Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 295
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Infect Chemother ; 30(3): 208-212, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38012984

RESUMEN

INTRODUCTION: As an infectious disease, tuberculosis (TB) poses a serious threat to public health. Although amikacin (AMK) is an important antibiotic for the treatment of drug-resistant TB, its resistance mechanisms are not fully understood. METHODS: To investigate the role of Rv3737 gene on AMK drug susceptibility, a Mycobacterium tuberculosis (M.tb) Rv3737 knockout strain (H37Rv△Rv3737) and a Mycobacterium smegmatis (M.sm) Rv3737 overexpressing strain (Msm/pMV261-Rv3737) were used to detect their minimal inhibitory concentrations (MICs) in this study. RESULTS: The AMK MICs of Rv3737 knockout and overexpressing strains were 4-fold lower and 2-fold higher than those of the wild-type and empty plasmid strains, respectively. The results of clinical isolates showed that no Rv3737 gene mutation was found to be associated with AMK susceptibility, while the rrs A1401G mutation remained the main mechanism of high level of AMK resistance (MIC>32 µg/ml). There was a positive correlation between Rv3737 mRNA expression level and AMK MIC. In the isolates with low-level AMK resistance (MIC = 4 µg/ml) without rrs A1401G mutation, the expression level of Rv3737 gene was significantly higher than those of susceptible isolates. CONCLUSIONS: In this study, the Rv3737 gene was reported for the first time for its effect on AMK susceptibility in M.tb. Although the rrs A1401G mutation remains the main reason of high-level AMK resistance, high expression of the Rv3737 gene was associated with low-level AMK resistance in clinical isolates.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Amicacina/farmacología , Amicacina/uso terapéutico , Kanamicina/farmacología , Capreomicina/farmacología , Capreomicina/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Mutación , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Pruebas de Sensibilidad Microbiana
2.
J Clin Microbiol ; 61(3): e0147822, 2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-36757183

RESUMEN

While the goal of universal drug susceptibility testing has been a key component of the WHO End TB Strategy, in practice, this remains inaccessible to many. Rapid molecular tests for tuberculosis (TB) and antituberculosis drug resistance could significantly improve access to testing. In this study, we evaluated the accuracy of the Akonni Biosystems XDR-TB (extensively drug-resistant TB) TruArray and lateral-flow-cell (XDR-LFC) assay (Akonni Biosystems, Inc., Frederick, MD, USA), a novel assay that detects mutations in seven genes associated with resistance to antituberculosis drugs: katG, the inhA promoter, and the ahpC promoter for isoniazid; rpoB for rifampin; gyrA for fluoroquinolones; rrs and the eis promoter for kanamycin; and rrs for capreomycin and amikacin. We evaluated assay performance using direct sputum samples from 566 participants recruited in a prospective cohort in Moldova over 2 years. The sensitivity and specificity against the phenotypic reference were both 100% for isoniazid, 99.2% and 97.9% for rifampin, 84.8% and 99.1% for fluoroquinolones, 87.0% and 84.1% for kanamycin, 54.3% and 100% for capreomycin, and 79.2% and 100% for amikacin, respectively. Whole-genome sequencing data for a subsample of 272 isolates showed 95 to 99% concordance with the XDR-LFC-reported suspected mutations. The XDR-LFC assay demonstrated a high level of accuracy for multiple drugs and met the WHO's minimum target product profile criteria for isoniazid and rifampin, while the sensitivity for fluoroquinolones and amikacin fell below target thresholds, likely due to the absence of a gyrB target in the assay. With optimization, the XDR-LFC shows promise as a novel near-patient technology to rapidly diagnose drug-resistant tuberculosis.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Kanamicina , Isoniazida/farmacología , Capreomicina , Amicacina/farmacología , Rifampin/farmacología , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Prospectivos , Proteínas Bacterianas/genética , Farmacorresistencia Bacteriana Múltiple/genética , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/diagnóstico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico
3.
Pharm Res ; 40(5): 1073-1086, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36869245

RESUMEN

INTRODUCTION: The emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) posed a severe challenge to tuberculosis (TB) management. The treatment of MDR-TB involves second-line anti-TB agents, most of which are injectable and highly toxic. Previous metabolomics study of the Mtb membrane revealed that two antimicrobial peptides, D-LAK120-A and D-LAK120-HP13, can potentiate the efficacy of capreomycin against mycobacteria. AIMS: As both capreomycin and peptides are not orally available, this study aimed to formulate combined formulations of capreomycin and D-LAK peptides as inhalable dry powder by spray drying. METHODS AND RESULTS: A total of 16 formulations were prepared with different levels of drug content and capreomycin to peptide ratios. A good production yield of over 60% (w/w) was achieved in most formulations. The co-spray dried particles exhibited spherical shape with a smooth surface and contained low residual moisture of below 2%. Both capreomycin and D-LAK peptides were enriched at the surface of the particles. The aerosol performance of the formulations was evaluated with Next Generation Impactor (NGI) coupled with Breezhaler®. While no significant difference was observed in terms of emitted fraction (EF) and fine particle fraction (FPF) among the different formulations, lowering the flow rate from 90 L/min to 60 L/min could reduce the impaction at the throat and improve the FPF to over 50%. CONCLUSIONS: Overall, this study showed the feasibility of producing co-spray dried formulation of capreomycin and antimicrobial peptides for pulmonary delivery. Future study on their antibacterial effect is warranted.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Capreomicina/química , Capreomicina/uso terapéutico , Polvos/química , Péptidos Antimicrobianos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Aerosoles/química , Péptidos/farmacología , Inhaladores de Polvo Seco/métodos , Tamaño de la Partícula , Administración por Inhalación
4.
BMC Infect Dis ; 23(1): 638, 2023 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770850

RESUMEN

BACKGROUND: Multidrug-resistant tuberculosis (MDR-TB) remains a major public health problem in many high tuberculosis (TB) burden countries. Phenotypic drug susceptibility testing (DST) take several weeks or months to result, but line probe assays and Xpert/Rif Ultra assay detect a limited number of resistance conferring gene mutations. Whole genome sequencing (WGS) is an advanced molecular testing method which theoretically can predict the resistance of M. tuberculosis (Mtb) isolates to all anti-TB agents through a single analysis. METHODS: Here, we aimed to identify the level of concordance between the phenotypic and WGS-based genotypic drug susceptibility (DS) patterns of MDR-TB isolates. Overall, data for 12 anti-TB medications were analyzed. RESULTS: In total, 63 MDR-TB Mtb isolates were included in the analysis, representing 27.4% of the total number of MDR-TB cases in Latvia in 2012-2014. Among them, five different sublineages were detected, and 2.2.1 (Beijing group) and 4.3.3 (Latin American-Mediterranean group) were the most abundant. There were 100% agreement between phenotypic and genotypic DS pattern for isoniazid, rifampicin, and linezolid. High concordance rate (> 90%) between phenotypic and genotypic DST results was detected for ofloxacin (93.7%), pyrazinamide (93.7%) and streptomycin (95.4%). Phenotypic and genotypic DS patterns were poorly correlated for ethionamide (agreement 56.4%), ethambutol (85.7%), amikacin (82.5%), capreomycin (81.0%), kanamycin (85.4%), and moxifloxacin (77.8%). For capreomycin, resistance conferring mutations were not identified in several phenotypically resistant isolates, and, in contrary, for ethionamide, ethambutol, amikacin, kanamycin, and moxifloxacin the resistance-related mutations were identified in several phenotypically sensitive isolates. CONCLUSIONS: WGS is a valuable tool for rapid genotypic DST for all anti-TB agents. For isoniazid and rifampicin phenotypic DST potentially can be replaced by genotypic DST based on 100% agreement between the tests. However, discrepant results for other anti-TB agents limit their prescription based solely on WGS data. For clinical decision, at the current level of knowledge, there is a need for combination of genotypic DST with modern, validated phenotypic DST methodologies for those medications which did not showed 100% agreement between the methods.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Tuberculosis , Humanos , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Etambutol/uso terapéutico , Isoniazida/uso terapéutico , Rifampin/uso terapéutico , Amicacina/uso terapéutico , Etionamida/uso terapéutico , Capreomicina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Letonia , Moxifloxacino/uso terapéutico , Farmacorresistencia Bacteriana Múltiple/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Secuenciación Completa del Genoma , Tuberculosis/tratamiento farmacológico , Kanamicina/uso terapéutico
5.
Clin Lab ; 69(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36649505

RESUMEN

BACKGROUND: The emergence of multidrug resistance and extensively drug-resistant tuberculosis is a serious public health crisis. Using rapid and inexpensive molecular methods such as HRM assay in the detection of second-line drugs resistance in M. tuberculosis would be helpful in the treatment and control of XDR tuberculosis cases. METHODS: MDR-TB isolates were collected from Iranian tuberculosis laboratories. Drug susceptibility test performed via the indirect proportion method utilizing LJ Medium. Susceptibility to ciprofloxacin, ofloxacin, amikacin, kanamycin, and capreomycin, as second-line anti-tuberculosis agents were assessed. Single point mutations in gyrA, rrs and eis genes were detected via HRM assay and DNA sequencing. RESULTS: A DST test was performed for 56 MDR isolates and at least 27 (48.2%) isolates were resistant to CIP or OFL. Also, 14 (25%), 12 (21.4%), and 15 (26.7%) isolates were resistant to capreomycin, amikacin, and kanamycin, respectively. D94G, A90V, and G88C mutations were the most frequent mutations in gyrA gene. Also, A1401G mutation was detected more than the other mutations in rrs gene. CONCLUSIONS: The frequency of CIP/OFL and AMK/CAP/KAN-resistant TB is considerable among Iranian tuberculosis cases. HRM assay is a rapid and inexpensive test and can detect important mutation-based drug resistance in MDR-TB and XDR-TB isolates.


Asunto(s)
Tuberculosis Extensivamente Resistente a Drogas , Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Amicacina/farmacología , Capreomicina/farmacología , Capreomicina/uso terapéutico , Irán , Farmacorresistencia Bacteriana Múltiple/genética , Antituberculosos/farmacología , Kanamicina/farmacología , Kanamicina/uso terapéutico , Tuberculosis Extensivamente Resistente a Drogas/tratamiento farmacológico , Tuberculosis Extensivamente Resistente a Drogas/microbiología , Mutación , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
6.
Antimicrob Agents Chemother ; 66(6): e0207521, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35532237

RESUMEN

Point mutations in the rrs gene and the eis promoter are known to confer resistance to the second-line injectable drugs (SLIDs) amikacin (AMK), capreomycin (CAP), and kanamycin (KAN). While mutations in these canonical genes confer the majority of SLID resistance, alternative mechanisms of resistance are not uncommon and threaten effective treatment decisions when using conventional molecular diagnostics. In total, 1,184 clinical Mycobacterium tuberculosis isolates from 7 countries were studied for genomic markers associated with phenotypic resistance. The markers rrs:A1401G and rrs:G1484T were associated with resistance to all three SLIDs, and three known markers in the eis promoter (eis:G-10A, eis:C-12T, and eis:C-14T) were similarly associated with kanamycin resistance (KAN-R). Among 325, 324, and 270 AMK-R, CAP-R, and KAN-R isolates, 274 (84.3%), 250 (77.2%), and 249 (92.3%) harbored canonical mutations, respectively. Thirteen isolates harbored more than one canonical mutation. Canonical mutations did not account for 103 of the phenotypically resistant isolates. A genome-wide association study identified three genes and promoters with mutations that, on aggregate, were associated with unexplained resistance to at least one SLID. Our analysis associated whiB7 5'-untranslated-region mutations with KAN resistance, supporting clinical relevance for this previously demonstrated mechanism of KAN resistance. We also provide evidence for the novel association of CAP resistance with the promoter of the Rv2680-Rv2681 operon, which encodes an exoribonuclease that may influence the binding of CAP to the ribosome. Aggregating mutations by gene can provide additional insight and therefore is recommended for identifying rare mechanisms of resistance when individual mutations carry insufficient statistical power.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple , Mycobacterium tuberculosis , Amicacina/farmacología , Antituberculosos/farmacología , Capreomicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Marcadores Genéticos , Estudio de Asociación del Genoma Completo , Kanamicina/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética
7.
Chembiochem ; 23(24): e202200563, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36278314

RESUMEN

Capreomycidine (Cap) is a nonproteinogenic amino acid and building block of nonribosomal peptide (NRP) natural products. We report the formation and activation of Cap in capreomycin biosynthesis. CmnC and CmnD catalyzed hydroxylation and cyclization, respectively, of l-Arg to form l-Cap. l-Cap is then adenylated by CmnG-A before being incorporated into the nonribosomal peptide. The co-crystal structures of CmnG-A with l-Cap and adenosine nucleotides provide insights into the specificity and engineering opportunities of this unique adenylation domain.


Asunto(s)
Aminoácidos , Péptido Sintasas , Péptido Sintasas/metabolismo , Capreomicina , Especificidad por Sustrato , Péptidos/química
8.
ScientificWorldJournal ; 2022: 8924023, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35958801

RESUMEN

Helicobacter pylori infection causes gastritis, peptic ulcer disease, mucosa-associated lymphoid tissue lymphoma, and gastric cancer and can also promote thrombosis. It is estimated that approximately 4.5 billion individuals are infected, thus rendering H. pylori the most prevalent microbial pathogen. Currently established regimes for antibiotic treatment are massively challenged by increasing drug resistance and the development of novel antimicrobial therapies is urgently required. The antibiotic capreomycin is clinically used against multiple drug-resistant strains of Mycobacterium tuberculosis. It targets the complex between TlyA, a hemolysin- and RNA-binding protein, and the bacterial rRNA. In this study we have explored the possible antibacterial effects of capreomycin against several strains of H. pylori and found only moderate activity which was comparable to metronidazole-resistant strains. Molecular docking of capreomycin to TlyA proteins from H. pylori and M. tuberculosis identified several residues within TlyA which interact with the drug; however, binding affinities of H. pylori- TlyA for capreomycin appear to be higher than those of Mycobacterium- TlyA. The data suggest that capreomycin may warrant further investigations into its potential use as antibiotic against H. pylori.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Mycobacterium tuberculosis , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Capreomicina/farmacología , Capreomicina/uso terapéutico , Farmacorresistencia Bacteriana , Infecciones por Helicobacter/tratamiento farmacológico , Helicobacter pylori/genética , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/metabolismo
9.
Zhonghua Jie He He Hu Xi Za Zhi ; 45(6): 552-559, 2022 Jun 12.
Artículo en Zh | MEDLINE | ID: mdl-35658379

RESUMEN

Objective: To compare the diagnostic performance of next-generation sequencing (NGS) detection methods in sputum samples and Mycobacterium tuberculosis strains, in order to explore the feasibility of the NGS method to detect drug resistance in sputum specimens. Methods: In this retrospective study, the sputum specimens and corresponding clinical isolates of 50 pulmonary tuberculosis patients admitted to Beijing Chest Hospital from January 2017 to December 2017 were collected. The gene mutations of katG, inhA, rpoB, embA, embB, rpsL, rrs, gyrA, gyrB and tlyA in sputum specimens and corresponding clinical isolates were detected by NGS method. The phenotypic drug susceptibility test (DST) of the strains was carried out by the proportion method. Using DST results as a reference, the sensitivity, specificity, positive predictive value and negative predictive value of the NGS method for clinical strains and sputum specimens, as well as the consistency statistic (Kappa) with phenotype DST were calculated respectively. The Chi-square test was used to compare the accuracy of the NGS testing in sputum samples and strain samples. Results: The results showed that rpoB(63.83%, 30/47) and rrs(57.45%, 27/47) were the most common mutated genes, followed by katG(46.81%, 22/47), rpsL(29.79%, 14/47), gyrA(27.66%, 13/47), embB(21.28%, 10/47), tlyA(12.77%, 6/47), gyrB(8.51%, 4/47), and inhA promoter(19.15%, 9/47), embA promoter region (12.77%, 6/47) mutation. when the NGS method was compared with the resistance phenotype of isoniazid, rifampicin, ethambutol, second-line injectable drugs (streptomycin, capreomycin, kanamycin, amikacin), levofloxacin, the sensitivity were 85.71%, 91.67%, 77.78%, 81.82%, 100.00%, 87.50%, 100.00%, 69.23%, and the specificity were 100.00%, 94.12, 87.50%, 89.47%, 97.06%, 96.97%, 94.29%, 89.29% in sputum samples, while in strain samples, the sensitivity were 92.86%, 100.00%, 81.82%, 86.96%, 88.89%, 80.00%, 100.00%, 85.71%. The specificity were 100.00%, 92.86%, 87.10%, 94.74%, 100.00%, 100.00%, 97.14%, 92.86%. Compared with the phenotypic drug susceptibility results, the NGS method has better detection performance for isoniazid, rifampicin, capreomycin, kanamycin, and amikacin in sputum specimens (Kappa≥0.75); while among the strains, the NGS method had a good detection performance for isoniazid, rifampicin, streptomycin, capreomycin, kanamycin, amikacin and levofloxacin (Kappa≥0.75). With the accuracy of the NGS method for detecting strains as a reference, there was no statistically significant difference in the accuracy of all drug resistance detected between strains and sputum specimens. Conclusions: This study showed that the NGS technology was effective in predicting the resistance of isoniazid, rifampicin, and second-line injectable drugs (capreomycin, kanamycin and amikacin) by detecting sputum samples and strain genotypes, suggesting the feasibility and potential of direct detection of sputum samples by the NGS method as an early detection method for drug resistance.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Ganglionar , Tuberculosis Resistente a Múltiples Medicamentos , Amicacina/farmacología , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Capreomicina/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Isoniazida/farmacología , Kanamicina/farmacología , Levofloxacino/farmacología , Pruebas de Sensibilidad Microbiana , Estudios Retrospectivos , Rifampin/farmacología , Esputo/microbiología , Estreptomicina/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico
10.
Biochemistry ; 60(1): 77-84, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33356147

RESUMEN

Capreomycin (CMN) and viomycin (VIO) are nonribosomal peptide antituberculosis antibiotics, the structures of which contain four nonproteinogenic amino acids, including l-2,3-diaminopropionic acid (l-Dap), ß-ureidodehydroalanine, l-capreomycidine, and ß-lysine. Previous bioinformatics analysis suggested that CmnB/VioB and CmnK/VioK participate in the formation of l-Dap; however, the real substrates of these enzymes are yet to be confirmed. We herein show that starting from O-phospho-l-Ser (OPS) and l-Glu precursors, CmnB catalyzes the condensation reaction to generate a metabolite intermediate N-(1-amino-1-carboxyl-2-ethyl)glutamic acid (ACEGA), which undergoes NAD+-dependent oxidative hydrolysis by CmnK to generate l-Dap. Furthermore, the binding site of ACEGA and the catalytic mechanism of CmnK were elucidated with the assistance of three crystal structures, including those of apo-CmnK, the NAD+-CmnK complex, and CmnK in an alternative conformation. The CmnK-ACEGA docking model revealed that the glutamate α-hydrogen points toward the nicotinamide moiety. It provides evidence that the reaction is dependent on hydride transfer to form an imine intermediate, which is subsequently hydrolyzed by a water molecule to produce l-Dap. These findings modify the original proposed pathway and provide insights into l-Dap formation in the biosynthesis of other related natural products.


Asunto(s)
Aminobutiratos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Capreomicina/biosíntesis , Streptomyces/enzimología , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Hidrólisis , Modelos Moleculares , Especificidad por Sustrato
11.
Clin Infect Dis ; 73(11): e3929-e3936, 2021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-33124668

RESUMEN

BACKGROUND: As new drugs are developed for multidrug-resistant tuberculosis (MDR-TB), the role of currently used drugs must be reevaluated. METHODS: We combined individual-level data on patients with pulmonary MDR-TB published during 2009-2016 from 25 countries. We compared patients receiving each of the injectable drugs and those receiving no injectable drugs. Analyses were based on patients whose isolates were susceptible to the drug they received. Using random-effects logistic regression with propensity score matching, we estimated the effect of each agent in terms of standardized treatment outcomes. RESULTS: More patients received kanamycin (n = 4330) and capreomycin (n = 2401) than amikacin (n = 2275) or streptomycin (n = 1554), opposite to their apparent effectiveness. Compared with kanamycin, amikacin was associated with 6 more cures per 100 patients (95% confidence interval [CI], 4-8), while streptomycin was associated with 7 (95% CI, 5-8) more cures and 5 (95% CI, 4-7) fewer deaths per 100 patients. Compared with capreomycin, amikacin was associated with 9 (95% CI, 6-11) more cures and 5 (95% CI, 2-8) fewer deaths per 100 patients, while streptomycin was associated with 10 (95% CI, 8-13) more cures and 10 (95% CI, 7-12) fewer deaths per 100 patients treated. In contrast to amikacin and streptomycin, patients treated with kanamycin or capreomycin did not fare better than patients treated with no injectable drugs. CONCLUSIONS: When aminoglycosides are used to treat MDR-TB and drug susceptibility test results support their use, streptomycin and amikacin, not kanamycin or capreomycin, are the drugs of choice.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Aminoglicósidos/uso terapéutico , Antituberculosos/farmacología , Capreomicina/farmacología , Capreomicina/uso terapéutico , Humanos , Pruebas de Sensibilidad Microbiana , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico
12.
Cell Microbiol ; 22(7): e13199, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32134554

RESUMEN

Campylobacter jejuni is a bacterial pathogen that is generally acquired as a zoonotic infection from poultry and animals. Adhesion of C. jejuni to human colorectal epithelial cells is weakened after loss of its cj0588 gene. The Cj0588 protein belongs to the type I group of TlyA (TlyAI ) enzymes, which 2'-O-methylate nucleotide C1920 in 23S rRNA. Slightly longer TlyAII versions of the methyltransferase are found in actinobacterial species including Mycobacterium tuberculosis, and methylate not only C1920 but also nucleotide C1409 in 16S rRNA. Loss of TlyA function attenuates virulence of both M. tuberculosis and C. jejuni. We show here that the traits impaired in C. jejuni null strains can be rescued by complementation not only with the original cj0588 (tlyA I ) but also with a mycobacterial tlyA II gene. There are, however, significant differences in the recombinant phenotypes. While cj0588 restores motility, biofilm formation, adhesion to and invasion of human epithelial cells and stimulation of IL-8 production in a C. jejuni null strain, several of these properties are further enhanced by the mycobacterial tlyA II gene, in some cases to twice the original wild-type level. These findings strongly suggest that subtle changes in rRNA modification patterns can affect protein synthesis in a manner that has serious consequences for bacterial pathogenicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Campylobacter jejuni/metabolismo , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Biopelículas , Células CACO-2 , Campylobacter jejuni/genética , Capreomicina , Células Epiteliales , Regulación Bacteriana de la Expresión Génica , Genes de ARNr/genética , Humanos , Macrófagos , Metilación , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/genética , Células RAW 264.7 , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Virulencia , Factores de Virulencia/genética
13.
Trop Med Int Health ; 26(4): 421-427, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406316

RESUMEN

OBJECTIVES: In this retrospective study, we evaluated the diagnostic accuracy of molecular tests (MT) for the detection of DR-TB, compared to the gold standard liquid-based drug susceptibility testing (DST) in Karakalpakstan. METHODS: A total of 6670 specimens received in the Republican TB No 1 Hospital Laboratory of Karakalpakstan between January and July 2017 from new and retreatment patients were analysed. Samples were tested using Xpert MTB/RIF and line probe assays (LPA) for the detection of mutations associated with resistance. The sensitivity and specificity of MTs were calculated relative to results based on DST. RESULTS: The accuracy of MT for detection of rifampicin resistance was high, with sensitivity and specificity over 98%. However, we observed reduced sensitivity of LPA for detection of resistance; 86% for isoniazid (95% CI 82-90%), 86% for fluoroquinolones (95% CI 68-96%), 70% for capreomycin (95% CI 46-88%) and 23% for kanamycin (95% CI 13-35%). CONCLUSIONS: We show that MTs are a useful tool for rapid and safe diagnosis of DR-TB; however, clinicians should be aware of their limitations. Although detection of rifampicin resistance was highly accurate, our data suggest that resistance mutations circulating in the Republic of Karakalpakstan for other drugs were not detected by the methods used here. This merits further investigation.


Asunto(s)
Antibióticos Antituberculosos/uso terapéutico , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana/métodos , Mycobacterium tuberculosis/crecimiento & desarrollo , Tuberculosis/tratamiento farmacológico , Capreomicina/uso terapéutico , Fluoroquinolonas/uso terapéutico , Humanos , Isoniazida/uso terapéutico , Kanamicina/uso terapéutico , Mutación , Mycobacterium tuberculosis/genética , Reacción en Cadena de la Polimerasa , Reproducibilidad de los Resultados , Estudios Retrospectivos , Rifampin/uso terapéutico , Tuberculosis/microbiología , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Uzbekistán
14.
J Cell Biochem ; 120(9): 14499-14509, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30989745

RESUMEN

The emergence of multidrug resistance (MDR), extensively drug-resistant, and total drug-resistant Mycobacterium tuberculosis (Mtb) strains have hampered the treatment of tuberculosis (TB). Capreomycin and Bedaquiline are currently used for MDR-TB treatment. To understand the impact of these antibiotics on Mtb genes, we have curated the gene expression data where the Mtb cultures were exposed to the Bedaquiline and Capreomycin. Based on the P value cut off (<0.05) and logFC (<-0.5 and >+0.5) values, we have selected the top differentially expressed genes during the antibiotic exposures. We have observed that the top differentially expressed Mtb genes were related to universal stress genes, two-component regulatory systems, and drug efflux pumps. We have curated the Mtb gene datasets and carried out the functional over-representation analysis using the individual gene expression values. We further, constructed the gene interaction networks of antibiotic resistance genes and virulence genes of Mtb to understand the impact of the antibiotics at the molecular level and thus to understand the antimicrobial resistance and virulence patterns. Our study elucidates the impact of antibiotics on the Mtb genes at the molecular level and the positively enriched pathways, operons, and regulons data are helpful in understanding the resistance patterns in Mtb. The upregulated genes during the exposure of Bedaquiline and Capreomycin can be considered as potent drug targets for the development of new anti-TB drugs.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Perfilación de la Expresión Génica/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Capreomicina/farmacología , Diarilquinolinas/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Mycobacterium tuberculosis/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Factores de Virulencia/genética
15.
Lancet ; 392(10150): 821-834, 2018 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-30215381

RESUMEN

BACKGROUND: Treatment outcomes for multidrug-resistant tuberculosis remain poor. We aimed to estimate the association of treatment success and death with the use of individual drugs, and the optimal number and duration of treatment with those drugs in patients with multidrug-resistant tuberculosis. METHODS: In this individual patient data meta-analysis, we searched MEDLINE, Embase, and the Cochrane Library to identify potentially eligible observational and experimental studies published between Jan 1, 2009, and April 30, 2016. We also searched reference lists from all systematic reviews of treatment of multidrug-resistant tuberculosis published since 2009. To be eligible, studies had to report original results, with end of treatment outcomes (treatment completion [success], failure, or relapse) in cohorts of at least 25 adults (aged >18 years). We used anonymised individual patient data from eligible studies, provided by study investigators, regarding clinical characteristics, treatment, and outcomes. Using propensity score-matched generalised mixed effects logistic, or linear regression, we calculated adjusted odds ratios and adjusted risk differences for success or death during treatment, for specific drugs currently used to treat multidrug-resistant tuberculosis, as well as the number of drugs used and treatment duration. FINDINGS: Of 12 030 patients from 25 countries in 50 studies, 7346 (61%) had treatment success, 1017 (8%) had failure or relapse, and 1729 (14%) died. Compared with failure or relapse, treatment success was positively associated with the use of linezolid (adjusted risk difference 0·15, 95% CI 0·11 to 0·18), levofloxacin (0·15, 0·13 to 0·18), carbapenems (0·14, 0·06 to 0·21), moxifloxacin (0·11, 0·08 to 0·14), bedaquiline (0·10, 0·05 to 0·14), and clofazimine (0·06, 0·01 to 0·10). There was a significant association between reduced mortality and use of linezolid (-0·20, -0·23 to -0·16), levofloxacin (-0·06, -0·09 to -0·04), moxifloxacin (-0·07, -0·10 to -0·04), or bedaquiline (-0·14, -0·19 to -0·10). Compared with regimens without any injectable drug, amikacin provided modest benefits, but kanamycin and capreomycin were associated with worse outcomes. The remaining drugs were associated with slight or no improvements in outcomes. Treatment outcomes were significantly worse for most drugs if they were used despite in-vitro resistance. The optimal number of effective drugs seemed to be five in the initial phase, and four in the continuation phase. In these adjusted analyses, heterogeneity, based on a simulated I2 method, was high for approximately half the estimates for specific drugs, although relatively low for number of drugs and durations analyses. INTERPRETATION: Although inferences are limited by the observational nature of these data, treatment outcomes were significantly better with use of linezolid, later generation fluoroquinolones, bedaquiline, clofazimine, and carbapenems for treatment of multidrug-resistant tuberculosis. These findings emphasise the need for trials to ascertain the optimal combination and duration of these drugs for treatment of this condition. FUNDING: American Thoracic Society, Canadian Institutes of Health Research, US Centers for Disease Control and Prevention, European Respiratory Society, Infectious Diseases Society of America.


Asunto(s)
Antituberculosos/uso terapéutico , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/mortalidad , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/mortalidad , Amicacina/uso terapéutico , Antituberculosos/administración & dosificación , Capreomicina/uso terapéutico , Carbapenémicos/uso terapéutico , Clofazimina/uso terapéutico , Diarilquinolinas/uso terapéutico , Quimioterapia Combinada , Fluoroquinolonas/uso terapéutico , Humanos , Kanamicina/uso terapéutico , Levofloxacino/uso terapéutico , Linezolid/uso terapéutico , Moxifloxacino , Recurrencia , Insuficiencia del Tratamiento
16.
Int J Med Microbiol ; 309(7): 151323, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31279617

RESUMEN

Capreomycin (CAP), a cyclic peptide antibiotic, is considered to be an ideal second-line drug for tuberculosis (TB). However, in the past few years, the emergence of more CAP-resistant (CAPr) TB patients has limited its use. Although it has been reported that CAP resistance to Mycobacterium tuberculosis (Mtb) is associated with rrs or tlyA mutation, the exact mechanism of CAPr Mtb strains, especially the mechanism associated with tlyA deficient or mutation, is not fully understood. Herein, we utilized a multi-omics (genome, proteome, and metabolome) approach to assess CAP resistance on tlyA deficient CAPr Mtb strains (CAPr1) and tlyA point mutation CAPr Mtb strains (CAPr2) that we established for the first time in vitro to investigate the CAP-resistant mechanism. Our results showed that the CAPr1 strains (> 40 µg/ml) was more resistant to CAP than the CAPr2 strains (G695A, 10 µg/ml). Furthermore, multi-omics analysis indicated that the CAPr1 strains exhibited greater drug tolerance than the CAPr2 strains may be associated with the weakening of S-adenosyl-L-methionine-dependent methyltransferase (AdoMet-MT) activity and abnormal membrane lipid metabolism such as suppression of fatty acid metabolism, promotion of glycolipid phospholipid and glycerolipid metabolism. As a result, these studies reveal a new mechanism for CAP resistance to tlyA deficient or mutation Mtb strains, and may be helpful in developing new therapeutic approaches to prevent Mtb resistance to CAP.


Asunto(s)
Antituberculosos/farmacología , Proteínas Bacterianas/genética , Capreomicina/farmacología , Biología Computacional , Farmacorresistencia Bacteriana , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genómica , Lípidos de la Membrana/metabolismo , Metabolómica , Metiltransferasas/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium tuberculosis/metabolismo , Proteómica
17.
BMC Infect Dis ; 19(1): 279, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909867

RESUMEN

BACKGROUND: Tuberculosis (TB), an ancient scourge of humanity known for several thousands of years, is still a significant public health challenge in many countries today even though some progress has been made in recent years in controlling the disease. The study's aim was to determine the prevalence of mutations responsible for drug resistance in Mycobacterium tuberculosis among patients visiting selected health centers in Nairobi, Kenya. METHODS: The cross-sectional study involved 132 TB positive patients visiting Mbagathi and Chandaria hospitals between September 2015 and August 2016. Sputum samples were collected from the participants and handled in a biosafety level 3 laboratory at the Kenya Medical Research Institute (KEMRI). Samples were decontaminated using N-Acetyl-L-Cysteine (NALC) - Sodium Hydroxide (NALC-NaOH), stained using Zeihl-Neelsen (ZN), and cultured in Mycobacterium Growth Indicator Tube (MGIT). DNA extracted from cultured isolates using Genolyse™ technique was subjected to Multiplex PCR amplification and reverse hybridization for detection of drug resistance mutations on rpoB, katG, inhA, gyrA, gyrB, rrs and eis genes using Hain Genotype MTBDRplus and MTBDRsl. RESULTS: All 132 (100%) patients included in the study were culture positive for M. tuberculosis. Among them, 72 (54%) were male while the remaining 60 (46%) were female. The mean age of the patients was 26.4 ± 19.4 (SD) with a range of 18 to 60 years. Overall, the prevalence of the resistance to first and second-line TB drugs was 1.5% (2/132). Resistance to isoniazid (INH) was observed in 1 of 132 patients (0.8%), as was multi-drug resistant tuberculosis (MDR-TB), also at 0.8%. No resistance to fluoroquinolones (FQ) or kanamycin (KAN) was observed. The INH resistant strain had the katG mutations S315 T, while mutations detected for the MDR-TB were katG S513 T for INH, rpoB S531 L for rifampicin (RIF) and rrs G1484 T for cross-resistance to aminoglycosides/capreomycin (AG/CP). CONCLUSIONS: Molecular analysis confirms transmission of the drug-resistant M. tuberculosis strains. The data suggested that there is homogeneity when it comes to the type of drug resistance and mutation that occurs in the region. This calls for intensified drug resistance surveillance and drug adherence among patients infected with TB.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana/genética , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Pulmonar/microbiología , Adolescente , Adulto , Capreomicina/farmacología , Estudios Transversales , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Isoniazida/farmacología , Kanamicina/farmacología , Kenia , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Tuberculosis Pulmonar/tratamiento farmacológico , Adulto Joven
18.
Phys Chem Chem Phys ; 21(35): 19192-19200, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31436279

RESUMEN

Despite advances, tuberculosis remains a significant infectious disease, whose mortality presents alarming numbers. Although it can be cured, the number of cases of antimicrobial resistant strains is increasing, requiring the use of less efficient second-line drugs. Capreomycin and streptomycin are part of this group, being antibiotics whose mechanism of action is the inhibition of protein synthesis when interacting with the tuberculosis bacterial ribosome. Their binding mechanisms are distinct: capreomycin is able to bind to both ribosomal (30S and 50S) subunits, whereas streptomycin binds only to the smaller one (30S). In this context, the biochemical characterization of these binding sites for a proper understanding of their complex interactions is of crucial importance to increase their efficacy. Through crystallographic data and computer simulations, in this work we calculated the interaction binding energies of capreomycin and streptomycin in complex with the tuberculosis bacterial ribosome subunits, by using density functional theory (DFT) within the molecular fractionation with conjugated caps (MFCC) approach. For capreomycin in the 30S (50S) subunit, we investigated the binding energies of 44 (30) residues presented within a pocket radius of 14 Å (30 Å). Regarding streptomycin, 60 nucleotide (25 amino acid) residues distributed up to 12.5 Å (15 Å) away from the drug in the 30S subunit (S12 protein) were taken into account. We also identify the contributions of hydrogen bonds and hydrophobic interactions in the drug-receptor complex, and the regions of the drugs that most contributed to the anchorages of them in their binding sites, as well as identify residues that are most associated with mutations.


Asunto(s)
Antibacterianos/química , Capreomicina/química , Metabolismo Energético , Mycobacterium tuberculosis/metabolismo , Subunidades Ribosómicas/química , Subunidades Ribosómicas/metabolismo , Estreptomicina/química , Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Capreomicina/metabolismo , Capreomicina/uso terapéutico , Simulación por Computador , Cristalización , Humanos , Mutación , Mycobacterium tuberculosis/química , Receptores de Droga/genética , Receptores de Droga/metabolismo , Estreptomicina/metabolismo , Estreptomicina/uso terapéutico , Tuberculosis/tratamiento farmacológico , Tuberculosis/microbiología
19.
J Appl Microbiol ; 127(6): 1656-1664, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31419358

RESUMEN

AIMS: Predicting bacterial resistance provides valuable information that can assist in clinical decisions. With recent advances in whole genome sequencing technology, the detection of antibiotic resistance (AR) proteins directly from genomic data is becoming feasible. AR genes/proteins can be identified using best-hit methods that work by comparing candidate sequences with known AR genes in public databases. However, these approaches may fail to detect resistance genes with sequences that differ significantly from known sequences. Our goal is to develop a machine learning technique to accurately predict capreomycin resistance in Mycobacteria with low false discovery rates. METHODS AND RESULTS: We present a stacked ensemble learning model as an alternative to traditional DNA sequence alignment-based methods using optimal features generated from the physicochemical, evolutionary and secondary structure properties of protein sequences. We train logistic regression, C5.0 and support vector machine (SVM) algorithms as our base classifiers, and our stacked ensemble predictors combine the results from the base classifiers to achieve higher accuracy. Compared with our most accurate base classifier (SVM), our most accurate stacked ensemble predictor increases training accuracy by 2·43%. Our stacked ensemble predictors achieve test accuracy up to 81·25%. CONCLUSIONS: We developed a stacked ensemble model to predict capreomycin resistance for Mycobacteria with an accuracy >80% using protein sequences with sequence similarity ranging between 10% and 70%. This performance cannot be achieved with best-hit methods due to differences in sequence similarity. SIGNIFICANCE AND IMPACT OF THE STUDY: Today an estimated one-half million cases of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis (TB) occur annually worldwide at a great cost. Because capreomycin is a second-line drug used to treat drug-resistant TB, the ability to use a machine learning approach to classify capreomycin-resistant TB in a timely manner is crucial for the successful treatment of MDR or XDR TB.


Asunto(s)
Capreomicina/farmacología , Análisis Mutacional de ADN/métodos , Farmacorresistencia Microbiana/genética , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Secuencia de Aminoácidos , Genes Bacterianos/genética , Humanos , Aprendizaje Automático , Mycobacterium tuberculosis/efectos de los fármacos , Estructura Secundaria de Proteína , Tuberculosis Resistente a Múltiples Medicamentos/diagnóstico
20.
BMC Pulm Med ; 19(1): 124, 2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31291943

RESUMEN

BACKGROUND: Pulmonary tuberculosis is a leading cause of morbidity and mortality in developing countries. Drug resistance, a huge problem in this contagious disease, is driven by point mutations in the Mycobacterium tuberculosis genome however, their frequencies vary geographically and this affects applicability of molecular diagnostics for rapid detection of resistance. Here, we report the frequency and patterns of mutations associated with resistance to second-line anti-TB drugs in multidrug-resistant (MDR) M. tuberculosis isolates from eSwatini, Somalia and Uganda that were resistant to a second-line anti-TB drug. METHODS: The quinolone resistance determining region (QRDR) of gyrA/gyrB genes and the drug resistance associated fragment of rrs gene from 80 isolates were sequenced and investigated for presence of drug resistance mutations. Of the 80 isolates, 40 were MDR, of which 28 (70%) were resistant to a second-line anti-TB injectable drug, 18 (45%) were levofloxacin resistant while 12 (30%) were extensively drug resistant (XDR). The remaining 40 isolates were susceptible to anti-TB drugs. MIRU-VNTR analysis was performed for M/XDR isolates. RESULTS: We successfully sub-cultured 38 of the 40 M/XDR isolates. The gyrA resistance mutations (Gly88Ala/Cys/Ala, Ala90Val, Ser91Pro, Asp94Gly/Asn) and gyrB resistance mutations (Asp500His, Asn538Asp) were detected in 72.2% (13/18) and 22.2% (4/18) of the MDR and levofloxacin resistant isolates, respectively. Overall, drug resistance mutations in gyrA/gyrB QRDRs occurred in 77.8% (14/18) of the MDR and levofloxacin resistant isolates. Furthermore, drug resistance mutations a1401g and g1484 t in rrs occurred in 64.3% (18/28) of the MDR isolates resistant to a second-line anti-TB injectable drug. Drug resistance mutations were not detected in drug susceptible isolates. CONCLUSIONS: The frequency of resistance mutations to second-line anti-TB drugs in MDR-TB isolates resistant to second line anti-TB drugs from eSwatini, Somalia and Uganda is high, implying that rapid molecular tests are useful in detecting second-line anti-TB drug resistance in those countries. Relatedly, the frequency of fluoroquinolone resistance mutations in gyrB/QRDR is high relative to global estimates, and they occurred independently of gyrA/QRDR mutations implying that their absence in panels of molecular tests for detecting fluoroquinolone resistance may yield false negative results in our setting.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Mutación , Mycobacterium tuberculosis/genética , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Tuberculosis Resistente a Múltiples Medicamentos/epidemiología , Amicacina/uso terapéutico , Antituberculosos/uso terapéutico , Capreomicina/uso terapéutico , Estudios Transversales , Esuatini/epidemiología , Fluoroquinolonas/uso terapéutico , Frecuencia de los Genes , Humanos , Kanamicina/uso terapéutico , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/aislamiento & purificación , Análisis de Secuencia de ADN , Somalia/epidemiología , Tuberculosis Pulmonar/tratamiento farmacológico , Uganda/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA