Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32.523
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 613(7944): 534-542, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599984

RESUMEN

To survive, animals must convert sensory information into appropriate behaviours1,2. Vision is a common sense for locating ethologically relevant stimuli and guiding motor responses3-5. How circuitry converts object location in retinal coordinates to movement direction in body coordinates remains largely unknown. Here we show through behaviour, physiology, anatomy and connectomics in Drosophila that visuomotor transformation occurs by conversion of topographic maps formed by the dendrites of feature-detecting visual projection neurons (VPNs)6,7 into synaptic weight gradients of VPN outputs onto central brain neurons. We demonstrate how this gradient motif transforms the anteroposterior location of a visual looming stimulus into the fly's directional escape. Specifically, we discover that two neurons postsynaptic to a looming-responsive VPN type promote opposite takeoff directions. Opposite synaptic weight gradients onto these neurons from looming VPNs in different visual field regions convert localized looming threats into correctly oriented escapes. For a second looming-responsive VPN type, we demonstrate graded responses along the dorsoventral axis. We show that this synaptic gradient motif generalizes across all 20 primary VPN cell types and most often arises without VPN axon topography. Synaptic gradients may thus be a general mechanism for conveying spatial features of sensory information into directed motor outputs.


Asunto(s)
Conducta Animal , Drosophila , Neuronas , Desempeño Psicomotor , Sinapsis , Animales , Encéfalo/citología , Encéfalo/fisiología , Drosophila/anatomía & histología , Drosophila/citología , Drosophila/fisiología , Neuronas/fisiología , Campos Visuales/fisiología , Sinapsis/metabolismo , Axones , Dendritas , Reacción de Fuga
2.
PLoS Biol ; 22(1): e3002485, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38271460

RESUMEN

Planning a rapid eye movement (saccade) changes how we perceive our visual world. Even before we move the eyes visual discrimination sensitivity improves at the impending target of eye movements, a phenomenon termed "presaccadic attention." Yet, it is unknown if such presaccadic selection merely affects perceptual sensitivity, or also affects downstream decisional processes, such as choice bias. We report a surprising lack of presaccadic perceptual benefits in a common, everyday setting-detection of changes in the visual field. Despite the lack of sensitivity benefits, choice bias for reporting changes increased reliably for the saccade target. With independent follow-up experiments, we show that presaccadic change detection is rendered more challenging because percepts at the saccade target location are biased toward, and more precise for, only the most recent of two successive stimuli. With a Bayesian model, we show how such perceptual and choice biases are crucial to explain the effects of saccade plans on change detection performance. In sum, visual change detection sensitivity does not improve presaccadically, a result that is readily explained by teasing apart distinct components of presaccadic selection. The findings may have critical implications for real-world scenarios, like driving, that require rapid gaze shifts in dynamically changing environments.


Asunto(s)
Campos Visuales , Percepción Visual , Teorema de Bayes , Atención , Movimientos Oculares , Movimientos Sacádicos , Estimulación Luminosa
3.
Nature ; 592(7854): 409-413, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33692544

RESUMEN

The output of the retina is organized into many detector grids, called 'mosaics', that signal different features of visual scenes to the brain1-4. Each mosaic comprises a single type of retinal ganglion cell (RGC), whose receptive fields tile visual space. Many mosaics arise as pairs, signalling increments (ON) and decrements (OFF), respectively, of a particular visual feature5. Here we use a model of efficient coding6 to determine how such mosaic pairs should be arranged to optimize the encoding of natural scenes. We find that information is maximized when these mosaic pairs are anti-aligned, meaning that the distances between the receptive field centres across mosaics are greater than expected by chance. We tested this prediction across multiple receptive field mosaics acquired using large-scale measurements of the light responses of rat and primate RGCs. ON and OFF RGC pairs with similar feature selectivity had anti-aligned receptive field mosaics, consistent with this prediction. ON and OFF RGC types that encode distinct features have independent mosaics. These results extend efficient coding theory beyond individual cells to predict how populations of diverse types of RGC are spatially arranged.


Asunto(s)
Retina/citología , Retina/fisiología , Campos Visuales/fisiología , Animales , Femenino , Macaca , Masculino , Modelos Neurológicos , Ratas , Ratas Long-Evans , Células Ganglionares de la Retina/fisiología
4.
Proc Natl Acad Sci U S A ; 121(16): e2309975121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588433

RESUMEN

Research on attentional selection of stimulus features has yielded seemingly contradictory results. On the one hand, many experiments in humans and animals have observed a "global" facilitation of attended features across the entire visual field, even when spatial attention is focused on a single location. On the other hand, several event-related potential studies in humans reported that attended features are enhanced at the attended location only. The present experiment demonstrates that these conflicting results can be explained by differences in the timing of attentional allocation inside and outside the spatial focus of attention. Participants attended to fields of either red or blue randomly moving dots on either the left or right side of fixation with the task of detecting brief coherent motion targets. Recordings of steady-state visual evoked potentials elicited by the flickering stimuli allowed concurrent measurement of the time course of feature-selective attention in visual cortex on both the attended and the unattended sides. The onset of feature-selective attentional modulation on the attended side occurred around 150 ms earlier than on the unattended side. This finding that feature-selective attention is not spatially global from the outset but extends to unattended locations after a temporal delay resolves previous contradictions between studies finding global versus hierarchical selection of features and provides insight into the fundamental relationship between feature-based and location-based (spatial) attention mechanisms.


Asunto(s)
Electroencefalografía , Potenciales Evocados Visuales , Humanos , Potenciales Evocados , Campos Visuales , Atención , Estimulación Luminosa/métodos
5.
Proc Natl Acad Sci U S A ; 121(27): e2316608121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38941277

RESUMEN

Coordination of goal-directed behavior depends on the brain's ability to recover the locations of relevant objects in the world. In humans, the visual system encodes the spatial organization of sensory inputs, but neurons in early visual areas map objects according to their retinal positions, rather than where they are in the world. How the brain computes world-referenced spatial information across eye movements has been widely researched and debated. Here, we tested whether shifts of covert attention are sufficiently precise in space and time to track an object's real-world location across eye movements. We found that observers' attentional selectivity is remarkably precise and is barely perturbed by the execution of saccades. Inspired by recent neurophysiological discoveries, we developed an observer model that rapidly estimates the real-world locations of objects and allocates attention within this reference frame. The model recapitulates the human data and provides a parsimonious explanation for previously reported phenomena in which observers allocate attention to task-irrelevant locations across eye movements. Our findings reveal that visual attention operates in real-world coordinates, which can be computed rapidly at the earliest stages of cortical processing.


Asunto(s)
Atención , Movimientos Sacádicos , Humanos , Atención/fisiología , Movimientos Sacádicos/fisiología , Adulto , Masculino , Femenino , Percepción Visual/fisiología , Campos Visuales/fisiología , Modelos Neurológicos , Estimulación Luminosa/métodos
6.
Proc Natl Acad Sci U S A ; 120(14): e2215428120, 2023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-36976767

RESUMEN

Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.


Asunto(s)
Animales Salvajes , Epidemias , Animales , Comunicación , Peces , Campos Visuales
7.
J Neurosci ; 44(25)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38729759

RESUMEN

Attentional control over sensory processing has been linked to neural alpha oscillations and related inhibition of cerebral cortex. Despite the wide consensus on the functional relevance of alpha oscillations for attention, precise neural mechanisms of how alpha oscillations shape perception and how this top-down modulation is implemented in cortical networks remain unclear. Here, we tested the hypothesis that alpha oscillations in frontal eye fields (FEFs) are causally involved in the top-down regulation of visual processing in humans (male and female). We applied sham-controlled, intermittent transcranial alternating current stimulation (tACS) over bilateral FEF at either 10 Hz (alpha) or 40 Hz (gamma) to manipulate attentional preparation in a visual discrimination task. Under each stimulation condition, we measured psychometric functions for contrast perception and introduced a novel linear mixed modeling approach for statistical control of neurosensory side effects of the electric stimulation. tACS at alpha frequency reduced the slope of the psychometric function, resulting in improved subthreshold and impaired superthreshold contrast perception. Side effects on the psychometric functions were complex and showed large interindividual variability. Controlling for the impact of side effects on the psychometric parameters by using covariates in the linear mixed model analysis reduced this variability and strengthened the perceptual effect. We propose that alpha tACS over FEF mimicked a state of endogenous attention by strengthening a fronto-occipitoparietal network in the alpha band. We speculate that this network modulation enhanced phasic gating in occipitoparietal cortex leading to increased variability of single-trial psychometric thresholds, measurable as a reduction of psychometric slope.


Asunto(s)
Ritmo alfa , Atención , Estimulación Transcraneal de Corriente Directa , Percepción Visual , Humanos , Femenino , Masculino , Atención/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Percepción Visual/fisiología , Adulto Joven , Ritmo alfa/fisiología , Lóbulo Frontal/fisiología , Estimulación Luminosa/métodos , Campos Visuales/fisiología
8.
J Neurosci ; 44(19)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38485258

RESUMEN

The superior colliculus receives powerful synaptic inputs from corticotectal neurons in the visual cortex. The function of these corticotectal neurons remains largely unknown due to a limited understanding of their response properties and connectivity. Here, we use antidromic methods to identify corticotectal neurons in awake male and female rabbits, and measure their axonal conduction times, thalamic inputs and receptive field properties. All corticotectal neurons responded to sinusoidal drifting gratings with a nonlinear (nonsinusoidal) increase in mean firing rate but showed pronounced differences in their ON-OFF receptive field structures that we classified into three groups, Cx, S2, and S1. Cx receptive fields had highly overlapping ON and OFF subfields as classical complex cells, S2 had largely separated ON and OFF subfields as classical simple cells, and S1 had a single ON or OFF subfield. Thus, all corticotectal neurons are homogeneous in their nonlinear spatial summation but very heterogeneous in their spatial integration of ON and OFF inputs. The Cx type had the fastest conducting axons, the highest spontaneous activity, and the strongest and fastest visual responses. The S2 type had the highest orientation selectivity, and the S1 type had the slowest conducting axons. Moreover, our cross-correlation analyses found that a subpopulation of corticotectal neurons with very fast conducting axons and high spontaneous firing rates (largely "Cx" type) receives monosynaptic input from retinotopically aligned thalamic neurons. This previously unrecognized fast-conducting thalamic-mediated corticotectal pathway may provide specialized information to superior colliculus and prime recipient neurons for subsequent corticotectal or retinal synaptic input.


Asunto(s)
Neuronas , Sinapsis , Tálamo , Corteza Visual , Vías Visuales , Vigilia , Animales , Conejos , Masculino , Femenino , Vías Visuales/fisiología , Vigilia/fisiología , Corteza Visual/fisiología , Corteza Visual/citología , Sinapsis/fisiología , Neuronas/fisiología , Tálamo/fisiología , Tálamo/citología , Estimulación Luminosa/métodos , Campos Visuales/fisiología , Potenciales de Acción/fisiología , Colículos Superiores/fisiología , Colículos Superiores/citología
9.
Annu Rev Neurosci ; 40: 425-451, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28471714

RESUMEN

Surround modulation (SM) is a fundamental property of sensory neurons in many species and sensory modalities. SM is the ability of stimuli in the surround of a neuron's receptive field (RF) to modulate (typically suppress) the neuron's response to stimuli simultaneously presented inside the RF, a property thought to underlie optimal coding of sensory information and important perceptual functions. Understanding the circuit and mechanisms for SM can reveal fundamental principles of computations in sensory cortices, from mouse to human. Current debate is centered over whether feedforward or intracortical circuits generate SM, and whether this results from increased inhibition or reduced excitation. Here we present a working hypothesis, based on theoretical and experimental evidence, that SM results from feedforward, horizontal, and feedback interactions with local recurrent connections, via synaptic mechanisms involving both increased inhibition and reduced recurrent excitation. In particular, strong and balanced recurrent excitatory and inhibitory circuits play a crucial role in the computation of SM.


Asunto(s)
Neuronas/fisiología , Corteza Visual/fisiología , Vías Visuales/fisiología , Percepción Visual/fisiología , Animales , Retroalimentación Fisiológica/fisiología , Modelos Neurológicos , Estimulación Luminosa , Campos Visuales/fisiología
10.
PLoS Comput Biol ; 20(5): e1012127, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38820562

RESUMEN

Neurons in the primary visual cortex respond selectively to simple features of visual stimuli, such as orientation and spatial frequency. Simple cells, which have phase-sensitive responses, can be modeled by a single receptive field filter in a linear-nonlinear model. However, it is challenging to analyze phase-invariant complex cells, which require more elaborate models having a combination of nonlinear subunits. Estimating parameters of these models is made additionally more difficult by cortical neurons' trial-to-trial response variability. We develop a simple convolutional neural network method to estimate receptive field models for both simple and complex visual cortex cells from their responses to natural images. The model consists of a spatiotemporal filter, a parameterized rectifier unit (PReLU), and a two-dimensional Gaussian "map" of the receptive field envelope. A single model parameter determines the simple vs. complex nature of the receptive field, capturing complex cell responses as a summation of homogeneous subunits, and collapsing to a linear-nonlinear model for simple type cells. The convolutional method predicts simple and complex cell responses to natural image stimuli as well as grating tuning curves. The fitted models yield a continuum of values for the PReLU parameter across the sampled neurons, showing that the simple/complex nature of cells can vary in a continuous manner. We demonstrate that complex-like cells respond less reliably than simple-like cells. However, compensation for this unreliability with noise ceiling analysis reveals predictive performance for complex cells proportionately closer to that for simple cells. Most spatial receptive field structures are well fit by Gabor functions, whose parameters confirm well-known properties of cat A17/18 receptive fields.


Asunto(s)
Biología Computacional , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas , Corteza Visual , Animales , Neuronas/fisiología , Corteza Visual/fisiología , Corteza Visual/citología , Biología Computacional/métodos , Estimulación Luminosa , Campos Visuales/fisiología , Gatos , Corteza Visual Primaria/fisiología
11.
Proc Natl Acad Sci U S A ; 119(44): e2212936119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282918

RESUMEN

The right and left cerebral hemispheres are important for face and word recognition, respectively-a specialization that emerges over human development. The question is whether this bilateral distribution is necessary or whether a single hemisphere, be it left or right, can support both face and word recognition. Here, face and word recognition accuracy in patients (median age 16.7 y) with a single hemisphere following childhood hemispherectomy was compared against matched typical controls. In experiment 1, participants viewed stimuli in central vision. Across both face and word tasks, accuracy of both left and right hemispherectomy patients, while significantly lower than controls' accuracy, averaged above 80% and did not differ from each other. To compare patients' single hemisphere more directly to one hemisphere of controls, in experiment 2, participants viewed stimuli in one visual field to constrain initial processing chiefly to a single (contralateral) hemisphere. Whereas controls had higher word accuracy when words were presented to the right than to the left visual field, there was no field/hemispheric difference for faces. In contrast, left and right hemispherectomy patients, again, showed comparable performance to one another on both face and word recognition, albeit significantly lower than controls. Altogether, the findings indicate that a single developing hemisphere, either left or right, may be sufficiently plastic for comparable representation of faces and words. However, perhaps due to increased competition or "neural crowding," constraining cortical representations to one hemisphere may collectively hamper face and word recognition, relative to that observed in typical development with two hemispheres.


Asunto(s)
Reconocimiento Facial , Hemisferectomía , Humanos , Niño , Adolescente , Campos Visuales , Plásticos , Reconocimiento Visual de Modelos , Lateralidad Funcional
12.
J Neurosci ; 43(41): 6884-6897, 2023 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-37640553

RESUMEN

Visual neural processing is distributed among a multitude of sensory and sensory-motor brain areas exhibiting varying degrees of functional specializations and spatial representational anisotropies. Such diversity raises the question of how perceptual performance is determined, at any one moment in time, during natural active visual behavior. Here, exploiting a known dichotomy between the primary visual cortex (V1) and superior colliculus (SC) in representing either the upper or lower visual fields, we asked whether peri-saccadic orientation identification performance is dominated by one or the other spatial anisotropy. Humans (48 participants, 29 females) reported the orientation of peri-saccadic upper visual field stimuli significantly better than lower visual field stimuli, unlike their performance during steady-state gaze fixation, and contrary to expected perceptual superiority in the lower visual field in the absence of saccades. Consistent with this, peri-saccadic superior colliculus visual neural responses in two male rhesus macaque monkeys were also significantly stronger in the upper visual field than in the lower visual field. Thus, peri-saccadic orientation identification performance is more in line with oculomotor, rather than visual, map spatial anisotropies.SIGNIFICANCE STATEMENT Different brain areas respond to visual stimulation, but they differ in the degrees of functional specializations and spatial anisotropies that they exhibit. For example, the superior colliculus (SC) both responds to visual stimulation, like the primary visual cortex (V1), and controls oculomotor behavior. Compared with the primary visual cortex, the superior colliculus exhibits an opposite pattern of upper/lower visual field anisotropy, being more sensitive to the upper visual field. Here, we show that human peri-saccadic orientation identification performance is better in the upper compared with the lower visual field. Consistent with this, monkey superior colliculus visual neural responses to peri-saccadic stimuli follow a similar pattern. Our results indicate that peri-saccadic perceptual performance reflects oculomotor, rather than visual, map spatial anisotropies.


Asunto(s)
Movimientos Sacádicos , Campos Visuales , Animales , Femenino , Masculino , Humanos , Macaca mulatta , Percepción Visual/fisiología , Movimientos Oculares , Colículos Superiores/fisiología , Estimulación Luminosa
13.
J Neurosci ; 43(6): 993-1007, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36535768

RESUMEN

Human vision processes light and dark stimuli in visual scenes with separate ON and OFF neuronal pathways. In nature, stimuli lighter or darker than their local surround have different spatial properties and contrast distributions (Ratliff et al., 2010; Cooper and Norcia, 2015; Rahimi-Nasrabadi et al., 2021). Similarly, in human vision, we show that luminance contrast affects the perception of lights and darks differently. At high contrast, human subjects of both sexes locate dark stimuli faster and more accurately than light stimuli, which is consistent with a visual system dominated by the OFF pathway. However, at low contrast, they locate light stimuli faster and more accurately than dark stimuli, which is consistent with a visual system dominated by the ON pathway. Luminance contrast was strongly correlated with multiple ON/OFF dominance ratios estimated from light/dark ratios of performance errors, missed targets, or reaction times (RTs). All correlations could be demonstrated at multiple eccentricities of the central visual field with an ON-OFF perimetry test implemented in a head-mounted visual display. We conclude that high-contrast stimuli are processed faster and more accurately by OFF pathways than ON pathways. However, the OFF dominance shifts toward ON dominance when stimulus contrast decreases, as expected from the higher-contrast sensitivity of ON cortical pathways (Kremkow et al., 2014; Rahimi-Nasrabadi et al., 2021). The results highlight the importance of contrast polarity in visual field measurements and predict a loss of low-contrast vision in humans with ON pathway deficits, as demonstrated in animal models (Sarnaik et al., 2014).SIGNIFICANCE STATEMENT ON and OFF retino-thalamo-cortical pathways respond differently to luminance contrast. In both animal models and humans, low contrasts drive stronger responses from ON pathways, whereas high contrasts drive stronger responses from OFF pathways. We demonstrate that these ON-OFF pathway differences have a correlate in human vision. At low contrast, humans locate light targets faster and more accurately than dark targets but, as contrast increases, dark targets become more visible than light targets. We also demonstrate that contrast is strongly correlated with multiple light/dark ratios of visual performance in central vision. These results provide a link between neuronal physiology and human vision while emphasizing the importance of stimulus polarity in measurements of visual fields and contrast sensitivity.


Asunto(s)
Corteza Visual , Masculino , Animales , Femenino , Humanos , Corteza Visual/fisiología , Visión Ocular , Campos Visuales , Sensibilidad de Contraste , Vías Visuales/fisiología , Estimulación Luminosa , Percepción Visual/fisiología
14.
J Cogn Neurosci ; 36(1): 200-216, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37902594

RESUMEN

Visual perception waxes and wanes periodically over time at low frequencies (theta: 4-7 Hz; alpha: 8-13 Hz), creating "perceptual cycles." These perceptual cycles can be induced when stimulating the brain with a flickering visual stimulus at the theta or alpha frequency. Here, we took advantage of the well-known organization of the visual system into retinotopic maps (topographic correspondence between visual and cortical spaces) to assess the spatial organization of induced perceptual cycles. Specifically, we tested the hypothesis that they can propagate across the retinotopic space. A disk oscillating in luminance (inducer) at 4, 6, 8, or 10 Hz was presented in the periphery of the visual field to induce perceptual cycles at specific frequencies. EEG recordings verified that the brain responded at the corresponding inducer frequencies and their first harmonics. Perceptual cycles were assessed with a concurrent detection task-target stimuli were displayed at threshold contrast (50% detection) at random times during the inducer. Behavioral results confirmed that perceptual performance was modulated periodically by the inducer at each frequency. We additionally manipulated the distance between the target and the inducer (three possible positions) and showed that the optimal phase, that is, moment of highest target detection, shifted across target distance to the inducer, specifically when its flicker frequency was in the alpha range (8 and 10 Hz). These results demonstrate that induced alpha perceptual cycles travel across the retinotopic space in humans at a propagation speed of 0.3-0.5 m/sec, consistent with the speed of unmyelinated horizontal connections in the visual cortex.


Asunto(s)
Corteza Visual , Percepción Visual , Humanos , Campos Visuales , Encéfalo , Estimulación Luminosa/métodos
15.
Neuroimage ; 290: 120568, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38499052

RESUMEN

Visual symmetry at fixation generates a bilateral Event Related Potential (ERP) called the Sustained Posterior Negativity (SPN). Symmetry presented in the left visual hemifield generates a contralateral SPN over the right hemisphere and vice versa. The current study examined whether the contralateral SPN is modulated by the focus of spatial attention. On each trial there were two dot patterns, one to the left of fixation, and one to the right of fixation. A central arrow cue pointed to one of the patterns and participants discriminated its regularity (symmetry or random). We compared contralateral SPN amplitude generated by symmetry at attended and unattended spatial locations. While the response to attended symmetry was slightly enhanced, the response to unattended symmetry was still substantial. Although visual symmetry detection is a computational challenge, we conclude that the brain processes visual symmetry in unattended parts of the visual field.


Asunto(s)
Electroencefalografía , Potenciales Evocados , Humanos , Potenciales Evocados/fisiología , Campos Visuales , Encéfalo/fisiología , Atención/fisiología , Estimulación Luminosa
16.
Neuroimage ; 297: 120718, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38964563

RESUMEN

N, N-dimethyltryptamine (DMT) is a psychedelic tryptamine acting on 5-HT2A serotonin receptors, which is associated with intense visual hallucinatory phenomena and perceptual changes such as distortions in visual space. The neural underpinnings of these effects remain unknown. We hypothesised that changes in population receptive field (pRF) properties in the primary visual cortex (V1) might underlie visual perceptual experience. We tested this hypothesis using magnetic resonance imaging (MRI) in a within-subject design. We used a technique called pRF mapping, which measures neural population visual response properties and retinotopic maps in early visual areas. We show that in the presence of visual effects, as documented by the Hallucinogen Rating Scale (HRS), the mean pRF sizes in V1 significantly increase in the peripheral visual field for active condition (inhaled DMT) compared to the control. Eye and head movement differences were absent across conditions. This evidence for short-term effects of DMT in pRF may explain perceptual distortions induced by psychedelics such as field blurring, tunnel vision (peripheral vision becoming blurred while central vision remains sharp) and the enlargement of nearby visual space, particularly at the visual locations surrounding the fovea. Our findings are also consistent with a mechanistic framework whereby gain control of ongoing and evoked activity in the visual cortex is controlled by activation of 5-HT2A receptors.


Asunto(s)
Alucinógenos , Imagen por Resonancia Magnética , Humanos , Alucinógenos/farmacología , Adulto , Masculino , Femenino , Adulto Joven , Corteza Visual/efectos de los fármacos , Corteza Visual/fisiología , Corteza Visual/diagnóstico por imagen , Distorsión de la Percepción/efectos de los fármacos , Distorsión de la Percepción/fisiología , N,N-Dimetiltriptamina/farmacología , Campos Visuales/efectos de los fármacos , Campos Visuales/fisiología , Percepción Visual/efectos de los fármacos , Percepción Visual/fisiología , Triptaminas/farmacología , Corteza Visual Primaria/efectos de los fármacos , Corteza Visual Primaria/fisiología , Corteza Visual Primaria/diagnóstico por imagen , Mapeo Encefálico/métodos
17.
J Neurophysiol ; 131(4): 619-625, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38416707

RESUMEN

To create coherent visual experiences, the brain spatially integrates the complex and dynamic information it receives from the environment. We previously demonstrated that feedback-related alpha activity carries stimulus-specific information when two spatially and temporally coherent naturalistic inputs can be integrated into a unified percept. In this study, we sought to determine whether such integration-related alpha dynamics are triggered by categorical coherence in visual inputs. In an EEG experiment, we manipulated the degree of coherence by presenting pairs of videos from the same or different categories through two apertures in the left and right visual hemifields. Critically, video pairs could be video-level coherent (i.e., stem from the same video), coherent in their basic-level category, coherent in their superordinate category, or incoherent (i.e., stem from videos from two entirely different categories). We conducted multivariate classification analyses on rhythmic EEG responses to decode between the video stimuli in each condition. As the key result, we significantly decoded the video-level coherent and basic-level coherent stimuli, but not the superordinate coherent and incoherent stimuli, from cortical alpha rhythms. This suggests that alpha dynamics play a critical role in integrating information across space, and that cortical integration processes are flexible enough to accommodate information from different exemplars of the same basic-level category.NEW & NOTEWORTHY Our brain integrates dynamic inputs across the visual field to create coherent visual experiences. Such integration processes have previously been linked to cortical alpha dynamics. In this study, the integration-related alpha activity was observed not only when snippets from the same video were presented, but also when different video snippets from the same basic-level category were presented, highlighting the flexibility of neural integration processes.


Asunto(s)
Corteza Visual , Campos Visuales , Corteza Visual/fisiología , Ritmo alfa , Encéfalo , Mapeo Encefálico
18.
Hum Brain Mapp ; 45(3): e26616, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38379465

RESUMEN

The center-periphery visual field axis guides early visual system organization with enhanced resources devoted to central vision leading to reduced peripheral performance relative to that of central vision (i.e., behavioral eccentricity effect) for many visual functions. The center-periphery organization extends to high-order visual cortex where, for example, the well-studied face-sensitive fusiform face area (FFA) shows sensitivity to central vision and the place-sensitive parahippocampal place area (PPA) shows sensitivity to peripheral vision. As we have recently found that face perception is more sensitive to eccentricity than place perception, here we examined whether these behavioral findings reflect differences in FFA's and PPA's sensitivities to eccentricity. We assumed FFA would show higher sensitivity to eccentricity than PPA would, but that both regions' modulation by eccentricity would be invariant to the viewed category. We parametrically investigated (fMRI, n = 32) how FFA's and PPA's activations are modulated by eccentricity (≤8°) and category (upright/inverted faces/houses) while keeping stimulus size constant. As expected, FFA showed an overall higher sensitivity to eccentricity than PPA. However, both regions' activation modulations by eccentricity were dependent on the viewed category. In FFA, a reduction of activation with growing eccentricity ("BOLD eccentricity effect") was found (with different amplitudes) for all categories. In PPA however, qualitatively different BOLD eccentricity effect modulations were found (e.g., at 8° mild BOLD eccentricity effect for houses but a reverse BOLD eccentricity effect for faces and no modulation for inverted faces). Our results emphasize that peripheral vision investigations are critical to further our understanding of visual processing.


Asunto(s)
Reconocimiento Facial , Corteza Visual , Humanos , Mapeo Encefálico , Percepción Visual/fisiología , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiología , Campos Visuales , Reconocimiento Facial/fisiología , Imagen por Resonancia Magnética , Reconocimiento Visual de Modelos/fisiología , Estimulación Luminosa
19.
Proc Biol Sci ; 291(2023): 20240239, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38808445

RESUMEN

The ocean's midwater is a uniquely challenging yet predictable and simple visual environment. The need to see without being seen in this dim, open habitat has led to extraordinary visual adaptations. To understand these adaptations, we compared the morphological and functional differences between the eyes of three hyperiid amphipods-Hyperia galba, Streetsia challengeri and Phronima sedentaria. Combining micro-CT data with computational modelling, we mapped visual field topography and predicted detection distances for visual targets viewed in different directions through mesopelagic depths. Hyperia's eyes provide a wide visual field optimized for spatial vision over short distances, while Phronima's and Streetsia's eyes have the potential to achieve greater sensitivity and longer detection distances using spatial summation. These improvements come at the cost of smaller visual fields, but this loss is compensated for by a second pair of eyes in Phronima and by behaviour in Streetsia. The need to improve sensitivity while minimizing visible eye size to maintain crypsis has likely driven the evolution of hyperiid eye diversity. Our results provide an integrative look at how these elusive animals have adapted to the unique visual challenges of the mesopelagic.


Asunto(s)
Anfípodos , Animales , Anfípodos/fisiología , Anfípodos/anatomía & histología , Ecosistema , Campos Visuales , Ojo/anatomía & histología , Visión Ocular , Microtomografía por Rayos X
20.
Ophthalmology ; 131(2): 240-248, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38069944

RESUMEN

PURPOSE: To evaluate the current published literature on the utility of the 10-2 visual field (VF) testing strategy for the evaluation and management of early glaucoma, defined here as mean deviation (MD) better than -6 decibels (dB). METHODS: A search of the peer-reviewed literature was last conducted in June 2023 in the PubMed database. Abstracts of 986 articles were examined to exclude reviews and non-English-language articles. After inclusion and exclusion criteria were applied, 26 articles were selected, and the panel methodologist rated them for strength of evidence. Thirteen articles were rated level I, and 8 articles were rated level II. The 5 level III articles were excluded. Data from the 21 included articles were abstracted and reviewed. RESULTS: The central 12 locations on the 24-2 VF test grid lie within the central 10 degrees covered by the 10-2 VF test. In early glaucoma, defects detected within the central 10 degrees generally agree between the 2 tests. Defects within the central 10 degrees of the 24-2 VF test can predict defects on the 10-2 VF test, although the 24-2 may miss defects detected on the 10-2 VF test. In addition, results from the 10-2 VF test show better association with findings from OCT scans of the macular ganglion cell complex. Modifications of the 24-2 test that include extra test locations within the central 10 degrees improve detection of central defects found on 10-2 VF testing. CONCLUSIONS: Evidence to date does not support routine testing using 10-2 VF for patients with early glaucoma. However, early 10-2 VF testing may provide sufficient additional information for some patients, particularly those with a repeatable defect within the central 12 locations of the standard 24-2 VF test or who have inner retinal layer thinning on OCT scans of the macula. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.


Asunto(s)
Glaucoma , Oftalmología , Humanos , Estados Unidos , Campos Visuales , Escotoma/diagnóstico , Células Ganglionares de la Retina , Tomografía de Coherencia Óptica/métodos , Pruebas del Campo Visual , Glaucoma/diagnóstico , Glaucoma/complicaciones , Presión Intraocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA