Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cereb Cortex ; 30(5): 3392-3402, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31897490

RESUMEN

Maladaptive impulsivity manifests in a variety of disorders, including attention-deficit hyperactivity disorder (ADHD), depression, and substance use disorder. However, the etiological mechanisms of impulsivity remain poorly understood. In the present study, we used in-vivo proton magnetic resonance spectroscopy (1H-MRS) to investigate neurometabolite content in the prefrontal cortex (PFC) and striatum of rats exhibiting low- versus high-impulsive (LI, HI) behavior on a visual attentional task. We validated our 1H-MRS findings using regionally resolved ex-vivo mass spectroscopy, transcriptomics, and site-directed RNA interference in the ventromedial PFC. We report a significant reduction in myoinositol levels in the PFC but not the striatum of HI rats compared with LI rats. Reduced myoinositol content was localized to the infralimbic (IL) cortex, where significant reductions in transcript levels of key proteins involved in the synthesis and recycling of myoinositol (IMPase1) were also present. Knockdown of IMPase1in the IL cortex increased impulsivity in nonimpulsive rats when the demand on inhibitory response control was increased. We conclude that diminished myoinositol levels in ventromedial PFC causally mediate a specific form of impulsivity linked to vulnerability for stimulant addiction in rodents. Myoinositol and related signaling substrates may thus offer novel opportunities for treating neuropsychiatric disorders comorbid with impulsive symptomology.


Asunto(s)
Conducta Impulsiva , Inositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Corteza Prefrontal/metabolismo , Animales , Atención , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Endofenotipos , Técnicas de Silenciamiento del Gen , Liasas Intramoleculares/genética , Masculino , Proteínas de la Membrana/genética , Corteza Prefrontal/diagnóstico por imagen , Espectroscopía de Protones por Resonancia Magnética , Ratas , Simportadores/genética
2.
Mol Genet Genomics ; 293(5): 1139-1149, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29752547

RESUMEN

Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Fibra de Algodón , Gossypium/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/crecimiento & desarrollo , Lignina/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
3.
Biochim Biophys Acta ; 1851(6): 724-35, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25592381

RESUMEN

Phosphatidylinositol is a metabolic precursor of phosphoinositides and soluble inositol phosphates. Both sets of molecules represent versatile intracellular chemical signals in eukaryotes. While much effort has been invested in understanding the enzymes that produce and consume these molecules, central aspects for how phosphoinositide production is controlled and functionally partitioned remain unresolved and largely unappreciated. It is in this regard that phosphatidylinositol (PtdIns) transfer proteins (PITPs) are emerging as central regulators of the functional channeling of phosphoinositide pools produced on demand for specific signaling purposes. The physiological significance of these proteins is amply demonstrated by the consequences that accompany deficits in individual PITPs. Although the biological problem is fascinating, and of direct relevance to disease, PITPs remain largely uncharacterized. Herein, we discuss our perspectives regarding what is known about how PITPs work as molecules, and highlight progress in our understanding of how PITPs are integrated into cellular physiology. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Fosfatidilinositoles/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Regulación de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Modelos Moleculares , Proteínas de Transferencia de Fosfolípidos/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Saccharomyces cerevisiae/genética , Transducción de Señal , Fosfolipasas de Tipo C/genética , Fosfolipasas de Tipo C/metabolismo
4.
Biochim Biophys Acta ; 1851(5): 629-40, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25687304

RESUMEN

Five yeast enzymes synthesizing various glycerophospholipids belong to the CDP-alcohol phosphatidyltransferase (CAPT) superfamily. They only share the so-called CAPT motif, which forms the active site of all these enzymes. Bioinformatic tools predict the CAPT motif of phosphatidylinositol synthase Pis1 as either ER luminal or cytosolic. To investigate the membrane topology of Pis1, unique cysteine residues were introduced into either native or a Cys-free form of Pis1 and their accessibility to the small, membrane permeating alkylating reagent N-ethylmaleimide (NEM) and mass tagged, non-permeating maleimides, in the presence and absence of non-denaturing detergents, was monitored. The results clearly point to a cytosolic location of the CAPT motif. Pis1 is highly sensitive to non-denaturing detergent, and low concentrations (0.05%) of dodecylmaltoside change the accessibility of single substituted Cys in the active site of an otherwise cysteine free version of Pis1. Slightly higher detergent concentrations inactivate the enzyme. Removal of the ER retrieval sequence from (wt) Pis1 enhances its activity, again suggesting an influence of the lipid environment. The central 84% of the Pis1 sequence can be aligned and fitted onto the 6 transmembrane helices of two recently crystallized archaeal members of the CAPT family. Results delineate the accessibility of different parts of Pis1 in their natural context and allow to critically evaluate the performance of different cysteine accessibility methods. Overall the results show that cytosolically made inositol and CDP-diacylglycerol can access the active site of the yeast PI synthase Pis1 from the cytosolic side and that Pis1 structure is strongly affected by mild detergents.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Citosol/enzimología , Saccharomyces cerevisiae/enzimología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Algoritmos , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Dominio Catalítico , Biología Computacional , Cisteína , Citidina Difosfato Diglicéridos/metabolismo , Detergentes/química , Activación Enzimática , Estabilidad de Enzimas , Inositol/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Desnaturalización Proteica , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Tiempo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/química , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética
5.
Biochim Biophys Acta ; 1851(6): 770-84, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25449646

RESUMEN

Phosphoinositides (PtdInsPs) are lipids that mediate a range of conserved cellular processes in eukaryotes. These include the transduction of ligand binding to cell surface receptors, vesicular transport and cytoskeletal function. The nature and functions of PtdInsPs were initially elucidated through biochemical experiments in mammalian cells. However, over the years, genetic and cell biological analysis in a range of model organisms including S. cerevisiae, D. melanogaster and C. elegans have contributed to an understanding of the involvement of PtdInsPs in these cellular events. The fruit fly Drosophila is an excellent genetic model for the analysis of cell and developmental biology as well as physiological processes, particularly analysis of the complex relationship between the cell types of a metazoan in mediating animal physiology. PtdInsP signalling pathways are underpinned by enzymes that synthesise and degrade these molecules and also by proteins that bind to these lipids in cells. In this review we provide an overview of the current understanding of PtdInsP signalling in Drosophila. We provide a comparative genomic analysis of the PtdInsP signalling toolkit between Drosophila and mammalian systems. We also review some areas of cell and developmental biology where analysis in Drosophila might provide insights into the role of this lipid-signalling pathway in metazoan biology. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Fosfoinositido Fosfolipasa C/metabolismo , Proteínas de Transferencia de Fosfolípidos/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfoinositido Fosfolipasa C/genética , Proteínas de Transferencia de Fosfolípidos/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Especificidad de la Especie , Especificidad por Sustrato
6.
Biochim Biophys Acta ; 1851(6): 832-43, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25449648

RESUMEN

Phosphoinositides are low abundant but essential phospholipids in eukaryotic cells and refer to phosphatidylinositol and its seven polyphospho-derivatives. In this review, we summarize our current knowledge on phosphoinositides in multiple aspects of cell division in animal cells, including mitotic cell rounding, longitudinal cell elongation, cytokinesis furrow ingression, intercellular bridge abscission and post-cytokinesis events. PtdIns(4,5)P2production plays critical roles in spindle orientation, mitotic cell shape and bridge stability after furrow ingression by recruiting force generator complexes and numerous cytoskeleton binding proteins. Later, PtdIns(4,5)P2hydrolysis and PtdIns3P production are essential for normal cytokinesis abscission. Finally, emerging functions of PtdIns3P and likely PtdIns(4,5)P2have recently been reported for midbody remnant clearance after abscission. We describe how the multiple functions of phosphoinositides in cell division reflect their distinct roles in local recruitment of protein complexes, membrane traffic and cytoskeleton remodeling. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
Citocinesis/genética , Citoesqueleto/metabolismo , Células Eucariotas/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Huso Acromático/metabolismo , Animales , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Citoesqueleto/ultraestructura , Células Eucariotas/citología , Regulación de la Expresión Génica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mitosis , Fosfoinositido Fosfolipasa C/genética , Fosfoinositido Fosfolipasa C/metabolismo , Proteínas de Transferencia de Fosfolípidos/genética , Proteínas de Transferencia de Fosfolípidos/metabolismo , Transporte de Proteínas , Transducción de Señal , Huso Acromático/ultraestructura
7.
Arch Pharm (Weinheim) ; 347(5): 320-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24497156

RESUMEN

Flank organs are an androgen-dependent pilosebaceous complex present in male and female hamsters. These organs have been used for the evaluation of antiandrogenic drugs, which could be used for the treatment of androgen-dependent afflictions. This study demonstrated the role of four different steroidal carbamates 7-10 in the expression of mRNAs coding for different enzymes involved in the lipid metabolism in flank organs. To determine the biological effects of compounds 7-10 on the expression of mRNA coding for lipid enzymes, steroids 7-10, testosterone (T), progesterone (P), and/or 7-10 were applied on the flank organs. Later, the mRNA expression for the enzymes was determined by polymerase chain reaction. The binding of 8 and 9 to the progesterone receptor (PR) as well as their effects on the activity of 5α-reductase were also evaluated. Treatments with T, P, and 7-10 increased the mRNA expression for glycerol 3-phosphate acyl transferase (GPAT), ß-hydroxy-ß-methylglutaryl-CoA synthase (HMG-CoA-S), ß-hydroxy-ß-methylglutaryl-CoA reductase (HMG-CoA-R), phosphatidylinositol synthase (PI-S), and squalene-synthase (SQ-S). However, the combined treatments with P + 7-10 decreased the expression of GPAT, HMG-CoA-S, and HMG-CoA-R. Expression of mRNA for all enzymes was variable under treatment with T + 7-10. Data showed that these carbamates did not bind to the PR, but inhibited the activity of 5α-reductase. Carbamates 7-10 changed the mRNA expression model induced by T and P in flank organs.


Asunto(s)
Carbamatos/farmacología , ARN Mensajero/genética , Glándulas Sebáceas/efectos de los fármacos , Glándulas Sebáceas/enzimología , Esteroides/farmacología , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Animales , Unión Competitiva , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Carbamatos/química , Cricetinae , Farnesil Difosfato Farnesil Transferasa/genética , Femenino , Glicerol-3-Fosfato O-Aciltransferasa/genética , Humanos , Hidroximetilglutaril-CoA Reductasas/genética , Masculino , Mesocricetus , Estructura Molecular , Ovariectomía , Próstata/efectos de los fármacos , Próstata/enzimología , ARN Mensajero/metabolismo , Conejos , Receptores de Progesterona/metabolismo , Piel/efectos de los fármacos , Piel/enzimología , Esteroides/química
8.
Plant Cell Environ ; 36(5): 1037-55, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23152961

RESUMEN

Phosphatidylinositol (PtdIns) synthase is a key enzyme in the phospholipid pathway and catalyses the formation of PtdIns. PtdIns is not only a structural component of cell membranes, but also the precursor of the phospholipid signal molecules that regulate plant response to environment stresses. Here, we obtained transgenic maize constitutively overexpressing or underexpressing PIS from maize (ZmPIS) under the control of a maize ubiquitin promoter. Transgenic plants were confirmed by PCR, Southern blotting analysis and real-time RT-PCR assay. The electrospray ionization tandem mass spectrometry (ESI-MS/MS)-based lipid profiling analysis showed that, under drought stress conditions, the overexpression of ZmPIS in maize resulted in significantly elevated levels of most phospholipids and galactolipids in leaves compared with those in wild type (WT). At the same time, the expression of some genes involved in the phospholipid metabolism pathway and the abscisic acid (ABA) biosynthesis pathway including ZmPLC, ZmPLD, ZmDGK1, ZmDGK3, ZmPIP5K9, ZmABA1, ZmNCED, ZmAAO1, ZmAAO2 and ZmSCA1 was markedly up-regulated in the overexpression lines after drought stress. Consistent with these results, the drought stress tolerance of the ZmPIS sense transgenic plants was enhanced significantly at the pre-flowering stages compared with WT maize plants. These results imply that ZmPIS regulates the plant response to drought stress through altering membrane lipid composition and increasing ABA synthesis in maize.


Asunto(s)
Ácido Abscísico/biosíntesis , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Lípidos de la Membrana/metabolismo , Zea mays/enzimología , Adaptación Biológica , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Productos Agrícolas/fisiología , Flores/genética , Flores/metabolismo , Genes de Plantas , Lípidos de la Membrana/genética , Fosfolípidos/genética , Fosfolípidos/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/fisiología , Transducción de Señal , Espectrometría de Masa por Ionización de Electrospray , Estrés Fisiológico , Zea mays/genética , Zea mays/fisiología
9.
Genet Mol Res ; 12(1): 775-82, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23546961

RESUMEN

The CDIPT is crucial to the fatty acid metabolic pathway, intracellular signal transduction and energy metabolism in eukaryotic cells. We detected three SNPs at 3'-untranslated regions (UTR), named 3'-UTR_108 A > G, 3'-UTR_448 G > A and 3'-UTR_477 C > G, of the CDIPT gene in 618 Qinchuan cattle using PCR-RFLP and DNA sequencing methods. At each of the three SNPs, we found three genotypes named as follows: AA, AB, BB (3'-UTR_108 A > G), CC, CD, DD (3'-UTR_448 G > A) and EE, EF, FF (3'-UTR_477 C > G.). Based on association analysis of these SNPs with ultrasound measurement traits, individuals of genotype BB had a significantly larger loin muscle area than genotype AA. Individuals of genotype CC had significantly thicker back fat than individuals of genotype DD. Individuals of genotype EE also had significantly thicker back fat than did individuals of genotype FF. We conclude that these SNPs of the CDIPT gene could be used as molecular markers for selecting and breeding beef cattle with superior body traits, depending on breeding goals.


Asunto(s)
Regiones no Traducidas 3'/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Bovinos/genética , Carne/normas , Polimorfismo de Nucleótido Simple , Animales , Secuencia de Bases , Bovinos/metabolismo , China , Grasas/metabolismo , Frecuencia de los Genes , Genotipo , Músculos/metabolismo , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Análisis de Secuencia de ADN
10.
Planta ; 235(1): 69-84, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21830089

RESUMEN

Phosphatidylinositol (PtdIns) is an important lipid because it serves as a key membrane constituent and is the precursor of the inositol-containing lipids that are found in all plants and animals. It is synthesized from cytidine-diphosphodiacylglycerol (CDP-DG) and myo-inositol by PtdIns synthase (PIS). We have previously reported that two putative PIS genes from maize (Zea mays L.), ZmPIS and ZmPIS2, are transcriptionally up-regulated in response to drought (Sui et al., Gene, 426:47-56, 2008). In this work, we report on the characterization of ZmPIS in vitro and in vivo. The ZmPIS gene successfully complemented the yeast pis mutant BY4743, and the determination of PIS activity in the yeast strain further confirmed the enzymatic function of ZmPIS. An ESI-MS/MS-based lipid profiling approach was used to identify and quantify the lipid species in transgenic and wild-type tobacco plants before and after drought treatment. The results show that the overexpression of ZmPIS significantly increases lipid levels in tobacco leaves under drought stress compared to those of wild-type tobacco, which correlated well with the increased drought tolerance of the transgenic plants. Further analysis showed that, under drought stress conditions, ZmPIS overexpressors were found to exhibit increased membrane integrity, thereby enabling the retention of more solutes and water compared with the wild-type and the vector control transgenic lines. Our findings give us new insights into the role of the ZmPIS gene in the response of maize to drought/osmotic stress and the mechanisms by which plants adapt to drought stress.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Lípidos de la Membrana/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/genética , Adaptación Fisiológica/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/biosíntesis , Deshidratación/metabolismo , Galactolípidos/biosíntesis , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Ingeniería Genética , Lípidos de la Membrana/biosíntesis , Presión Osmótica/fisiología , Fosfolípidos/biosíntesis , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/enzimología , Zea mays/enzimología , Zea mays/metabolismo
11.
Hepatology ; 54(2): 452-62, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21488074

RESUMEN

UNLABELLED: Hepatic steatosis is the initial stage of nonalcoholic fatty liver disease (NAFLD) and may predispose to more severe hepatic disease, including hepatocellular carcinoma. Endoplasmic reticulum (ER) stress has been recently implicated as a novel mechanism that may lead to NAFLD, although the genetic factors invoking ER stress are largely unknown. During a screen for liver defects from a zebrafish insertional mutant library, we isolated the mutant cdipthi559Tg/+ (hi559). CDIPT is known to play an indispensable role in phosphatidylinositol (PtdIns) synthesis. Here we show that cdipt is expressed in the developing liver, and its disruption in hi559 mutants abrogates de novo PtdIns synthesis, resulting in hepatomegaly at 5 days postfertilization. The hi559 hepatocytes display features of NAFLD, including macrovesicular steatosis, ballooning, and necroapoptosis. Gene set enrichment of microarray profiling revealed significant enrichment of endoplasmic reticulum stress response (ERSR) genes in hi559 mutants. ER stress markers, including atf6, hspa5, calr, and xbp1, are selectively up-regulated in the mutant liver. The hi559 expression profile showed significant overlap with that of mammalian hepatic ER stress and NAFLD. Ultrastructurally, the hi559 hepatocytes display marked disruption of ER architecture with hallmarks of chronic unresolved ER stress. Induction of ER stress by tunicamycin in wild-type larvae results in a fatty liver similar to hi559, suggesting that ER stress could be a fundamental mechanism contributing to hepatic steatosis. CONCLUSION: cdipt-deficient zebrafish exhibit hepatic ER stress and NAFLD pathologies, implicating a novel link between PtdIns, ER stress, and steatosis. The tractability of hi559 mutant provides a valuable tool to dissect ERSR components, their contribution to molecular pathogenesis, and evaluation of novel therapeutics of NAFLD.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Retículo Endoplásmico/metabolismo , Hígado Graso/etiología , Hígado Graso/metabolismo , Proteínas de la Membrana/genética , Fosfatidilinositoles/biosíntesis , Estrés Fisiológico , Proteínas de Pez Cebra/genética , Animales , Hígado Graso/genética , Hepatocitos/metabolismo , Mutación , Pez Cebra/genética , Pez Cebra/metabolismo
12.
BMC Cancer ; 10: 168, 2010 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-20426864

RESUMEN

BACKGROUND: We reported increased levels of phosphatidyl inositol synthase (PI synthase), (enzyme that catalyses phosphatidyl inositol (PI) synthesis-implicated in intracellular signaling and regulation of cell growth) in smokeless tobacco (ST) exposed oral cell cultures by differential display. This study determined the clinical significance of PI synthase overexpression in oral squamous cell carcinoma (OSCC) and premalignant lesions (leukoplakia), and identified the downstream signaling proteins in PI synthase pathway that are perturbed by smokeless tobacco (ST) exposure. METHODS: Tissue microarray (TMA) Immunohistochemistry, Western blotting, Confocal laser scan microscopy, RT-PCR were performed to define the expression of PI synthase in clinical samples and in oral cell culture systems. RESULTS: Significant increase in PI synthase immunoreactivity was observed in premalignant lesions and OSCCs as compared to oral normal tissues (p = 0.000). Further, PI synthase expression was significantly associated with de-differentiation of OSCCs, (p = 0.005) and tobacco consumption (p = 0.03, OR = 9.0). Exposure of oral cell systems to smokeless tobacco (ST) in vitro confirmed increase in PI synthase, Phosphatidylinositol 3-kinase (PI3K) and cyclin D1 levels. CONCLUSION: Collectively, increased PI synthase expression was found to be an early event in oral cancer and a target for smokeless tobacco.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Carcinoma de Células Escamosas/enzimología , Células Epiteliales/enzimología , Leucoplasia Bucal/enzimología , Proteínas de la Membrana/metabolismo , Neoplasias de la Boca/enzimología , Lesiones Precancerosas/enzimología , Tabaco sin Humo/efectos adversos , Adulto , Anciano , Western Blotting , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/genética , Desdiferenciación Celular , Línea Celular Tumoral , Ciclina D1/metabolismo , Células Epiteliales/patología , Humanos , Inmunohistoquímica , Leucoplasia Bucal/etiología , Leucoplasia Bucal/genética , Proteínas de la Membrana/genética , Microscopía Confocal , Persona de Mediana Edad , Neoplasias de la Boca/etiología , Neoplasias de la Boca/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Lesiones Precancerosas/etiología , Lesiones Precancerosas/genética , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Matrices Tisulares , Células Tumorales Cultivadas , Regulación hacia Arriba
13.
Commun Biol ; 3(1): 750, 2020 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-33303967

RESUMEN

Phosphatidylinositol (PtdIns) serves as an integral component of eukaryotic membranes; however, its biosynthesis in apicomplexan parasites remains poorly understood. Here we show that Toxoplasma gondii-a common intracellular pathogen of humans and animals-can import and co-utilize myo-inositol with the endogenous CDP-diacylglycerol to synthesize PtdIns. Equally, the parasite harbors a functional PtdIns synthase (PIS) containing a catalytically-vital CDP-diacylglycerol phosphotransferase motif in the Golgi apparatus. Auxin-induced depletion of PIS abrogated the lytic cycle of T. gondii in human cells due to defects in cell division, gliding motility, invasion, and egress. Isotope labeling of the PIS mutant in conjunction with lipidomics demonstrated de novo synthesis of specific PtdIns species, while revealing the salvage of other lipid species from the host cell. Not least, the mutant showed decline in phosphatidylthreonine, and elevation of selected phosphatidylserine and phosphatidylglycerol species, indicating a rerouting of CDP-diacylglycerol and homeostatic inter-regulation of anionic phospholipids upon knockdown of PIS. In conclusion, strategic allocation of own and host-derived PtdIns species to gratify its metabolic demand features as a notable adaptive trait of T. gondii. Conceivably, the dependence of T. gondii on de novo lipid synthesis and scavenging can be exploited to develop new anti-infectives.


Asunto(s)
Fosfatidilinositoles/biosíntesis , Toxoplasma/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Membrana Celular , Citidina Difosfato Diglicéridos/metabolismo , Regulación hacia Abajo , Regulación Enzimológica de la Expresión Génica , Homeostasis , Ácidos Indolacéticos , Inositol/metabolismo , Lípidos , Mutación
14.
J Cell Biol ; 219(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32492081

RESUMEN

In macroautophagy, membrane structures called autophagosomes engulf substrates and deliver them for lysosomal degradation. Autophagosomes enwrap a variety of targets with diverse sizes, from portions of cytosol to larger organelles. However, the mechanism by which autophagosome size is controlled remains elusive. We characterized a novel ER membrane protein, ERdj8, in mammalian cells. ERdj8 localizes to a meshwork-like ER subdomain along with phosphatidylinositol synthase (PIS) and autophagy-related (Atg) proteins. ERdj8 overexpression extended the size of the autophagosome through its DnaJ and TRX domains. ERdj8 ablation resulted in a defect in engulfing larger targets. C. elegans, in which the ERdj8 orthologue dnj-8 was knocked down, could perform autophagy on smaller mitochondria derived from the paternal lineage but not the somatic mitochondria. Thus, ERdj8 may play a critical role in autophagosome formation by providing the capacity to target substrates of diverse sizes for degradation.


Asunto(s)
Autofagosomas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Macroautofagia , Animales , Animales Modificados Genéticamente , Autofagosomas/genética , Autofagosomas/ultraestructura , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Células COS , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Chlorocebus aethiops , Retículo Endoplásmico/genética , Retículo Endoplásmico/ultraestructura , Proteínas del Choque Térmico HSP40/genética , Células HeLa , Humanos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura
15.
Biochem J ; 413(1): 115-24, 2008 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-18402553

RESUMEN

PtdIns is an important precursor for inositol-containing lipids, including polyphosphoinositides, which have multiple essential functions in eukaryotic cells. It was previously proposed that different regulatory functions of inositol-containing lipids may be performed by independent lipid pools; however, it remains unclear how such subcellular pools are established and maintained. In the present paper, a previously uncharacterized Arabidopsis gene product with similarity to the known Arabidopsis PIS (PtdIns synthase), PIS1, is shown to be an active enzyme, PIS2, capable of producing PtdIns in vitro. PIS1 and PIS2 diverged slightly in substrate preferences for CDP-DAG [cytidinediphospho-DAG (diacylglycerol)] species differing in fatty acid composition, PIS2 preferring unsaturated substrates in vitro. Transient expression of fluorescently tagged PIS1 or PIS2 in onion epidermal cells indicates localization of both enzymes in the ER (endoplasmic reticulum) and, possibly, Golgi, as was reported previously for fungal and mammalian homologues. Constitutive ectopic overexpression of PIS1 or PIS2 in Arabidopsis plants resulted in elevated levels of PtdIns in leaves. PIS2-overexpressors additionally exhibited significantly elevated levels of PtdIns(4)P and PtdIns(4,5)P(2), whereas polyphosphoinositides were not elevated in plants overexpressing PIS1. In contrast, PIS1-overexpressors contained significantly elevated levels of DAG and PtdEtn (phosphatidylethanolamine), an effect not observed in plants overexpressing PIS2. Biochemical analysis of transgenic plants with regards to fatty acids associated with relevant lipids indicates that lipids increasing with PIS1 overexpression were enriched in saturated or monounsaturated fatty acids, whereas lipids increasing with PIS2 overexpression, including polyphosphoinositides, contained more unsaturated fatty acids. The results indicate that PtdIns populations originating from different PIS isoforms may enter alternative routes of metabolic conversion, possibly based on specificity and immediate metabolic context of the biosynthetic enzymes.


Asunto(s)
Arabidopsis/enzimología , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Fosfatidilinositoles/metabolismo , Secuencia de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Isoenzimas , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente
16.
F1000Res ; 8: 273, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31231513

RESUMEN

Background: Lenz-Majewski syndrome (LMS) is characterized by osteosclerosis and hyperostosis of skull, vertebrae and tubular bones as well as craniofacial, dental, cutaneous, and digit abnormalities. We previously found that LMS is caused by de novo dominant missense mutations in the  PTDSS1 gene, which encodes phosphatidylserine synthase 1 (PSS1), an enzyme that catalyses the conversion of phosphatidylcholine to phosphatidylserine. The mutations causing LMS result in a gain-of-function, leading to increased enzyme activity and blocking end-product inhibition of PSS1. Methods: Here, we have used transpose-mediated transgenesis to attempt to stably express wild-type and mutant forms of human PTDSS1 ubiquitously or specifically in chondrocytes, osteoblasts or osteoclasts in zebrafish. Results: We report multiple genomic integration sites for each of 8 different transgenes. While we confirmed that the ubiquitously driven transgene constructs were functional in terms of driving gene expression following transient transfection in HeLa cells, and that all lines exhibited expression of a heart-specific cistron within the transgene, we failed to detect PTDSS1 gene expression at either the RNA or protein levels in zebrafish. All wild-type and mutant transgenic lines of zebrafish exhibited mild scoliosis with variable incomplete penetrance which was never observed in non-transgenic animals. Conclusions: Collectively the data suggest that the transgenes are silenced, that animals with integrations that escape silencing are not viable, or that other technical factors prevent transgene expression. In conclusion, the incomplete penetrance of the phenotype and the lack of a matched transgenic control model precludes further meaningful investigations of these transgenic lines.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa , Transferasas de Grupos Nitrogenados/genética , Síndrome de Costilla Pequeña y Polidactilia , Pez Cebra , Animales , Animales Modificados Genéticamente , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Linaje de la Célula , Células HeLa , Humanos , Transgenes
17.
Commun Biol ; 2: 175, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31098408

RESUMEN

Tuberculosis causes over one million yearly deaths, and drug resistance is rapidly developing. Mycobacterium tuberculosis phosphatidylinositol phosphate synthase (PgsA1) is an integral membrane enzyme involved in biosynthesis of inositol-derived phospholipids required for formation of the mycobacterial cell wall, and a potential drug target. Here we present three crystal structures of M. tuberculosis PgsA1: in absence of substrates (2.9 Å), in complex with Mn2+ and citrate (1.9 Å), and with the CDP-DAG substrate (1.8 Å). The structures reveal atomic details of substrate binding as well as coordination and dynamics of the catalytic metal site. In addition, molecular docking supported by mutagenesis indicate a binding mode for the second substrate, D-myo-inositol-3-phosphate. Together, the data describe the structural basis for M. tuberculosis phosphatidylinositol phosphate synthesis and suggest a refined general catalytic mechanism-including a substrate-induced carboxylate shift-for Class I CDP-alcohol phosphotransferases, enzymes essential for phospholipid biosynthesis in all domains of life.


Asunto(s)
Proteínas Bacterianas/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/química , Mycobacterium tuberculosis/enzimología , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Dominio Catalítico/genética , Cristalografía por Rayos X , Citidina Difosfato Diglicéridos/metabolismo , Humanos , Fosfatos de Inositol/metabolismo , Magnesio/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/genética , Electricidad Estática , Especificidad por Sustrato
18.
Biochim Biophys Acta ; 1771(3): 310-21, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16854618

RESUMEN

The last several years have been witness to significant developments in understanding transcriptional regulation of the yeast phospholipid structural genes. The response of most phospholipid structural genes to inositol is now understood on a mechanistic level. The roles of specific activators and repressors are also well established. The knowledge of specific regulatory factors that bind the promoters of phospholipid structural genes serves as a foundation for understanding the role of chromatin modification complexes. Collectively, these findings present a complex picture for transcriptional regulation of the phospholipid biosynthetic genes. The INO1 gene is an ideal example of the complexity of transcriptional control and continues to serve as a model for studying transcription in general. Furthermore, transcription of the regulatory genes is also subject to complex and essential regulation. In addition, databases resulting from a plethora of genome-wide studies have identified regulatory signals that control one of the essential phospholipid biosynthetic genes, PIS1. These databases also provide significant clues for other regulatory signals that may affect phospholipid biosynthesis. Here, we have tried to present a complete summary of the transcription factors and mechanisms that regulate the phospholipid biosynthetic genes.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Fosfolípidos/biosíntesis , Levaduras/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Proteínas Fúngicas/fisiología , Regulación Enzimológica de la Expresión Génica , Liasas Intramoleculares/metabolismo , Mio-Inositol-1-Fosfato Sintasa/metabolismo , Fosfolípidos/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/fisiología , Transcripción Genética , Levaduras/enzimología
19.
Res Microbiol ; 158(1): 51-9, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17223316

RESUMEN

Phosphatidylinositol (PI) is a versatile lipid that not only serves as a structural component of cellular membranes, but also plays important roles in membrane anchorage of proteins and in signal transduction through distinct phosphorylated derivatives of the inositol head group. PI is synthesised by PI synthase from CDP-diacylglycerol and myo-inositol. The enzymatic activity in Plasmodium falciparum and P. knowlesi has previously been characterised at the biochemical level. Here we characterise the PI synthase gene of P. falciparum and P. knowlesi. The cDNA sequence identified a highly spliced gene consisting of nine exons and encoding a protein of 209 and 207 amino acids, respectively. High sequence conservation enabled the prediction of the PI synthase genes of P. berghei, P. chabaudi and P. vivax. All Plasmodium PI synthase proteins appear to be highly hydrophobic, although no consensus for the number and location of distinct transmembrane domains could be detected. The P. falciparum PI synthase (PfPIS) gene successfully complemented a Saccharomyces cerevisiae PIS1 deletion mutant, demonstrating its enzymatic function. Complementation efficiency was dramatically improved when hybrid constructs between N-terminal S. cerevisiae and C-terminal P. falciparum sequences were used. Determination of in vitro PIS activities of complemented yeast strains confirmed the enzymatic function of the Plasmodium protein.


Asunto(s)
CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , Genes Protozoarios , Plasmodium falciparum/genética , Plasmodium knowlesi/genética , Proteínas Protozoarias/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Exones , Prueba de Complementación Genética , Datos de Secuencia Molecular , Plasmodium falciparum/enzimología , Plasmodium knowlesi/enzimología , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
20.
Biochem J ; 396(2): 287-95, 2006 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-16475982

RESUMEN

PI (phosphatidylinositol) is a ubiquitous eukaryotic phospholipid which serves as a precursor for messenger molecules and GPI (glycosylphosphatidylinositol) anchors. PI is synthesized either de novo or by head group exchange by a PIS (PI synthase). The synthesis of GPI anchors has previously been validated both genetically and chemically as a drug target in Trypanosoma brucei, the causative parasite of African sleeping sickness. However, nothing is known about the synthesis of PI in this organism. Database mining revealed a putative TbPIS gene in the T. brucei genome and by recombinant expression and characterization it was shown to encode a catalytically active PIS, with a high specificity for myo-inositol. Immunofluorescence revealed that in T. brucei, PIS is found in both the endoplasmic reticulum and Golgi. We created a conditional double knockout of TbPIS in the bloodstream form of T. brucei, which when grown under non-permissive conditions, clearly showed that TbPIS is an essential gene. In vivo labelling of these conditional double knockout cells confirmed this result, showing a decrease in the amount of PI formed by the cells when grown under non-permissive conditions. Furthermore, quantitative and qualitative analysis by GLC-MS and ESI-MS/MS (electrospray ionization MS/MS) respectively showed a significant decrease (70%) in cellular PI, which appears to affect all major PI species equally. A consequence of this fall in PI level is a knock-on reduction in GPI biosynthesis which is essential for the parasite's survival. The results presented here show that PI synthesis is essential for bloodstream form T. brucei, and to our knowledge this is the first report of the dependence on PI synthesis of a protozoan parasite by genetic validation.


Asunto(s)
Fosfatidilinositoles/biosíntesis , Trypanosoma brucei brucei/metabolismo , Secuencia de Aminoácidos , Animales , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/química , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/genética , CDP-Diacilglicerol-Inositol 3-Fosfatidiltransferasa/metabolismo , Clonación Molecular , Retículo Endoplásmico/metabolismo , Eliminación de Gen , Aparato de Golgi/metabolismo , Datos de Secuencia Molecular , Fenotipo , Fosfatidilinositoles/sangre , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Trypanosoma brucei brucei/citología , Trypanosoma brucei brucei/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA