RESUMEN
Vibrio parahaemolyticus (V. parahaemolyticus) is a major bacterial pathogen found in brackish environments, leading to disease outbreaks and great economic losses in the mud crab industry. This study investigated the molecular mechanism of V. parahaemolyticus infecting mud crabs through genome sequencing analysis, survival experiments, and the expression patterns of related functional genes. A strain of V. parahaemolyticus with high pathogenicity and lethality was isolated from diseased mud crab in South China. The genome sequencing results showed that the genome size of V. parahaemolyticus was a circular chromosome of 3,357,271 bp, with a GC content of 45 %, containing 2985 protein-coding genes, denoted as V. parahaemolyticus LG2206. Genome analysis data revealed that a total of 113 adherence coding genes were obtained, including 120 virulence factor coding genes, 37 type III secretion system (T3SS) coding genes, and 277 sequences of T3SS effectors. Survival experiments showed that the mortality was 20 % within 96 h in the 1 × 104 CFU/mL infection group, 90 % in the 3.2 × 105 CFU/mL treatment group, and 100 % in the 1 × 106 CFU/mL treatment group. The LD50 of V. parahaemolyticus LG2206 was determined as 4.6 × 104 CFU/mL. Six genes of znuA and fliD (flagellin encoding genes), yscE and yscR (T3SS encoding genes), and nfuA and htpX (virulence factor encoding genes) were selected and validated by quantitative real-time PCR analysis after infection with 4.6 × 104 CFU/mL of V. parahaemolyticus LG2206 for 96 h. The expression of the six genes exhibited a significant up-regulation trend at all tested time points. The results indicated that the infestation-related genes screened in the experiment play important roles in the infestation process. This study provides timely and effective information to further analyze the molecular mechanism of V. parahaemolyticus infection and develop comprehensive measures for disease prevention and control.
Asunto(s)
Braquiuros , Hepatopáncreas , Vibrio parahaemolyticus , Vibrio parahaemolyticus/fisiología , Animales , Braquiuros/microbiología , Braquiuros/genética , Braquiuros/inmunología , Hepatopáncreas/microbiología , China , Genoma BacterianoRESUMEN
LRR-only protein (LRRop) is an important class of immune molecules that function as pattern recognition receptor in invertebrates, however, the bacterial inhibitory activity of this proteins remain largely unknown. Herein, a novel LRRop was cloned from Eriocheir sinensis and named as EsLRRop2. The EsLRRop2 consists of six LRR motifs and formed a horseshoe shape three-dimension structure. EsLRRop2 was mainly expressed in intestine and hepatopancreas. The transcripts of EsLRRop2 in the intestine and hepatopancreas were induced by Vibrio parahaemolyticus and Staphylococcus aureus, and displayed similar transcriptional profiles. The expression levels of EsLRRop2 responded more rapidly and highly to V. parahaemolyticus than S. aureus in the intestine and hepatopancreas. Although the basal expression level of EsLRRop2 in hemocytes was relatively low, its transcripts in hemocytes were significantly induced by V. parahaemolyticus and S. aureus. The recombinant proteins of EsLRRop2 (rEsLRRop2) displayed a wide range of binding spectrum against vibrios, including V. parahaemolyticus, V. alginolyticus, and V. harveryi. The rEsLRRop2 showed dose- and time-dependent inhibitory activity against V. parahaemolyticus and S. aureus, and it could agglutinate the two bacteria. Furthermore, the inhibitory activities of rEsLRRop2 against V. parahaemolyticus, V. alginolyticus, V. harveryi and S. aureus was slightly affected by pH and salinity, and the rEsLRRop2 displayed the strongest inhibitory activity against all the three vibrios when the salinity was 20 and pH was 8.0. Collectively, these results elucidate the bacterial binding and inhibitory activities of EsLRRop2, and provide theoretical foundations for the application of rEsLRRop2 in prevention and control of vibrio diseases in aquaculture.
Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Braquiuros , Filogenia , Staphylococcus aureus , Vibrio parahaemolyticus , Braquiuros/inmunología , Braquiuros/genética , Animales , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Vibrio parahaemolyticus/fisiología , Staphylococcus aureus/fisiología , Inmunidad Innata/genética , Alineación de Secuencia/veterinaria , Regulación de la Expresión Génica/inmunología , Perfilación de la Expresión Génica/veterinaria , Vibrio/fisiología , Secuencia de BasesRESUMEN
In arthropods, the involvement of Dscam (Down syndrome cell adhesion molecule) in innate immunity has been extensively demonstrated. Its cytoplasmic tail contains multiple conserved functional sites, which indicates its involvement in different intracellular signaling pathways. In this study, we focused on the role of the cytoplasmic tail of Dscam in the Chinese mitten crab (Eriocheir sinensis) immune defense. In the group with cytoplasmic tail knockdown (the site was located on constant exons 37 and 38), 3885 differentially expressed genes (DEGs) were identified. The DEGs were enriched in small molecule binding, protein-containing complex binding, and immunity-related pathways. The expression of selected genes were validated using quantitative real-time reverse transcription PCR. We identified key Cell cycle, Janus kinase (JAK)-signal transducer, activator of transcription (STAT) and mitogen-activated protein kinase (MAPK) signaling pathway genes, the results indicated that the cytoplasmic tail of Dscam controls antibacterial responses by regulating cell proliferation-related genes in hemocytes.
Asunto(s)
Proteínas de Artrópodos , Braquiuros , Hemocitos , Inmunidad Innata , Animales , Braquiuros/genética , Braquiuros/inmunología , Hemocitos/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/inmunología , Regulación de la Expresión Génica/inmunología , Proliferación CelularRESUMEN
Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.
Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Braquiuros , Regulación de la Expresión Génica , Inmunidad Innata , Filogenia , Receptores de Laminina , Alineación de Secuencia , Animales , Braquiuros/genética , Braquiuros/inmunología , Receptores de Laminina/genética , Receptores de Laminina/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Secuencia de BasesRESUMEN
Cuticle proteins (CPs) are the vital components of the cuticle and chitin lining covering the digestive tract of crustaceans. In this study, four new CP genes (designated as EsCP3, EsCP4, EsCP5, and EsCP8) were initially cloned and identified from the Chinese mitten crab Eriocheir sinensis. EsCP3/4/5/8 included 375, 411, 381, and 570 bp open reading frame encoding 124, 136, 126, and 189 amino acid proteins, respectively. Except for EsCP8, EsCP3/4/5 all contained a Chitin_bind_4 domain. EsCP3/4/5/8 were clustered into different groups in the phylogenetic tree. Quantitative real-time PCR results indicated that four EsCP genes have different patterns of tissue distribution. Changes in the expression levels of these four EsCP genes were observed in the intestine of crabs under Vibrio parahaemolyticus challenge. RNA interference assay showed that the knockdown of EsCPs in the intestine could inhibit the expression of antimicrobial peptides (AMPs), including crustins and anti-lipopolysaccharide factors. In addition, the knockdown of EsRelish in the intestine decreased the expression levels of these four EsCP genes. These results indicated that EsCPs were involved in regulating the expression of AMPs, and EsCPs were regulated by EsRelish.
Asunto(s)
Proteínas de Artrópodos , Braquiuros , Regulación de la Expresión Génica , Vibrio parahaemolyticus , Animales , Secuencia de Aminoácidos , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Secuencia de Bases , Braquiuros/genética , Braquiuros/inmunología , Braquiuros/microbiología , Clonación Molecular , ADN Complementario/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Filogenia , Alineación de Secuencia/veterinaria , Vibrio parahaemolyticus/fisiologíaRESUMEN
As a crucial member of pattern-recognition receptors (PRRs), the Tolls/Toll-like receptors (TLRs) gene family has been proven to be involved in innate immunity in crustaceans. In this study, nine members of TLR gene family were identified from the mud crab (Scylla paramamosain) transcriptome, and the structure and phylogeny of different SpTLRs were analyzed. It was found that different SpTLRs possessed three conserved structures in the TIR domain. Meanwhile, the expression patterns of different Sptlr genes in examined tissues detected by qRT-PCR had wide differences. Compared with other Sptlr genes, Sptlr-6 gene was significantly highly expressed in the hepatopancreas and less expressed in other tissues. Therefore, the function of Sptlr-6 was further investigated. The expression of the Sptlr-6 gene was up-regulated by Poly I: C, PGN stimulation and Vibrio parahaemolyticus infection. In addition, the silencing of Sptlr-6 in hepatopancreas mediated by RNAi technology resulted in the significant decrease of several conserved genes involved in innate immunity in mud crab after V. parahaemolyticus infection, including relish, myd88, dorsal, anti-lipopolysaccharide factor (ALF), anti-lipopolysaccharide factor 2 (ALF-2) and glycine-rich antimicrobial peptide (glyamp). This study provided new knowledge for the role of the Sptlr-6 gene in defense against V. parahaemolyticus infection in S. paramamosain.
Asunto(s)
Proteínas de Artrópodos , Braquiuros , Inmunidad Innata , Filogenia , Receptores Toll-Like , Vibrio parahaemolyticus , Animales , Braquiuros/inmunología , Braquiuros/genética , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología , Receptores Toll-Like/química , Vibrio parahaemolyticus/fisiología , Regulación de la Expresión Génica/inmunología , Secuencia de Aminoácidos , Alineación de Secuencia , Perfilación de la Expresión Génica , Poli I-C/farmacologíaRESUMEN
This experiment was conducted to explore the effects of dietary vitamin C supplementation on non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab (Scylla paramamosain). Mud crabs with an initial weight of 14.67 ± 0.13 g were randomly divided into 6 treatments and fed diets with 0.86 (control), 44.79, 98.45, 133.94, 186.36 and 364.28 mg/kg vitamin C, respectively. The experiment consisted of 6 treatments, each treatment was designed with 4 replicates and each replicate was stocked with 8 crabs. After 42 days of feeding experiment, 2 crabs were randomly selected from each replicate, and a total of 8 crabs in each treatment were carried out 72 h low-temperature challenge experiment. The results showed that crabs fed diets with 186.36 and 364.28 mg/kg vitamin C significantly improved the activities of alkaline phosphatase (AKP) and acid phosphatase (ACP) in hemolymph and hepatopancreas (P < 0.05). Crabs fed diet with 133.94 mg/kg vitamin C significantly decreased the concentration of nitric oxide (NO) and the activity of nitric oxide synthase (NOS) in hemolymph (P < 0.05). Diet with 133.94 mg/kg vitamin C was improved the activity of polyphenol oxidase (PPO) and the concentration of albumin (ALB) in hemolymph. Crabs fed diet with 133.94 mg/kg vitamin C showed lower concentration of malondialdehyde (MDA) in hemolymph and hepatopancreas than those fed the other diets. Meanwhile, crabs fed diet with 98.45 mg/kg vitamin C showed higher activity of total superoxide dismutase (T-SOD) in hemolymph, and crabs fed diet with 133.94 mg/kg vitamin C showed higher activity of T-SOD in hepatopancreas. Crabs fed diet with 186.36 mg/kg vitamin C significantly decreased the concentration of reduced glutathione (GSH) and the activity of glutathione peroxidase (GSH-PX) in hepatopancreas (P < 0.05). In normal temperature, crabs fed diets with 133.94 mg/kg vitamin C significantly up-regulated the expression levels of gpx (glutathione peroxidase) and trx (thioredoxin) in hepatopancreas compared with the control treatment (P < 0.05). The highest expression levels of relish, il16 (interleukin 16), caspase 2 (caspase 2), p38 mapk (p38 mitogen-activated protein kinases) and bax (bcl-2 associated x protein) in hepatopancreas were found at crabs fed control diet (P < 0.05). Moreover, crabs fed diet with 133.94 mg/kg vitamin C showed higher expression levels of alf-3 (anti-lipopolysaccharide factor 3) and bcl-2 (B-cell lymphoma 2) in hepatopancreas than those fed the other diets (P < 0.05). Under low-temperature stress, crabs fed diet with 133.94 mg/kg vitamin C significantly improved the expression levels of hsp90 (heat shock protein 90), cat (catalase), gpx, prx (thioredoxin peroxidase) and trx in hepatopancreas (P < 0.05). In addition, dietary with 133.94 vitamin C significantly up-regulated the expression levels of alf-3 and bcl-2 (P < 0.05). Based on two slope broken-line regression analysis of activity of PPO against the dietary vitamin C level, the optimal dietary vitamin C requirement was estimated to be 144.81 mg/kg for juvenile mud crab. In conclusion, dietary 133.94-144.81 mg/kg vitamin C significantly improved the non-specific immune defense, antioxidant capacity and resistance to low-temperature stress of juvenile mud crab.
Asunto(s)
Alimentación Animal , Antioxidantes , Ácido Ascórbico , Braquiuros , Frío , Dieta , Suplementos Dietéticos , Inmunidad Innata , Animales , Braquiuros/inmunología , Braquiuros/efectos de los fármacos , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/farmacología , Alimentación Animal/análisis , Dieta/veterinaria , Inmunidad Innata/efectos de los fármacos , Suplementos Dietéticos/análisis , Antioxidantes/metabolismo , Distribución Aleatoria , Estrés Fisiológico/efectos de los fármacos , Relación Dosis-Respuesta a DrogaRESUMEN
Lauric acid (LA), a saturated fatty acid with 12 carbon atoms, is widely regarded as a healthy fatty acid that plays an important role in disease resistance and improving immune physiological function. The objective of this study was to determine the effects of dietary lauric acid on the growth performance, antioxidant capacity, non-specific immunity and intestinal microbiology, and evaluate the potential of lauric acids an environmentally friendly additive in swimming crab (Portunus trituberculatus) culture. A total of 192 swimming crabs with an initial body weight of 11.68 ± 0.02 g were fed six different dietary lauric acid levels, the analytical values of lauric acid were 0.09, 0.44, 0.80, 1.00, 1.53, 2.91 mg/g, respectively. There were four replicates per treatment and 8 juvenile swimming crabs per replicate. The results indicated that final weight, percent weight gain, specific growth rate, survival and feed intake were not significantly affected by dietary lauric acid levels; however, crabs fed diets with 0.80 and 1.00 mg/g lauric acid showed the lowest feed efficiency among all treatments. Proximate composition in hepatopancreas and muscle were not significantly affected by dietary lauric acid levels. The highest activities of amylase and lipase in hepatopancreas and intestine were found at crabs fed diet with 0.80 mg/g lauric acid (P < 0.05), the activity of carnitine palmityl transferase (CPT) in hepatopancreas and intestine significantly decreased with dietary lauric acid levels increasing from 0.09 to 2.91 mg/g (P < 0.05). The lowest concentration of glucose and total protein and the activity of alkaline phosphatase in hemolymph were observed at crabs fed diets with 0.80 and 1.00 mg/g lauric acid among all treatments. The activity of GSH-Px in hepatopancreas significantly increased with dietary lauric acid increasing from 0.09 to 1.53 mg/g, MDA in hepatopancreas and hemolymph was not significantly influenced by dietary lauric acid levels. The highest expression of cat and gpx in hepatopancreas were exhibited in crabs fed diet with 1.00 mg/g lauric acid, however, the expression of genes related to the inflammatory signaling pathway (relish, myd88, traf6, nf-κB) were up-regulated in the hepatopancreas with dietary lauric acid levels increasing from 0.09 to 1.00 mg/g, moreover, the expression of genes related to intestinal inflammatory, immune and antioxidant were significantly affected by dietary lauric acid levels (P < 0.05). Crabs fed diet without lauric acid supplementation exhibited higher lipid drop area in hepatopancreas than those fed the other diets (P < 0.05). The expression of genes related to lipid catabolism was up-regulated, however, and the expression of genes related to lipid synthesis was down-regulated in the hepatopancreas of crabs fed with 0.80 mg/g lauric acid. Lauric acid improved hepatic tubular integrity, and enhanced intestinal barrier function by increasing peritrophic membrane (PM) thickness and upregulating the expression of structural factors (per44, zo-1) and intestinal immunity-related genes. In addition, dietary 1.00 mg/g lauric acid significantly improved the microbiota composition of the intestinal, increased the abundance of Actinobacteria and Rhodobacteraceae, and decreased the abundance of Vibrio, thus maintaining the microbiota balance of the intestine. The correlation analysis showed that there was a relationship between intestinal microbiota and immune-antioxidant function. In conclusion, the dietary 1.00 mg/g lauric acid is beneficial to improve the antioxidant capacity and intestinal health of swimming crab.
Asunto(s)
Alimentación Animal , Antioxidantes , Braquiuros , Dieta , Suplementos Dietéticos , Microbioma Gastrointestinal , Ácidos Láuricos , Animales , Braquiuros/inmunología , Braquiuros/efectos de los fármacos , Braquiuros/crecimiento & desarrollo , Braquiuros/microbiología , Ácidos Láuricos/farmacología , Ácidos Láuricos/administración & dosificación , Alimentación Animal/análisis , Antioxidantes/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Microbioma Gastrointestinal/efectos de los fármacos , Inmunidad Innata/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/inmunología , Distribución Aleatoria , Relación Dosis-Respuesta a DrogaRESUMEN
The present investigation aims to substantiate that serum from the hemolymph of anomuran crab Albunea symmysta encompasses multiple immunological reactions in in vitro condition. The serum highly agglutinated human O erythrocytes in the presence of Ba2+. Distinct and unique sugar binding capacity of serum towards laminarin, N-acetyl sugars and higher binding specificity towards a glycoprotein, fetuin was inferred. In vitro enhancement of melanin synthesis due to enhanced oxidation of 3, 4-dihydroxy-dl-phenylalanine (dl-DOPA) by preincubation of nonself molecules with serum phenoloxidase (PO) was documented. Similarly, dl-DOPA oxidation by serum PO was reduced when preincubated with chemical inhibitors and copper chelators. Further, the crab serum lysed the vertebrate erythrocytes with maximum hemolysis against chicken and it unveiled dependency on divalent cation, serum concentration, ionic strength, pH, temperature and time interval. Occurrence of maximum hemolysis at a concentration of 30 µl, pH 8.0, temperature 37 °C and time interval of 60 min in the presence of Ba2+ were documented. Interestingly, serum hemolysis was reduced by different osmoprotectants suggesting a colloid-osmotic mechanism involving in hemolysis. It was observed that A. symmysta serum had antimicrobial activity against Gram-positive Staphylococcus aureus and fungal pathogen Candida albicans. The serum showed higher glycan content, potent lysozyme and free radical scavenging activity suggesting the existence of potential immune molecules of therapeutic use. These results clearly demonstrated the diversified immunogenicity of A. symmysta serum confirming a highly conserved non-specific immunity of crustaceans.
Asunto(s)
Braquiuros , Hemolinfa , Animales , Hemolinfa/inmunología , Braquiuros/inmunología , Hemólisis , HumanosRESUMEN
Shewanella putrefaciens is a vital bacterial pathogen implicated in serious diseases in Chinese mitten crab Eriocheir sinensis. Yet the use of probiotics to improve the defense ability of E. sinensis against S. putrefaciens infection remains poorly understood. In the present study, the protective effect of dietary R. sphaeroides against S. putrefaciens infection in E. sinensis was evaluated through antioxidant capability, immune response, and survival under bacterial challenge assays, and its protective mechanism was further explored using a combination of intestinal flora and metabolome assays. Our results indicated that dietary R. sphaeroides could significantly improve immunity and antioxidant ability of Chinese mitten crabs, thereby strengthening their disease resistance with the relative percentage survival of 81.09% against S. putrefaciens. In addition, dietary R. sphaeroides could significantly alter the intestinal microbial composition and intestinal metabolism of crabs, causing not only the reduction of potential threatening pathogen load but also the increase of differential metabolites in tryptophan metabolism, pyrimidine metabolism, and glycerophospholipid metabolism. Furthermore, the regulation of differential metabolites such as N-Acetylserotonin positively correlated with beneficial Rhodobacter could be a potential protection strategy for Shewanella infection. To the best of our knowledge, this is the first study to illustrate the protective effect and mechanism of R. sphaeroides supplementation to protect E. sinensis against S. putrefaciens infection.
Asunto(s)
Braquiuros , Microbioma Gastrointestinal , Rhodobacter sphaeroides , Shewanella putrefaciens , Animales , Braquiuros/microbiología , Braquiuros/inmunología , Microbioma Gastrointestinal/fisiología , Rhodobacter sphaeroides/metabolismo , Probióticos/farmacología , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/veterinaria , Suplementos DietéticosRESUMEN
Temperature fluctuations, particularly elevated temperatures, can significantly affect immune responses. These fluctuations can influence the immune system and alter its response to infection signals, such as lipopolysaccharide (LPS). Therefore, this study was designed to investigate how high temperatures and LPS injections collectively influence the immune system of the crab Neohelice granulata. Two groups were exposed to 20 °C (control) or 33 °C for four days. Subsequently, half were injected with 10 µL of physiological crustacean (PS), while the rest received 10 µL of LPS [0.1 mg.kg-1]. After 30 min, the hemolymph samples were collected. Hemocytes were then isolated and assessed for various parameters using flow cytometry, including cell integrity, DNA fragmentation, total hemocyte count (THC), differential hemocyte count (DHC), reactive oxygen species (ROS) level, lipid peroxidation (LPO), and phagocytosis. Results showed lower cell viability at 20 °C, with more DNA damage in the same LPS-injected animals. There was no significant difference in THC, but DHC indicated a decrease in hyaline cells (HC) at 20 °C following LPS administration. In granular cells (GC), an increase was observed after both PS and LPS were injected at the same temperature. In semi-granular cells (SGC), there was a decrease at 20 °C with the injection of LPS, while at a temperature of 33 °C, the SGC there was a decrease only in SGC injected with LPS. Crabs injected with PS and LPS at 20 °C exhibited higher levels of ROS in GC and SGC, while at 33 °C, the increase was observed only in GC and SGC cells injected with LPS. A significant increase in LPO was observed only in SGC cells injected with PS and LPS at 20 °C and 33 °C. Phagocytosis decreased in animals at 20 °C with both injections and exposed to 33 °C only in those injected with LPS. These results suggest that elevated temperatures induce changes in immune system parameters and attenuate the immune responses triggered by LPS.
Asunto(s)
Braquiuros , Hemocitos , Calor , Lipopolisacáridos , Animales , Hemocitos/efectos de los fármacos , Lipopolisacáridos/farmacología , Braquiuros/inmunología , Braquiuros/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismoRESUMEN
Selenium is a vital trace mineral that is crucial for maintaining regular biological processes in aquatic animals. In this study, a four-week dietary trial was carried out to assess the impact of bio-fermented selenium (Bio-Se) on the growth and immune response of Chinese mitten crabs, Eriocheir sinensis. The crabs were randomly allocated to five dietary treatment groups, each receiving a different dose of Bio-Se. The doses included 0, 0.3, 0.6, 1.5, and 3.0 mg/kg and were accurately measured in basal diet formulations. The results showed the weight gain rate (WGR), specific growth rate (SGR), and survival rate (SR) in the 1.5 mg/kg Bio-Se group were the highest, and 3.0 mg/kg of Bio-Se has an inhibitory effect on the WGR, SGR, and SR. The activities of the immune enzymes, including glutathione peroxidase (GPX), superoxide dismutase (SOD), and acid phosphatase (ACP), of the hepatopancreas were significantly (p < 0.05) increased in the 1.5 mg/kg Bio-Se group, while they decreased (p < 0.05) in the 3.0 mg/kg feeding group compared to the 0 mg/kg feeding group. The concentration of maleic dialdehyde (MDA) exhibited the opposite pattern. Similarly, the mRNA expression levels of antimicrobial peptides (ALF-1, Crus-1, and LYS), ERK, and Relish genes were also observed to be the highest in the 1.5 mg/kg Bio-Se group compared with the other groups. Furthermore, the administration of 1.5 mg/kg of Bio-Se resulted in an increase in the thickness of the intestinal plica and mucosal layer, as well as in alterations in the intestinal microbial profile and bacterial diversity compared to the dose of 0 mg/kg of Bio-Se. Notably, the population of the beneficial bacterial phylum Fusobacteria was increased after crabs were fed the 1.5 mg/kg Bio-Se diet. In conclusion, the oral administration of 1.5 mg/kg of Bio-Se improved the growth efficiency, antioxidant capabilities, immunity, and intestinal health of E. sinensis. Through a broken-line analysis of the WGR against dietary Bio-Se levels, optimal dietary Bio-Se levels were determined to be 1.1 mg/kg. These findings contribute valuable insights to the understanding of crab cultivation and nutrition.
Asunto(s)
Braquiuros , Suplementos Dietéticos , Microbioma Gastrointestinal , Selenio , Animales , Selenio/farmacología , Braquiuros/crecimiento & desarrollo , Braquiuros/microbiología , Braquiuros/inmunología , Braquiuros/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Fermentación , Alimentación Animal , Glutatión Peroxidasa/metabolismo , Superóxido Dismutasa/metabolismo , Hepatopáncreas/metabolismo , Hepatopáncreas/efectos de los fármacosRESUMEN
It is well known that exosomes could serve as anti-microbial immune factors in animals. However, despite growing evidences have shown that the homeostasis of the hemolymph microbiota was vital for immune regulation in crustaceans, the relationship between exosomes and hemolymph microbiota homeostasis during pathogenic bacteria infection has not been addressed. Here, we reported that exosomes released from Vibrio parahaemolyticus-infected mud crabs (Scylla paramamosain) could help to maintain the homeostasis of hemolymph microbiota and have a protective effect on the mortality of the host during the infection process. We further confirmed that miR-224 was densely packaged in these exosomes, resulting in the suppression of HSP70 and disruption of the HSP70-TRAF6 complex, then the released TRAF6 further interacted with Ecsit to regulate the production of mitochondrial ROS (mROS) and the expression of Anti-lipopolysaccharide factors (ALFs) in recipient hemocytes, which eventually affected hemolymph microbiota homeostasis in response to the pathogenic bacteria infection in mud crab. To the best of our knowledge, this is the first document that reports the role of exosome in the hemolymph microbiota homeostasis modulation during pathogen infection, which reveals the crosstalk between exosomal miRNAs and innate immune response in crustaceans.
Asunto(s)
Proteínas de Artrópodos/metabolismo , Braquiuros/inmunología , Exosomas/genética , Hemolinfa/inmunología , Inmunidad Innata/inmunología , MicroARNs/genética , Vibriosis/inmunología , Animales , Proteínas de Artrópodos/genética , Braquiuros/microbiología , Perfilación de la Expresión Génica , Hemocitos/inmunología , Hemocitos/metabolismo , Hemocitos/microbiología , Hemolinfa/metabolismo , Hemolinfa/microbiología , Homeostasis , Microbiota , Filogenia , Vibriosis/microbiología , Vibrio parahaemolyticus/fisiologíaRESUMEN
The Chinese mitten crab, Eriocheir sinensis, is a vital freshwater aquaculture species in China, however, is also facing various crab disease threats. In the present study, we identify three novel variable lymphocyte receptor-like (VLR-like) genes-VLR-like1, VLR-like3 and VLR-like4-from E. sinensis, which play vital roles in adaptive immune system of agnathan vertebrates. The bacterial challenge, bacterial binding and antibacterial-activity experiments were applied to study immune functions of VLR-likes, and the transcriptomic data from previous E. sinensis bacterial challenge experiments were analyzed to speculate the possible signaling pathway. VLR-like1 and VLR-like4 can respond to Staphylococcus aureus challenge and inhibit S. aureus specifically. VLR-like1 and VLR-like4 possess broad-spectrum bacteria-binding ability whereas VLR-like3 do not. VLR-likes in E. sinensis could associate with the Toll-like receptor (TLR) signaling pathway. The above results suggest that VLR-likes defend against bacteria invasion though exerting anti-bacteria activity, and probably connect with the TLR signaling pathway. Furthermore, studying the immune functions of these VLR-likes will provide a new insight into the disease control strategy of crustacean culture.
Asunto(s)
Proteínas de Artrópodos , Braquiuros , Braquiuros/inmunología , Braquiuros/microbiología , Proteínas de Artrópodos/inmunología , Transcriptoma/inmunología , Staphylococcus aureus/fisiologíaRESUMEN
Ubiquitination and deubiquitination of target proteins is an important mechanism for cells to rapidly respond to changes in the external environment. The deubiquitinase, cylindromatosis (CYLD), is a tumor suppressor protein. CYLD from Drosophila melanogaster participates in the antimicrobial immune response. In vertebrates, CYLD also regulates bacterial-induced apoptosis. However, whether CYLD can regulate the bacterial-induced innate immune response in crustaceans is unknown. In the present study, we reported the identification and cloning of CYLD in Chinese mitten crab, Eriocheir sinensis. Quantitative real-time reverse transcription polymerase chain reaction analysis showed that EsCYLD was widely expressed in all the examined tissues and was upregulated in the hemolymph after Vibrio parahaemolyticus challenge. Knockdown of EsCYLD in hemocytes promoted the cytoplasm-to-nucleus translocation of transcription factor Relish under V. parahaemolyticus stimulation and increased the expression of corresponding antimicrobial peptides. In vivo, silencing of EsCYLD promoted the removal of bacteria from the crabs and enhanced their survival. In addition, interfering with EsCYLD expression inhibited apoptosis of crab hemocytes caused by V. parahaemolyticus stimulation. In summary, our findings revealed that EsCYLD negatively regulates the nuclear translocation of Relish to affect the expression of corresponding antimicrobial peptides and regulates the apoptosis of crab hemocytes, thus indirectly participating in the innate immunity of E. sinensis.
Asunto(s)
Apoptosis , Proteínas de Artrópodos , Braquiuros , Enzima Desubiquitinante CYLD , Hemocitos , Inmunidad Innata , Factores de Transcripción , Animales , Secuencia de Aminoácidos , Péptidos Antimicrobianos/metabolismo , Proteínas de Artrópodos/clasificación , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/metabolismo , Secuencia de Bases , Braquiuros/inmunología , Braquiuros/microbiología , Enzima Desubiquitinante CYLD/clasificación , Enzima Desubiquitinante CYLD/genética , Enzima Desubiquitinante CYLD/metabolismo , Hemocitos/enzimología , Inmunidad Innata/genética , Filogenia , Factores de Transcripción/metabolismo , Vibrio parahaemolyticus , Transporte Activo de Núcleo CelularRESUMEN
Down syndrome cell adhesion molecule (Dscam) generates tens of thousands of isoforms by alternative splicing, thereby providing crucial functions during immune responses. In this study, a novel Dscam signaling pathway was investigated in crab, which remains poorly characterized in invertebrates. Bacterial infection induced the cytoplasmic cleavage of Dscam intracellular domains (ICDs) by γ-secretase, and then the released ICDs carrying specific alternatively spliced exons could directly interact with IPO5 to facilitate nuclear translocation. Nuclear imported ICDs thus promoted hemocyte proliferation and protect the host from bacterial infection. Protein-interaction studies revealed that the ectodomain of Dscam bound to a disintegrin and metalloprotease domain 10 (ADAM10) rather than ADAM17. Inhibition or overexpression of ADAM10 impaired or accelerated Dscam shedding activity post-bacterial stimulation, respectively. Moreover, the shedding signal then mediated Dscam with an intact cytoplasmic domain to promote the cleavage of ICDs by γ-secretase. Furthermore, the transcription of ADAM10 was regulated by Dscam-induced canonical signaling, but not nuclear imported ICDs, to serve as a feedback regulation between two different Dscam pathways. Thus, membrane-to-nuclear signaling of Dscam regulated hemocyte proliferation in response to bacterial infection.
Asunto(s)
Proteínas de Artrópodos/genética , Braquiuros/inmunología , Moléculas de Adhesión Celular/genética , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Hemocitos/inmunología , Infecciones Estafilocócicas/inmunología , Staphylococcus aureus/fisiología , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Animales , Proteínas de Artrópodos/metabolismo , Moléculas de Adhesión Celular/metabolismo , Proliferación Celular , Células Cultivadas , Inmunidad Innata , Carioferinas/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , Transducción de SeñalRESUMEN
The immune deficiency (IMD) pathway is involved in both antiviral and antibacterial immune responses in Drosophila. IMD protein is the key adaptor to link the extracellular signal and the intracellular reaction to initiate the signal transduction in IMD pathway. In present study, the cDNA of the IMD (Pt-IMD) was identified from a marine crab, Portunus trituberculatus. The Pt-IMD is predicted to encode 170 amino acids with a death domain. Real-Time quantitative PCR analysis showed that Pt-IMD was constitutively expressed in hemocytes, intestine, gill, heart, muscle and hepatopancreas in normal crab. Moreover, the transcript of Pt-IMD in large-granule hemocytes is approximately 6-fold higher than semi-granular cells and agranular cells. Intracellular localization showed Pt-IMD was distributed mainly in the cytoplasm when it was over-expressed in Drosophila Schneider 2 (S2) cell. Functionally, over-expression of Pt-IMD could activate the promoters of Drosophila antimicrobial peptide genes (AMPs) in S2 cell. Furthermore, Pt-IMD expression was also knock-down by RNAi to determine the function of Pt-IMD on regulation of the expression of different antimicrobial peptides (AMPs) in crab. In the primary cultured hemocytes challenged with or without Vibrio alginolyticus, after Pt-IMD was knocked-down by specific long double strand RNA, the expression of anti-lipopolysaccharide factor1 (ALF1), ALF3, crustin1, crustin3, arasin2, hyastatin1and hyastatin3 have been significantly inhibited in normal cell or bacterial infected cell, while the expression of lysozyme was normal in non-infected cells and was significantly induced in bacterial infected cells, which compared to the non-specific dsRNA treated cells.
Asunto(s)
Braquiuros , Inmunidad Innata , Animales , Braquiuros/genética , Braquiuros/inmunología , Drosophila , Filogenia , Transducción de SeñalRESUMEN
Crustacean cardioactive peptide (CCAP) is a pleiotropic neuropeptide, but its immunomodulatory role is not clear. Herein, the mud crab Scylla paramamosain provides a primitive model to study crosstalk between the neuroendocrine and immune systems. In this study, in situ hybridization showed that Sp-CCAP positive signal localized in multiple cells in the nervous tissue, while its conjugate receptor (Sp-CCAPR) positive signal mainly localized in the semigranular cells of hemocytes. The Sp-CCAP mRNA expression level in the thoracic ganglion was significantly up-regulated after lipopolysaccharide (LPS) stimulation, but the Sp-CCAP mRNA expression level was up-regulated firstly and then down-regulated after the stimulation of polyriboinosinic polyribocytidylic acid [Poly (I:C)]. After the injection of Sp-CCAP synthesis peptide, the phagocytosis ability of hemocytes was significantly higher than that of synchronous control group. Simultaneously, the mRNA expression of phagocytosis related gene (Sp-Rab5), nuclear transcription factor NF-κB homologues (Sp-Relish), C-type lectin (Sp-CTL-B), prophenoloxidase (Sp-proPO), pro-inflammatory cytokines factor (Sp-TNFSF, Sp-IL16) and antimicrobial peptides (Sp-ALF1 and Sp-ALF5) in the hemocytes were also significantly up-regulated at different time points after the injection of Sp-CCAP synthetic peptide, but Sp-TNFSF, Sp-ALF1 and Sp-ALF5 were down-regulated significantly at 24h. In addition, RNA interference of Sp-CCAP suppressed the phagocytic activity of hemocytes and inhibited the mRNA expression of Sp-Rab5, Sp-Relish, Sp-CTL-B, Sp-TNFSF, Sp-IL16 and Sp-ALF5 in the hemocytes, and ultimately weakened the ability of hemolymph bacteria clearance of mud crab. Taken together, these results revealed that CCAP induced innate immune and increased the anti-infection ability in the mud crab.
Asunto(s)
Proteínas de Artrópodos/inmunología , Braquiuros , Inmunidad Innata , Neuropéptidos , Animales , Braquiuros/genética , Braquiuros/inmunología , Interleucina-16 , Neuropéptidos/inmunología , Filogenia , Poli I-C/farmacología , ARN Mensajero/genéticaRESUMEN
Mud crab reovirus (MCRV) is a serious pathogen that leads to large economic losses in the mud crab farming. However, the molecular mechanism of the immune response after MCRV infection is unclear. In the present study, physiological, transcriptomic, and metabolomic responses after MCRV infection were investigated. The results showed that MCRV infection could increase lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase activities. MCRV infection decreased antioxidant enzyme activity levels, induced oxidative stress, and caused severe histological damage. Transcriptome analysis identified 416 differentially expressed genes, including 354 up-regulated and 62 down-regulated genes. The detoxification, immune response, and metabolic processes-related genes were found. The results showed that two key pathways including phagocytosis and apoptosis played important roles in response to MCRV infection. The combination of transcriptomic and metabolomic analyses showed that related metabolic pathways, such as glycolysis, citrate cycle, lipid, and amino acid metabolism were also significantly disrupted. Moreover, the biosynthesis of unsaturated fatty acids was activated in response to MCRV infection. This study provided a novel insight into the understanding of cellular mechanisms in crustaceans against viral invasion.
Asunto(s)
Braquiuros/virología , Reoviridae/patogenicidad , Aminoácidos/metabolismo , Animales , Apoptosis , Acuicultura , Braquiuros/enzimología , Braquiuros/inmunología , Braquiuros/metabolismo , Ácidos Grasos Insaturados/biosíntesis , Perfilación de la Expresión Génica , Metabolismo de los Lípidos , Estrés Oxidativo , Fagocitosis , Reoviridae/fisiologíaRESUMEN
A meticulous understanding of the immune characteristics of aquaculture animals is the basis for developing precise disease prevention and control strategies. In this study, four novel C-type lectins (PtCTL-5, PtCTL-6, PtCTL-7 and PtCTL-8) including a single carbohydrate-recognition domain (CRD), and four novel crustins (Ptcrustin-1, Ptcrustin-2, Ptcrustin-3 and Ptcrustin-4) with a single whey acidic protein (WAP) domain were identified from the swimming crab Portunus trituberculatus. Tissue distribution analysis indicated that most of the target genes were predominantly expressed in the hepatopancreas in all examined tissues, except for Ptcrustin-1 which were mainly expressed in the gills. Our results showed that the eight genes displayed various transcriptional profiles across different tissues. In hemocytes, the PtCTL-7 responded quickly to Vibrio alginolyticus and exhibited much more strongly up-regulation than other three PtCTLs. The Ptcrustin-1 rapidly responded to V. alginolyticus within 3 h in all the three tested tissues. Furthermore, recombinant proteins of PtCTL-5 and PtCTL-8 were successfully obtained, and both of them displayed bacterial binding activities toward V. alginolyticus, V. harveyi and Staphylococcus aureus, and only showed antibacterial activity against V. harveyi. These findings provided new insights into the diverse immune response of P. trituberculatus and laid theoretical foundations for the development of precise disease prevention and control strategies in P. trituberculatus farming. Moreover, the specific anti-V. harveyi activities exhibited by rPtCTL-5 and rPtCTL-8 suggested their promising application prospects for controlling diseases caused by V. harveyi.