95% CI, -71.5 to -53.2) with the 50-mg-quarterly dose, and -44.2 percentage points (95% CI, -53.4 to -35.0) with the 50-mg-half-yearly dose (P<0.001 for all comparisons). Worsening glycemic control was observed in 10% of the participants receiving placebo, 12% of those receiving the 10-mg-quarterly dose, 7% of those receiving the 25-mg-quarterly dose, 20% of those receiving the 50-mg-quarterly dose, and 21% of those receiving the 50-mg-half-yearly dose. CONCLUSIONS: In this randomized, controlled trial involving participants with mixed hyperlipidemia, plozasiran, as compared with placebo, significantly reduced triglyceride levels at 24 weeks. A clinical outcomes trial is warranted. (Funded by Arrowhead Pharmaceuticals; MUIR ClinicalTrials.gov number NCT04998201.).
Asunto(s)
Apolipoproteína C-III , Hiperlipidemias , ARN Interferente Pequeño , Tratamiento con ARN de Interferencia , Triglicéridos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/genética , LDL-Colesterol/sangre , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Hiperlipidemias/sangre , Hiperlipidemias/tratamiento farmacológico , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/efectos adversos , Triglicéridos/sangre , Tratamiento con ARN de Interferencia/efectos adversos , Tratamiento con ARN de Interferencia/métodosRESUMEN
Epigenetic editing is an emerging technology that uses artificial transcription factors (aTFs) to regulate expression of a target gene. Although human genes can be robustly upregulated by targeting aTFs to promoters, the activation induced by directing aTFs to distal transcriptional enhancers is substantially less robust and consistent. Here we show that long-range activation using CRISPR-based aTFs in human cells can be made more efficient and reliable by concurrently targeting an aTF to the target gene promoter. We used this strategy to direct target gene choice for enhancers capable of regulating more than one promoter and to achieve allele-selective activation of human genes by targeting aTFs to single-nucleotide polymorphisms embedded in distally located sequences. Our results broaden the potential applications of the epigenetic editing toolbox for research and therapeutics.
Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Marcación de Gen/métodos , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Alelos , Apolipoproteína C-III/genética , Apolipoproteínas A/genética , Línea Celular , Elementos de Facilitación Genéticos , Humanos , Subunidad alfa del Receptor de Interleucina-2/genética , Proteína MioD/genética , Polimorfismo de Nucleótido Simple , Activación Transcripcional , Globinas beta/genéticaRESUMEN
OBJECTIVE: To explore the correlation between asthma risk and genetic variants affecting the expression or function of lipid-lowering drug targets. METHODS: We conducted Mendelian randomization (MR) analyses using variants in several genes associated with lipid-lowering medication targets: HMGCR (statin target), PCSK9 (alirocumab target), NPC1L1 (ezetimibe target), APOB (mipomersen target), ANGPTL3 (evinacumab target), PPARA (fenofibrate target), and APOC3 (volanesorsen target), as well as LDLR and LPL. Our objective was to investigate the relationship between lipid-lowering drugs and asthma through MR. Finally, we assessed the efficacy and stability of the MR analysis using the MR Egger and inverse variance weighted (IVW) methods. RESULTS: The elevated triglyceride (TG) levels associated with the APOC3, and LPL targets were found to increase asthma risk. Conversely, higher LDL-C levels driven by LDLR were found to decrease asthma risk. Additionally, LDL-C levels (driven by APOB, NPC1L1 and HMGCR targets) and TG levels (driven by the LPL target) were associated with improved lung function (FEV1/FVC). LDL-C levels driven by PCSK9 were associated with decreased lung function (FEV1/FVC). CONCLUSION: In conclusion, our findings suggest a likely causal relationship between asthma and lipid-lowering drugs. Moreover, there is compelling evidence indicating that lipid-lowering therapies could play a crucial role in the future management of asthma.
Asunto(s)
Asma , Hipolipemiantes , Análisis de la Aleatorización Mendeliana , Humanos , Asma/genética , Asma/tratamiento farmacológico , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Proproteína Convertasa 9/genética , Estudios de Asociación Genética , Pulmón/efectos de los fármacos , Pulmón/patología , Lipoproteína Lipasa/genética , Triglicéridos/sangre , Receptores de LDL/genética , Hidroximetilglutaril-CoA Reductasas/genética , Proteína 3 Similar a la Angiopoyetina , Proteínas Similares a la Angiopoyetina/genética , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , Pruebas de Función Respiratoria , LDL-Colesterol/sangre , Proteínas de Transporte de Membrana , PPAR alfaRESUMEN
BACKGROUND: The objective of this study was to investigate whether apoC3 (apolipoprotein C3) inhibition with an antisense oligonucleotide (ASO) modulates intestinal triglyceride secretion. METHODS: Sprague-Dawley rats were treated with subcutaneous injections of apoC3 ASO 25 mg/kg twice weekly or inactive ASO for 4 weeks before the assessment of lymph flow, triglyceride and apoB48 (apolipoprotein B48) appearance in the lymph. Rats were surgically implanted with catheters in the mesenteric lymph duct and duodenum. Following an overnight fast, an intraduodenal lipid bolus (1.5-mL intralipid) was administered. Lymph fluid was collected for the following 4 hours to compare effects on lymph flow, lymph triglyceride and apoB48 concentration, and secretion. To assess suppression of apoC3 expression and protein abundance by apoC3 ASO compared with inactive ASO (placebo), intestinal and hepatic tissues were collected from a subset of animals before (fasting) and after an enteral lipid bolus (post-lipid). RESULTS: ApoC3 ASO significantly reduced apoC3 mRNA expression in the liver compared with inactive ASO (fasting: 42%, P=0.0048; post-lipid: 66%, P<0.001) and in the duodenum (fasting: 29%, P=0.0424; post-lipid: 53%, P=0.0120). As expected, plasma triglyceride also decreased significantly (fasting: 74%, P<0.001; post-lipid: 33%, P=0.0276). Lymph flow and cumulative lymph volume remained unchanged following apoC3 ASO therapy; however, lymph triglyceride, but not apoB48 output, increased by 38% (ANOVA, P<0.001). Last, no changes were observed in stool triglyceride, intestinal fat (quantified via oil red O staining), and expression of mRNAs involved in triglyceride synthesis, lipid droplet formation, and chylomicron transport and secretion. CONCLUSIONS: Despite the marked reduction in plasma triglyceride concentration that occurs with apoC3 ASO inhibition, intestinal triglyceride output surprisingly increased rather than decreased. These data demonstrate that the reduction of intestinal triglyceride output does not contribute to the potent plasma triglyceride-lowering observed with this novel therapy for hypertriglyceridemia. Further studies are required to explore the mechanism of this intestinal effect.
Asunto(s)
Proteínas Portadoras , Oligonucleótidos Antisentido , Ratas , Animales , Apolipoproteína B-48 , Ratas Sprague-Dawley , Oligonucleótidos Antisentido/farmacología , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Triglicéridos , OligonucleótidosRESUMEN
Within the context of residual cardiovascular risk in post-statin era, emerging evidence from epidemiologic and human genetic studies have demonstrated that triglyceride (TG)-rich lipoproteins and their remnants are causally related to cardiovascular risk. While, carriers of loss-of-function mutations of ApoC3 have low TG levels and are protected from cardiovascular disease (CVD). Of translational significance, siRNAs/antisense oligonucleotide (ASO) targeting ApoC3 is beneficial for patients with atherosclerotic CVD. Therefore, animal models of atherosclerosis with both hypercholesterolemia and hypertriglyceridemia are important for the discovery of novel therapeutic strategies targeting TG-lowering on top of traditional cholesterol-lowering. In this study, we constructed a novel mouse model of familial combined hyperlipidemia through inserting a human ApoC3 transgene (hApoC3-Tg) into C57BL/6 J mice and injecting a gain-of-function variant of adeno-associated virus-proprotein convertase subtilisin/kexin type 9 (AAV-PCSK9)-D377Y concurrently with high cholesterol diet (HCD) feeding for 16 weeks. In the last 10 weeks, hApoC3-Tg mice were orally treated with a combination of atorvastatin (10 mg·kg-1·d-1) and fenofibrate (100 mg·kg-1·d-1). HCD-treated hApoC3-Tg mice demonstrated elevated levels of serum TG, total cholesterol (TC) and low density lipoprotein-cholesterol (LDL-C). Oral administration of atorvastatin and fenofibrate significantly decreased the plaque sizes of en face aorta, aortic sinus and innominate artery accompanied by improved lipid profile and distribution. In summary, this novel mouse model is of considerable clinical relevance for evaluation of anti-atherosclerotic drugs by targeting both hypercholesterolemia and hypertriglyceridemia.
Asunto(s)
Aterosclerosis , Modelos Animales de Enfermedad , Hiperlipidemia Familiar Combinada , Ratones Endogámicos C57BL , Ratones Transgénicos , Animales , Aterosclerosis/tratamiento farmacológico , Humanos , Ratones , Hiperlipidemia Familiar Combinada/tratamiento farmacológico , Hiperlipidemia Familiar Combinada/genética , Apolipoproteína C-III/genética , Masculino , Proproteína Convertasa 9/genética , Proproteína Convertasa 9/metabolismo , Hipolipemiantes/uso terapéutico , Hipolipemiantes/farmacología , Triglicéridos/sangre , Dieta Alta en Grasa , Atorvastatina/uso terapéutico , Atorvastatina/farmacologíaRESUMEN
Apolipoprotein C-III (ApoC-III) amyloidosis in humans is a hereditary amyloidosis caused by a D25V mutation in the APOC3 gene. This condition has only been reported in a French family and not in animals. We analyzed a 19-year-old white lion (Panthera leo) that died in a Japanese safari park and found renal amyloidosis characterized by severe deposition confined to the renal corticomedullary border zone. Mass spectrometry-based proteomic analysis identified ApoC-III as a major component of renal amyloid deposits. Amyloid deposits were also positive for ApoC-III by immunohistochemistry. Based on these results, this case was diagnosed as ApoC-III amyloidosis for the first time in nonhuman animals. Five additional white lions were also tested for amyloid deposition retrospectively. ApoC-III amyloid deposition was detected in 3 white lions aged 19 to 21 years but not in 2 cases aged 0.5 and 10 years. Genetic analysis of white and regular-colored lions revealed that the APOC3 sequences of the lions were identical, regardless of amyloid deposition. These results suggest that ApoC-III amyloidosis in lions, unlike in humans, may not be a hereditary condition but an age-related condition. Interestingly, lion ApoC-III has a Val30 substitution compared with other species of Panthera that have Met30. Structural predictions suggest that the conformation of ApoC-III with Met30 and ApoC-III with Val30 are almost identical, but this substitution may alter the ability to bind to lipids. As with the D25V mutation in human ApoC-III, the Val30 substitution in lions may increase the proportion of free ApoC-III, leading to amyloid formation.
Asunto(s)
Amiloidosis , Apolipoproteína C-III , Leones , Animales , Amiloidosis/veterinaria , Amiloidosis/patología , Amiloidosis/metabolismo , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Masculino , Femenino , Riñón/patología , Secuencia de Aminoácidos , Amiloide/metabolismo , Enfermedades Renales/veterinaria , Enfermedades Renales/patología , Inmunohistoquímica/veterinariaRESUMEN
Apolipoprotein-CIII (apo-CIII) inhibits the clearance of triglycerides from circulation and is associated with an increased risk of diabetes complications. It exists in four main proteoforms: O-glycosylated variants containing either zero, one, or two sialic acids and a non-glycosylated variant. O-glycosylation may affect the metabolic functions of apo-CIII. We investigated the associations of apo-CIII glycosylation in blood plasma, measured by mass spectrometry of the intact protein, and genetic variants with micro- and macrovascular complications (retinopathy, nephropathy, neuropathy, cardiovascular disease) of type 2 diabetes in a DiaGene study (n = 1571) and the Hoorn DCS cohort (n = 5409). Mono-sialylated apolipoprotein-CIII (apo-CIII1) was associated with a reduced risk of retinopathy (ß = -7.215, 95% CI -11.137 to -3.294) whereas disialylated apolipoprotein-CIII (apo-CIII2) was associated with an increased risk (ß = 5.309, 95% CI 2.279 to 8.339). A variant of the GALNT2-gene (rs4846913), previously linked to lower apo-CIII0a, was associated with a decreased prevalence of retinopathy (OR = 0.739, 95% CI 0.575 to 0.951). Higher apo-CIII1 levels were associated with neuropathy (ß = 7.706, 95% CI 2.317 to 13.095) and lower apo-CIII0a with macrovascular complications (ß = -9.195, 95% CI -15.847 to -2.543). In conclusion, apo-CIII glycosylation was associated with the prevalence of micro- and macrovascular complications of diabetes. Moreover, a variant in the GALNT2-gene was associated with apo-CIII glycosylation and retinopathy, suggesting a causal effect. The findings facilitate a molecular understanding of the pathophysiology of diabetes complications and warrant consideration of apo-CIII glycosylation as a potential target in the prevention of diabetes complications.
Asunto(s)
Apolipoproteína C-III , Diabetes Mellitus Tipo 2 , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/etiología , Retinopatía Diabética/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/etiología , Glicosilación , Polimorfismo de Nucleótido SimpleRESUMEN
Apolipoprotein not only have a role in cholesterol metabolism but also play a role in normal brain function. Apolipoprotein gene polymorphisms are known risk factors for a number of mental and neurological disorders. The expression of brain apolipoproteins is significantly altered in several brain disorders. Therefore, we assed ApoC33238 C/G polymorphism in a total of 248 patient infected with HIV (45 with HAND, 89 without HAND, 114 without ART) and 134 healthy controls using PCR-RFLP. ApoC3 3238CG, 3238 GG genotypes and 3238G allele showed a non-significant increased risk for severity of HAND (P = 0.16, OR = 1.83; P = 0.32, OR = 2.78; P = 0.10, OR = 1.65) while comparing individuals with and without HAND. ApoC3 3238 GG genotype and 3238G allele revealed an increased risk for disease progression when compared between HIV patients with and without ART (P = 0.55, OR = 1.76; P = 0.65, OR = 1.12) though risk could not reach statistical significance. ApoC3 3238 GG genotype and 3238G allele were associated with the reduced risk of acquiring HIV infection when comparing HIV patients who are not on ART with healthy controls (P = 0.05, OR = 0.29; P = 0.04, OR = 0.66). In HIV patients on ART,ApoC3 3238 GG genotype showed an increased susceptibility to development of HAND (P = 0.48, OR = 2.24) when comparing alcohol drinkers and non-drinkers however risk could not reach statistical significance. In conclusion, the genotype ApoC33238GG displayed an inclination of risk for the severity of HAND and HIV disease progression. The polymorphism of APOC3 3238C/G may have a role to reduce the risk for acquisition of HIV infection. ApoC33238GG genotype in presence of alcohol may increase susceptibility to development of HAND.
Asunto(s)
Infecciones por VIH , Humanos , Alcoholes , Apolipoproteína C-III/genética , Apolipoproteínas/genética , Progresión de la Enfermedad , Genotipo , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Trastornos Neurocognitivos/genética , Trastornos Neurocognitivos/complicaciones , Polimorfismo Genético , Polimorfismo de Nucleótido SimpleRESUMEN
PURPOSE OF REVIEW: The role of the inhibition of ANGPTL3 in severe or refractory hypercholesterolemia is well documented, less in severe hyperTG. This review focuses on the preclinical and clinical development of ApoC-III inhibitors and ANGPTL3, 4, and 3/8 complex inhibitors for the treatment of severe or refractory forms of hypertriglyceridemia to prevent cardiovascular disease or other morbidities. RECENT FINDINGS: APOC3 and ANGPTL3 became targets for drug development following the identification of naturally occurring loss of function variants in families with a favorable lipid profile and low cardiovascular risk. The inhibition of ANGPTL3 covers a broad spectrum of lipid disorders from severe hypercholesterolemia to severe hypertriglyceridemia, while the inhibition of ApoC-III can treat hypertriglyceridemia regardless of the severity. Preclinical and clinical data suggest that ApoC-III inhibitors, ANGPTL3 inhibitors, and inhibitors of the ANGPTL3/8 complex that is formed postprandially are highly effective for the treatment of severe or refractory hypertriglyceridemia. Inhibition of ANGPTL3 or the ANGPTL3/8 complex upregulates LPL and facilitates the hydrolysis and clearance of triglyceride-rich lipoproteins (TRL) (LPL-dependent mechanisms), whereas ApoC-III inhibitors contribute to the management and clearance of TRL through both LPL-dependent and LPL-independent mechanisms making it possible to successfully lower TG in subjects completely lacking LPL (familial chylomicronemia syndrome). Most of these agents are biologicals including monoclonal antibodies (mAb), antisense nucleotides (ASO), small interfering RNA (siRNA), or CRISPR-cas gene editing strategies.
Asunto(s)
Hipercolesterolemia , Hiperlipidemias , Hipertrigliceridemia , Humanos , Proteína 3 Similar a la Angiopoyetina , Apolipoproteína C-III/genética , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/metabolismo , Triglicéridos/metabolismoRESUMEN
PURPOSE OF REVIEW: To provide an insight into the new pharmacological options for the treatment of severe hypertriglyceridemia (sHTG). RECENT FINDINGS: sHTG is difficult to treat. The majority of the traditional pharmacological agents available have limited success in both robustly decreasing triglyceride levels and/or in reducing the incidence of acute pancreatitis (AP), the most severe complication of sHTG. Therapeutic options with novel mechanisms of action have been developed, such as antisense oligonucleotides (ASO) and small interfering RNA (siRNA) targeting APOC3 and ANGPTL3. The review discusses also 2 abandoned drugs for sHTG treatment, evinacumab and vupanorsen. The ASO targeting APOC3, volanesorsen, is approved for use in patients with familial chylomicronemia syndrome (FCS) in Europe. Olezarsen, an N-acetylgalactosamine (GalNAc)-conjugated ASO with the same target, seems to have a better safety and efficacy profile. siRNA targeting APOC3 and ANGPTL3, namely ARO-APOC3 and ARO-ANG3, are also promising for the treatment of sHTG. However, the ultimate clinical goal of any sHTG treatment, the decrease in the risk of AP, has not been definitively achieved till now by any pharmacotherapy, either approved or in development.
Asunto(s)
Hipertrigliceridemia , Pancreatitis , Humanos , Enfermedad Aguda , Pancreatitis/tratamiento farmacológico , Triglicéridos , Oligonucleótidos Antisentido/uso terapéutico , Hipertrigliceridemia/tratamiento farmacológico , Hipertrigliceridemia/genética , Apolipoproteína C-III/genética , ARN Interferente Pequeño/uso terapéutico , Proteína 3 Similar a la AngiopoyetinaRESUMEN
A major goal of biomedicine is to understand the function of every gene in the human genome. Loss-of-function mutations can disrupt both copies of a given gene in humans and phenotypic analysis of such 'human knockouts' can provide insight into gene function. Consanguineous unions are more likely to result in offspring carrying homozygous loss-of-function mutations. In Pakistan, consanguinity rates are notably high. Here we sequence the protein-coding regions of 10,503 adult participants in the Pakistan Risk of Myocardial Infarction Study (PROMIS), designed to understand the determinants of cardiometabolic diseases in individuals from South Asia. We identified individuals carrying homozygous predicted loss-of-function (pLoF) mutations, and performed phenotypic analysis involving more than 200 biochemical and disease traits. We enumerated 49,138 rare (<1% minor allele frequency) pLoF mutations. These pLoF mutations are estimated to knock out 1,317 genes, each in at least one participant. Homozygosity for pLoF mutations at PLA2G7 was associated with absent enzymatic activity of soluble lipoprotein-associated phospholipase A2; at CYP2F1, with higher plasma interleukin-8 concentrations; at TREH, with lower concentrations of apoB-containing lipoprotein subfractions; at either A3GALT2 or NRG4, with markedly reduced plasma insulin C-peptide concentrations; and at SLC9A3R1, with mediators of calcium and phosphate signalling. Heterozygous deficiency of APOC3 has been shown to protect against coronary heart disease; we identified APOC3 homozygous pLoF carriers in our cohort. We recruited these human knockouts and challenged them with an oral fat load. Compared with family members lacking the mutation, individuals with APOC3 knocked out displayed marked blunting of the usual post-prandial rise in plasma triglycerides. Overall, these observations provide a roadmap for a 'human knockout project', a systematic effort to understand the phenotypic consequences of complete disruption of genes in humans.
Asunto(s)
Consanguinidad , Análisis Mutacional de ADN , Eliminación de Gen , Genes/genética , Estudios de Asociación Genética/métodos , Homocigoto , Fenotipo , 1-Alquil-2-acetilglicerofosfocolina Esterasa/deficiencia , 1-Alquil-2-acetilglicerofosfocolina Esterasa/genética , Apolipoproteína C-III/deficiencia , Apolipoproteína C-III/genética , Estudios de Cohortes , Enfermedad Coronaria/sangre , Enfermedad Coronaria/genética , Familia 2 del Citocromo P450/genética , Grasas de la Dieta/farmacología , Exoma/genética , Ayuno/sangre , Femenino , Frecuencia de los Genes , Humanos , Interleucina-8/sangre , Masculino , Persona de Mediana Edad , Infarto del Miocardio/sangre , Infarto del Miocardio/genética , Neurregulinas/genética , Pakistán , Linaje , Fosfoproteínas/genética , Periodo Posprandial , Sitios de Empalme de ARN/genética , Genética Inversa/métodos , Intercambiadores de Sodio-Hidrógeno/genética , Triglicéridos/sangreRESUMEN
BACKGROUND: Both estrogen and apolipoprotein C3 (ApoC3) play crucial roles in lipid metabolism. But the link between them remains unclear, and it is unknown whether estrogen regulates triglyceride (TG) levels via ApoC3. Researchers hypothesized that estrogen exerts a regulatory effect on ApoC3 metabolism, and that this regulation could play a significant role in lipid metabolism. To explore this potential link, the present investigation aimed to examine the associations between estradiol (E2), ApoC3, and TG levels in both males and females. METHODS: A total of 519 obese people (133 males and 386 premenopausal females) were recruited. Based on their TG levels, the participants were split into two groups [hypertriglyceridemia (HTG) group: TG ≥ 1.7 mmol/L; control group: TG < 1.7 mmol/L]. Serum ApoC3, E2, and TG levels were measured and compared in those two groups for both sexes separately. To ascertain the connection among E2, ApoC3, and TG, linear regression and mediation analysis were used. RESULTS: Participants in the HTG group presented higher levels of ApoC3 (P < 0.001). In contrast, they tend to have lower E2 levels than the control. Linear regression analysis proposed that in both sexes, E2 was negatively associated with ApoC3 levels. The relationship remained significant after adjustment for confounding factors (male: standardized ß = -0.144, t = -2.392, P < 0.05; female: standardized ß = -0.077, t = -2.360, P < 0.001). Furthermore, mediation analysis revealed the relationship between reduced E2 levels and elevated TG levels is directly mediated by ApoC3. CONCLUSIONS: In obese men and premenopausal women, ApoC3 was negatively and linearly correlated with serum E2 levels. The findings showed that estrogen may suppress ApoC3 expression and thus lower TG levels.
Asunto(s)
Apolipoproteína C-III , Estrógenos , Hipertrigliceridemia , Obesidad , Adulto , Femenino , Humanos , Masculino , Apolipoproteína C-III/genética , Estradiol , Hipertrigliceridemia/tratamiento farmacológicoRESUMEN
Apolipoprotein-CIII (apo-CIII) is involved in triglyceride-rich lipoprotein metabolism and linked to beta-cell damage, insulin resistance, and cardiovascular disease. Apo-CIII exists in four main proteoforms: non-glycosylated (apo-CIII0a), and glycosylated apo-CIII with zero, one, or two sialic acids (apo-CIII0c, apo-CIII1 and apo-CIII2). Our objective is to determine how apo-CIII glycosylation affects lipid traits and type 2 diabetes prevalence, and to investigate the genetic basis of these relations with a genome-wide association study (GWAS) on apo-CIII glycosylation. We conducted GWAS on the four apo-CIII proteoforms in the DiaGene study in people with and without type 2 diabetes (n = 2318). We investigated the relations of the identified genetic loci and apo-CIII glycosylation with lipids and type 2 diabetes. The associations of the genetic variants with lipids were replicated in the Diabetes Care System (n = 5409). Rs4846913-A, in the GALNT2-gene, was associated with decreased apo-CIII0a. This variant was associated with increased high-density lipoprotein cholesterol and decreased triglycerides, while high apo-CIII0a was associated with raised high-density lipoprotein-cholesterol and triglycerides. Rs67086575-G, located in the IFT172-gene, was associated with decreased apo-CIII2 and with hypertriglyceridemia. In line, apo-CIII2 was associated with low triglycerides. On a genome-wide scale, we confirmed that the GALNT2-gene plays a major role i O-glycosylation of apolipoprotein-CIII, with subsequent associations with lipid parameters. We newly identified the IFT172/NRBP1 region, in the literature previously associated with hypertriglyceridemia, as involved in apolipoprotein-CIII sialylation and hypertriglyceridemia. These results link genomics, glycosylation, and lipid metabolism, and represent a key step towards unravelling the importance of O-glycosylation in health and disease.
Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipertrigliceridemia , Humanos , Apolipoproteína C-III/genética , Apolipoproteínas C/genética , Diabetes Mellitus Tipo 2/genética , Glicosilación , Estudio de Asociación del Genoma Completo , Triglicéridos , HDL-Colesterol , Receptores Citoplasmáticos y Nucleares/genética , Proteínas de Transporte Vesicular/genética , Proteínas del Citoesqueleto/genética , Proteínas Adaptadoras Transductoras de Señales/genéticaRESUMEN
As a member of the apolipoprotein C (ApoC) family with a relatively high content, ApoC3 plays a major role in the regulation of triglyceride metabolism, and plays an important role in the occurrence and development of cardiovascular diseases, glucose and lipid metabolism disorders. Nonalcoholic fatty liver disease (NAFLD) refers to the accumulation of a large amount of fat in the liver in the absence of a history of chronic alcohol consumption or other damage to the liver. A large number of previous studies have shown that there is a correlation between the gene polymorphism and high expression of ApoC3 and NAFLD. In the context of hypertriglyceridemia (HTG), this article reviews the relationship between ApoC3 and NAFLD, glucose and lipid metabolism, and islet ß cell function, showing that ApoC3 can not only inhibit lipoprotein lipase (LPL) and hepatic lipase (HL) activity, delay the decomposition of triglyceride in plasma to maintain the body's energy metabolism during fasting, but also be significantly increased under insulin resistance, prompting the liver to secrete a large amount of very low-density lipoprotein (VLDL) to induce HTG. Therefore, targeting and inhibiting ApoC3 might become a new approach to treat HTG. Increasing evidence suggests that ApoC3 does not appear to be an independent "contributor" to NAFLD. Similarly, our previous studies have shown that ApoC3 is not an independent factor triggering islet ß cell dysfunction in ApoC3 transgenic mice, but in a state of excess nutrition, HTG triggered by ApoC3 high expression may exacerbate the effects of hyperglycemia and insulin resistance on islet ß cell function, and the underlying mechanism remains to be further discussed.
Asunto(s)
Apolipoproteína C-III , Glucosa , Islotes Pancreáticos , Metabolismo de los Lípidos , Enfermedad del Hígado Graso no Alcohólico , Apolipoproteína C-III/antagonistas & inhibidores , Apolipoproteína C-III/genética , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Glucosa/metabolismo , Humanos , Animales , Hipertrigliceridemia/metabolismo , Islotes Pancreáticos/metabolismoRESUMEN
BACKGROUND: Familial combined hypolipidaemia is a condition characterised by very low concentrations of circulating very-low-density lipoprotein (VLDL), low-density lipoprotein cholesterol (LDL), and high-density lipoprotein cholesterol (HDL). It is thought that low LDL/combined hypolipidaemia can protect from cardiovascular disease (CVD), but this is not what we found in a case we present. OBJECTIVE: We report on a 57-years-old male patient with combined hypolipidaemia who presented with premature peripheral vascular disease. We investigated also his two sons, 32- and 27-years-old, who manifested a tendency to low lipid levels. METHODS AND RESULTS: We used Illumina exome analysis in all three individuals and in all of them we could exclude the major effect of the variants within the genes most frequently mutated in hypolipidaemia, including recently reported LIPC gene variant. Instead, in all three individuals we identified a novel ABCA1 variant, possibly responsible for the decreased HDL levels. The proband and one of his sons also share the splicing APOC3 variant rs138326449, known to be associated with decreased TG levels. CONCLUSION: The heterogeneous nature and the risk of atherosclerosis in combined hypolipidaemia seems to be variable, based on an interplay between low HDL and LDL levels, and it depends on the combination of variants that cause it (Tab. 2, Ref. 38).
Asunto(s)
Proteínas Portadoras , Enfermedades Vasculares Periféricas , Humanos , Masculino , Persona de Mediana Edad , Apolipoproteína C-III/genética , Transportador 1 de Casete de Unión a ATP , HDL-Colesterol , LDL-Colesterol/metabolismo , AdultoRESUMEN
Objective: To investigate the apolipoprotein C-3 (APOC3) gene Sst â polymorphism and its relationship with changes in serum lipids in patients with gestational diabetes mellitus (GDM). Methods: A total of 630 pregnant women with GDM and 1027 normal pregnant controls were covered in the study. The genotype and allele frequencies of APOC3 Sst â polymorphism were analyzed by polymerase chain reaction and restriction fragment length polymorphism (PCR-RFLP). Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), and glucose (Glu) were measured by enzymatic methods. Plasma insulin (INS) was measured by chemiluminescence. Apolipoproteins A 1 (apoA1) and B (apoB) levels were measured by turbidimetric immunoassay. Results: The allele frequencies of S1 and S2 of the APOC3 polymorphism at the Sstâ locus were 0.704 and 0.296 in the GDM group and 0.721 and 0.279 in the control group, respectively. There was no significant difference in genotype frequency and allele frequency of APOC3 Sst â polymorphism between the GDM and the control groups ( P>0.05). In the GDM group, those with S2S2 and S1S2 genotypes had higher plasma HDL-C levels and lower atherogenic index (AI) values than those with S1S1 genotype did, with the differences being statistically significant (all P<0.05). GDM patients were then divided into obesity and non-obesity subgroups. Further subgroup analysis showed that the association of APOC3 genotype with changes in HDL-C levels was observed only in obese GDM patients, while the association of APOC3 genotype with changes in AI values was observed in both obese and nonobese patients. In addition, in obese GDM patients, those with S2S2 genotype had significantly higher plasma TG levels than those with S1S1 and S1S2 genotypes did ( P<0.05 and P<0.01, respectively). In non-obese GDM patients, those with S2S2 genotype had significantly lower apoB/apoA1 ratio than S2S2 carriers did ( P<0.05). No genotype-related effect on lipid and apolipoprotein variations was evident in the normal controls. Conclusion: APOC3 Sst â polymorphism in GDM patients is associated with HDL-C and TG levels as well as AI value and apoB/apoA1 ratio. The changes in lipid levels and apolipoprotein ratio showed BMI-dependent features. However, association between polymorphism at the locus and the development of GDM was not observed.
Asunto(s)
Diabetes Gestacional , Femenino , Humanos , Embarazo , Apolipoproteína A-I/genética , Apolipoproteína C-III/genética , Apolipoproteínas B/genética , Apolipoproteínas C/genética , HDL-Colesterol , Diabetes Gestacional/genética , Frecuencia de los Genes , Genotipo , Obesidad/genética , TriglicéridosRESUMEN
OBJECTIVE: To investigate the impact of single nucleotide polymorphisms (SNPs) from APOA5, APOC3, CETP, ATP binding cassette transporter A1 and SIK3 genes in the development of hypertriglyceridemia in HIV patients under antiretroviral therapy. MATERIAL AND METHODS: A case-control study was developed. Leukocytic genomic DNA was extracted and genotyping for SNPs rs662799, rs964184, rs5128, rs2854116, rs2854117, rs3764261, rs4149310, rs4149267 and rs139961185 was performed by real time-PCR using TaqMan allelic discrimination assays, in Mexican mestizo patients with HIV infection, with hypertriglyceridemia (>1.7 mmol/L) under antiretroviral therapy. Genetic variants were also investigated in a control group of normolipidemic HIV patients (≤ 1.7 mmol/L). Haplotypes and gene interactions were analyzed. RESULTS: A total of 602 HIV patients were genotyped (316 cases and 286 controls). Age and antiretroviral regimen based on protease inhibitors were associated with hypertriglyceridemia (P = 0.0001 and P = 0.0002. respectively). SNP rs964184 GG genotype in APOA5 gene exhibited the highest association with hypertriglyceridemia risk (OR, 3.2, 95% CI, 1.7-5.8, P = 0.0001); followed by SNP rs139961185 in SIK3 gene (OR = 2.3; (95% CI, 1.1-4.8; P = 0.03 for AA vs. AG genotype; and APOC3 rs5128 GG genotype, (OR, 2.2; 95% CI, 1.1-4.9; P = 0.04) under codominant models. These associations were maintained in the adjusted analysis by age and protease inhibitors based antiretroviral regimens. CONCLUSIONS: This study reveals an association between rs964184 in APOA5; rs5128 in APOC3 and rs139961185 in SIK3 and high triglyceride concentrations in Mexican HIV-patients receiving protease inhibitors. These genetic factors may influence the adverse effects related to antiretroviral therapy.
Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Hipertrigliceridemia , Transportador 1 de Casete de Unión a ATP/genética , Fármacos Anti-VIH/efectos adversos , Fármacos Anti-VIH/uso terapéutico , Apolipoproteína A-V/genética , Apolipoproteína C-III/genética , Estudios de Casos y Controles , Proteínas de Transferencia de Ésteres de Colesterol/genética , Genotipo , Infecciones por VIH/complicaciones , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/genética , México , Polimorfismo de Nucleótido Simple , Proteínas Quinasas , TriglicéridosRESUMEN
BACKGROUND: Familial chylomicronemia syndrome is a rare genetic disorder that is caused by loss of lipoprotein lipase activity and characterized by chylomicronemia and recurrent episodes of pancreatitis. There are no effective therapies. In an open-label study of three patients with this syndrome, antisense-mediated inhibition of hepatic APOC3 mRNA with volanesorsen led to decreased plasma apolipoprotein C-III and triglyceride levels. METHODS: We conducted a phase 3, double-blind, randomized 52-week trial to evaluate the safety and effectiveness of volanesorsen in 66 patients with familial chylomicronemia syndrome. Patients were randomly assigned, in a 1:1 ratio, to receive volanesorsen or placebo. The primary end point was the percentage change in fasting triglyceride levels from baseline to 3 months. RESULTS: Patients receiving volanesorsen had a decrease in mean plasma apolipoprotein C-III levels from baseline of 25.7 mg per deciliter, corresponding to an 84% decrease at 3 months, whereas patients receiving placebo had an increase in mean plasma apolipoprotein C-III levels from baseline of 1.9 mg per deciliter, corresponding to a 6.1% increase (P<0.001). Patients receiving volanesorsen had a 77% decrease in mean triglyceride levels, corresponding to a mean decrease of 1712 mg per deciliter (19.3 mmol per liter) (95% confidence interval [CI], 1330 to 2094 mg per deciliter [15.0 to 23.6 mmol per liter]), whereas patients receiving placebo had an 18% increase in mean triglyceride levels, corresponding to an increase of 92.0 mg per deciliter (1.0 mmol per liter) (95% CI, -301.0 to 486 mg per deciliter [-3.4 to 5.5 mmol per liter]) (P<0.001). At 3 months, 77% of the patients in the volanesorsen group, as compared with 10% of patients in the placebo group, had triglyceride levels of less than 750 mg per deciliter (8.5 mmol per liter). A total of 20 of 33 patients who received volanesorsen had injection-site reactions, whereas none of the patients who received placebo had such reactions. No patients in the placebo group had platelet counts below 100,000 per microliter, whereas 15 of 33 patients in the volanesorsen group had such levels, including 2 who had levels below 25,000 per microliter. No patient had platelet counts below 50,000 per microliter after enhanced platelet-monitoring began. CONCLUSIONS: Volanesorsen lowered triglyceride levels to less than 750 mg per deciliter in 77% of patients with familial chylomicronemia syndrome. Thrombocytopenia and injection-site reactions were common adverse events. (Funded by Ionis Pharmaceuticals and Akcea Therapeutics; APPROACH Clinical Trials.gov number, NCT02211209.).