Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(3): 706-719.e13, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677514

RESUMEN

Cytoplasmic FUS aggregates are a pathological hallmark in a subset of patients with frontotemporal dementia (FTD) or amyotrophic lateral sclerosis (ALS). A key step that is disrupted in these patients is nuclear import of FUS mediated by the import receptor Transportin/Karyopherin-ß2. In ALS-FUS patients, this is caused by mutations in the nuclear localization signal (NLS) of FUS that weaken Transportin binding. In FTD-FUS patients, Transportin is aggregated, and post-translational arginine methylation, which regulates the FUS-Transportin interaction, is lost. Here, we show that Transportin and arginine methylation have a crucial function beyond nuclear import-namely to suppress RGG/RG-driven phase separation and stress granule association of FUS. ALS-associated FUS-NLS mutations weaken the chaperone activity of Transportin and loss of FUS arginine methylation, as seen in FTD-FUS, promote phase separation, and stress granule partitioning of FUS. Our findings reveal two regulatory mechanisms of liquid-phase homeostasis that are disrupted in FUS-associated neurodegeneration.


Asunto(s)
Arginina/química , Proteína FUS de Unión a ARN/química , beta Carioferinas/química , Transporte Activo de Núcleo Celular , Secuencias de Aminoácidos , Citoplasma/metabolismo , Metilación de ADN , ADN Complementario/metabolismo , Densitometría , Degeneración Lobar Frontotemporal/metabolismo , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Espectroscopía de Resonancia Magnética , Metilación , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica , Dominios Proteicos
2.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677512

RESUMEN

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular , Priones/química , Proteínas de Unión al ARN/química , Receptores Citoplasmáticos y Nucleares/química , Adulto , Anciano , Animales , Citoplasma/química , Proteínas de Unión al ADN/química , Drosophila melanogaster , Femenino , Proteínas Fluorescentes Verdes/química , Células HEK293 , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/patología , Dominios Proteicos , Proteína EWS de Unión a ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , beta Carioferinas/química
3.
Cell ; 163(3): 734-45, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26456112

RESUMEN

The mechanisms by which intrinsically disordered proteins engage in rapid and highly selective binding is a subject of considerable interest and represents a central paradigm to nuclear pore complex (NPC) function, where nuclear transport receptors (NTRs) move through the NPC by binding disordered phenylalanine-glycine-rich nucleoporins (FG-Nups). Combining single-molecule fluorescence, molecular simulations, and nuclear magnetic resonance, we show that a rapidly fluctuating FG-Nup populates an ensemble of conformations that are prone to bind NTRs with near diffusion-limited on rates, as shown by stopped-flow kinetic measurements. This is achieved using multiple, minimalistic, low-affinity binding motifs that are in rapid exchange when engaging with the NTR, allowing the FG-Nup to maintain an unexpectedly high plasticity in its bound state. We propose that these exceptional physical characteristics enable a rapid and specific transport mechanism in the physiological context, a notion supported by single molecule in-cell assays on intact NPCs.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de Complejo Poro Nuclear/química , Proteínas Nucleares/química , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Humanos , Carioferinas/química , Carioferinas/metabolismo , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Saccharomyces cerevisiae
4.
Proc Natl Acad Sci U S A ; 119(38): e2207177119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36103578

RESUMEN

IMPORTIN-4, the primary nuclear import receptor of core histones H3 and H4, binds the H3-H4 dimer and histone chaperone ASF1 prior to nuclear import. However, how H3-H3-ASF1 is recognized for transport cannot be explained by available crystal structures of IMPORTIN-4-histone tail peptide complexes. Our 3.5-Å IMPORTIN-4-H3-H4-ASF1 cryoelectron microscopy structure reveals the full nuclear import complex and shows a binding mode different from suggested by previous structures. The N-terminal half of IMPORTIN-4 clamps the globular H3-H4 domain and H3 αN helix, while its C-terminal half binds the H3 N-terminal tail weakly; tail contribution to binding energy is negligible. ASF1 binds H3-H4 without contacting IMPORTIN-4. Together, ASF1 and IMPORTIN-4 shield nucleosomal H3-H4 surfaces to chaperone and import it into the nucleus where RanGTP binds IMPORTIN-4, causing large conformational changes to release H3-H4-ASF1. This work explains how full-length H3-H4 binds IMPORTIN-4 in the cytoplasm and how it is released in the nucleus.


Asunto(s)
Chaperonas de Histonas , Histonas , Carioferinas , Proteínas de Transporte de Membrana , Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , Citoplasma/metabolismo , Chaperonas de Histonas/química , Histonas/química , Humanos , Carioferinas/química , Proteínas de Transporte de Membrana/química , Chaperonas Moleculares/química , Conformación Proteica , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química
5.
J Virol ; 96(3): e0127321, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34757845

RESUMEN

After receptor-mediated endocytosis and endosomal escape, adenoviral capsids can travel via microtubule organizing centers to the nuclear envelope. Upon capsid disassembly, viral genome import into nuclei of interphase cells then occurs through nuclear pore complexes, involving the nucleoporins Nup214 and Nup358. Import also requires the activity of the classic nuclear export receptor CRM1, as it is blocked by the selective inhibitor leptomycin B. We have now used artificially enucleated as well as mitotic cells to analyze the role of an intact nucleus in different steps of the viral life cycle. In enucleated U2OS cells, viral capsids traveled to the microtubule organizing center, whereas their removal from this complex was blocked, suggesting that this step required nuclear factors. In mitotic cells, on the other hand, CRM1 promoted capsid disassembly and genome release, suggesting a role of this protein that does not require intact nuclear envelopes or nuclear pore complexes and is distinct from its function as a nuclear export receptor. Similar to enucleation, inhibition of CRM1 by leptomycin B also leads to an arrest of adenoviral capsids at the microtubule organizing center. In a small-scale screen using leptomycin B-resistant versions of CRM1, we identified a mutant, CRM1 W142A P143A, that is compromised with respect to adenoviral capsid disassembly in both interphase and mitotic cells. Strikingly, this mutant is capable of exporting cargo proteins out of the nucleus of living cells or digitonin-permeabilized cells, pointing to a role of the mutated region that is not directly linked to nuclear export. IMPORTANCE A role of nucleoporins and of soluble transport factors in adenoviral genome import into the nucleus of infected cells in interphase has previously been established. The nuclear export receptor CRM1 promotes genome import, but its precise function is not known. Using enucleated and mitotic cells, we showed that CRM1 does not simply function by exporting a crucial factor out of the nucleus that would then trigger capsid disassembly and genome import. Instead, CRM1 has an export-independent role, a notion that is also supported by a mutant, CRM1 W142A P143A, which is export competent but deficient in viral capsid disassembly, in both interphase and mitotic cells.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Infecciones por Adenoviridae/virología , Adenoviridae/fisiología , Cápside/metabolismo , Interacciones Huésped-Patógeno , Carioferinas/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Adenoviridae/efectos de los fármacos , Línea Celular , Genoma Viral , Humanos , Carioferinas/antagonistas & inhibidores , Carioferinas/química , Carioferinas/genética , Microtúbulos/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/antagonistas & inhibidores , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/genética , Relación Estructura-Actividad , Replicación Viral , Proteína Exportina 1
6.
Biochemistry (Mosc) ; 87(Suppl 1): S178-S70, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35501995

RESUMEN

Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.


Asunto(s)
Carioferinas , Neoplasias , Transporte Activo de Núcleo Celular , Humanos , Carioferinas/química , Carioferinas/genética , Carioferinas/metabolismo , Mutación , Neoplasias/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares/genética
7.
Proteins ; 89(4): 416-426, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33244830

RESUMEN

To greatly expand the druggable genome, fast and accurate predictions of cryptic sites for small molecules binding in target proteins are in high demand. In this study, we have developed a fast and simple conformational sampling scheme guided by normal modes solved from the coarse-grained elastic models followed by atomistic backbone refinement and side-chain repacking. Despite the observations of complex and diverse conformational changes associated with ligand binding, we found that simply sampling along each of the lowest 30 modes is near optimal for adequately restructuring cryptic sites so they can be detected by existing pocket finding programs like fpocket and concavity. We further trained machine-learning protocols to optimize the combination of the sampling-enhanced pocket scores with other dynamic and conservation scores, which only slightly improved the performance. As assessed based on a training set of 84 known cryptic sites and a test set of 14 proteins, our method achieved high accuracy of prediction (with area under the receiver operating characteristic curve >0.8) comparable to the CryptoSite server. Compared with CryptoSite and other methods based on extensive molecular dynamics simulation, our method is much faster (1-2 hours for an average-size protein) and simpler (using only pocket scores), so it is suitable for high-throughput processing of large datasets of protein structures at the genome scale.


Asunto(s)
Sitios de Unión , Biología Computacional/métodos , Ligandos , Aprendizaje Automático , Algoritmos , Antígenos CD/química , Antígenos de Neoplasias/química , Área Bajo la Curva , Proteasas 3C de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/química , Elasticidad , Hepacivirus , Humanos , Interleucina-2/química , Carioferinas/química , Modelos Estadísticos , Simulación de Dinámica Molecular , Conformación Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 1/química , Curva ROC , Receptores Citoplasmáticos y Nucleares/química , Análisis de Regresión , Reproducibilidad de los Resultados , SARS-CoV-2 , Proteína Exportina 1
8.
Biol Chem ; 402(11): 1427-1440, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34472763

RESUMEN

Glycosaminoglycans (GAGs) are essential functional components of the extracellular matrix (ECM). Artificial GAGs like sulfated hyaluronan (sHA) exhibit pro-osteogenic properties and boost healing processes. Hence, they are of high interest for supporting bone regeneration and wound healing. Although sulfated GAGs (sGAGs) appear intracellularly, the knowledge about intracellular effects and putative interaction partners is scarce. Here we used an affinity-purification mass spectrometry-based (AP-MS) approach to identify novel and particularly intracellular sGAG-interacting proteins in human bone marrow stromal cells (hBMSC). Overall, 477 proteins were found interacting with at least one of four distinct sGAGs. Enrichment analysis for protein localization showed that mainly intracellular and cell-associated interacting proteins were identified. The interaction of sGAG with α2-macroglobulin receptor-associated protein (LRPAP1), exportin-1 (XPO1), and serine protease HTRA1 (HTRA1) was confirmed in reverse assays. Consecutive pathway and cluster analysis led to the identification of biological processes, namely processes involving binding and processing of nucleic acids, LRP1-dependent endocytosis, and exosome formation. Respecting the preferentially intracellular localization of sGAG in vesicle-like structures, also the interaction data indicate sGAG-specific modulation of vesicle-based transport processes. By identifying many sGAG-specific interacting proteins, our data provide a resource for upcoming studies aimed at molecular mechanisms and understanding of sGAG cellular effects.


Asunto(s)
Glicosaminoglicanos/metabolismo , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Carioferinas/metabolismo , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Células Cultivadas , Cromatografía Liquida , Glicosaminoglicanos/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/química , Serina Peptidasa A1 que Requiere Temperaturas Altas/aislamiento & purificación , Humanos , Carioferinas/química , Carioferinas/aislamiento & purificación , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/química , Proteína Asociada a Proteínas Relacionadas con Receptor de LDL/aislamiento & purificación , Células Madre Mesenquimatosas/química , Células Madre Mesenquimatosas/metabolismo , Receptores Citoplasmáticos y Nucleares/química , Receptores Citoplasmáticos y Nucleares/aislamiento & purificación , Espectrometría de Masas en Tándem , Proteína Exportina 1
9.
Biochem Soc Trans ; 48(6): 2753-2767, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33300986

RESUMEN

The transport of histones from the cytoplasm to the nucleus of the cell, through the nuclear membrane, is a cellular process that regulates the supply of new histones in the nucleus and is key for DNA replication and transcription. Nuclear import of histones is mediated by proteins of the karyopherin family of nuclear transport receptors. Karyopherins recognize their cargos through linear motifs known as nuclear localization/export sequences or through folded domains in the cargos. Karyopherins interact with nucleoporins, proteins that form the nuclear pore complex, to promote the translocation of their cargos into the nucleus. When binding to histones, karyopherins not only function as nuclear import receptors but also as chaperones, protecting histones from non-specific interactions in the cytoplasm, in the nuclear pore and possibly in the nucleus. Studies have also suggested that karyopherins might participate in histones deposition into nucleosomes. In this review we describe structural and biochemical studies from the last two decades on how karyopherins recognize and transport the core histone proteins H3, H4, H2A and H2B and the linker histone H1 from the cytoplasm to the nucleus, which karyopherin is the major nuclear import receptor for each of these histones, the oligomeric state of histones during nuclear import and the roles of post-translational modifications, histone-chaperones and RanGTP in regulating these nuclear import pathways.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Histonas/metabolismo , Carioferinas/química , Transporte Activo de Núcleo Celular , Proteínas de Ciclo Celular/metabolismo , GTP Fosfohidrolasas/química , Histonas/química , Humanos , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Conformación Proteica , Procesamiento Proteico-Postraduccional , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Cell Mol Life Sci ; 75(4): 597-606, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28852774

RESUMEN

Primary cilium is a rod-like plasma membrane protrusion that plays important roles in sensing the cellular environment and initiating corresponding signaling pathways. The sensory functions of the cilium critically depend on the unique enrichment of ciliary residents, which is maintained by the ciliary diffusion barrier. It is still unclear how ciliary cargoes specifically enter the diffusion barrier and accumulate within the cilium. In this review, the organization and trafficking mechanism of the cilium are compared to those of the nucleus, which are much better understood at the moment. Though the cilium differs significantly from the nucleus in terms of molecular and cellular functions, analogous themes and principles in the membrane organization and cargo trafficking are notable between them. Therefore, knowledge in the nuclear trafficking can likely shed light on our understanding of the ciliary trafficking. Here, with a focus on membrane cargoes in mammalian cells, we briefly review various ciliary trafficking pathways from the Golgi to the periciliary membrane. Models for the subsequent import translocation across the diffusion barrier and the enrichment of cargoes within the ciliary membrane are discussed in detail. Based on recent discoveries, we propose a Rab-importin-based model in an attempt to accommodate various observations on ciliary targeting.


Asunto(s)
Cilios/metabolismo , Carioferinas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Eucariontes/metabolismo , Exocitosis , Carioferinas/química , Poro Nuclear/metabolismo , Transporte de Proteínas , Transducción de Señal , Proteínas de Unión al GTP rab/química
11.
J Integr Plant Biol ; 61(12): 1243-1254, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30697937

RESUMEN

In eukaryotic cells, transport of macromolecules across the nuclear envelope is an essential process that ensures rapid exchange of cellular components, including protein and RNA molecules. Chromatin regulators involved in epigenetic control are among the molecules exported across the nuclear envelope, but the significance of this nucleo-cytoplasmic trafficking is not well understood. Here, we use a forward screen to isolate XPO1A (a nuclear export receptor in Arabidopsis) as an anti-silencing factor that protects transgenes from transcriptional silencing. Loss-of-function of XPO1A leads to locus-specific DNA hypermethylation at transgene promoters and some endogenous loci. We found that XPO1A directly interacts with histone deacetylase HDA6 in vivo and that the xpo1a mutation causes increased nuclear retention of HDA6 protein and results in reduced histone acetylation and enhanced transgene silencing. Our results reveal a new mechanism of epigenetic regulation through the modulation of XPO1A-dependent nucleo-cytoplasm partitioning of a chromatin regulator.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Silenciador del Gen , Histona Desacetilasas/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Transgenes , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Secuencia de Bases , Metilación de ADN/genética , Sitios Genéticos , Genoma de Planta , Carioferinas/química , Modelos Biológicos , Mutación/genética , Regiones Promotoras Genéticas , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/química
12.
BMC Bioinformatics ; 19(1): 65, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29482494

RESUMEN

BACKGROUND: Crm1-dependent Nuclear Export Signals (NESs) are clusters of alternating hydrophobic and non-hydrophobic amino acid residues between 10 to 15 amino acids in length. NESs were largely thought to follow simple consensus patterns, based on which they were categorized into 6-10 classes. However, newly discovered NESs often deviate from the established consensus patterns. Thus, identifying NESs within protein sequences remains a bioinformatics challenge. RESULTS: We describe a probabilistic representation of NESs using a new generative model we call NoLogo that can account for a large diversity of NESs. Using this model to predict NESs, we demonstrate improved performance over PSSM and GLAM2 models, but do not achieve the performance of the state-of-the-art NES predictor LocNES. Our findings illustrate that over 30% of NESs are best described by novel NES classes rather than the 6-10 classes proposed by current/existing models. Finally, many NESs have additional hydrophobic residues either upstream or downstream of the canonical four residues, suggesting possible functionality. CONCLUSION: Applying the NoLogo model highlights the observation that NESs are more diverse than previously appreciated. Our work questions the practice of assigning each NES to one of several predefined NES classes. Finally, our analysis suggests a novel and testable biophysical perspective on interaction between Crm1 receptor and Crm1-dependent NESs.


Asunto(s)
Carioferinas/metabolismo , Modelos Estadísticos , Señales de Exportación Nuclear , Receptores Citoplasmáticos y Nucleares/metabolismo , Programas Informáticos , Secuencia de Aminoácidos , Análisis por Conglomerados , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Carioferinas/química , Cadenas de Markov , Posición Específica de Matrices de Puntuación , Probabilidad , Receptores Citoplasmáticos y Nucleares/química , Saccharomyces cerevisiae/metabolismo , Proteína Exportina 1
13.
J Biol Chem ; 292(29): 12267-12284, 2017 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-28539363

RESUMEN

The exosome is a conserved multiprotein complex essential for RNA processing and degradation. The nuclear exosome is a key factor for pre-rRNA processing through the activity of its catalytic subunits, Rrp6 and Rrp44. In Saccharomyces cerevisiae, Rrp6 is exclusively nuclear and has been shown to interact with exosome cofactors. With the aim of analyzing proteins associated with the nuclear exosome, in this work, we purified the complex with Rrp6-TAP, identified the co-purified proteins by mass spectrometry, and found karyopherins to be one of the major groups of proteins enriched in the samples. By investigating the biological importance of these protein interactions, we identified Srp1, Kap95, and Sxm1 as the most important karyopherins for Rrp6 nuclear import and the nuclear localization signals recognized by them. Based on the results shown here, we propose a model of multiple pathways for the transport of Rrp6 to the nucleus.


Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/metabolismo , Carioferinas/metabolismo , Señales de Localización Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Transporte Activo de Núcleo Celular , Complejo Multienzimático de Ribonucleasas del Exosoma/química , Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Exosomas/enzimología , Eliminación de Gen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Carioferinas/química , Carioferinas/genética , Microscopía Confocal , Microscopía Fluorescente , Señales de Localización Nuclear/química , Señales de Localización Nuclear/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , beta Carioferinas/química , beta Carioferinas/genética
14.
Genes Cells ; 22(10): 861-875, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28791779

RESUMEN

Xpo1p (yeast CRM1) is the major nuclear export receptor that carries a plethora of proteins and ribonucleoproteins from the nucleus to cytoplasm. The passage of the Xpo1p nuclear export complex through nuclear pore complexes (NPCs) is facilitated by interactions with nucleoporins (Nups) containing extensive repeats of phenylalanine-glycine (so-called FG repeats), although the precise role of each Nup in the nuclear export reaction remains incompletely understood. Here we report structural and biochemical characterization of the interactions between the Xpo1p nuclear export complex and the FG repeats of Nup42p, a nucleoporin localized at the cytoplasmic face of yeast NPCs and has characteristic SxFG/PxFG sequence repeat motif. The crystal structure of Xpo1p-PKI-Nup42p-Gsp1p-GTP complex identified three binding sites for the SxFG/PxFG repeats on HEAT repeats 14-20 of Xpo1p. Mutational analyses of Nup42p showed that the conserved serines and prolines in the SxFG/PxFG repeats contribute to Xpo1p-Nup42p binding. Our structural and biochemical data suggest that SxFG/PxFG-Nups such as Nup42p and Nup159p at the cytoplasmic face of NPCs provide high-affinity docking sites for the Xpo1p nuclear export complex in the terminal stage of NPC passage and that subsequent disassembly of the nuclear export complex facilitates recycling of free Xpo1p back to the nucleus.


Asunto(s)
Carioferinas/química , Proteínas de Complejo Poro Nuclear/química , Receptores Citoplasmáticos y Nucleares/química , Proteínas de Saccharomyces cerevisiae/química , Sitios de Unión , Carioferinas/metabolismo , Simulación del Acoplamiento Molecular , Poro Nuclear/química , Poro Nuclear/metabolismo , Proteínas de Complejo Poro Nuclear/metabolismo , Unión Proteica , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Exportina 1
15.
Mol Cell ; 37(2): 211-22, 2010 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-20122403

RESUMEN

Mago and Y14 are core components of the exon junction complex (EJC), an assembly central to nonsense-mediated mRNA decay in humans and mRNA localization in flies. The Mago-Y14 heterodimer shuttles between the nucleus, where it is loaded onto specific mRNAs, and the cytoplasm, where it functions in translational regulation. The heterodimer is imported back into the nucleus by Importin 13 (Imp13), a member of the karyopherin-beta family of transport factors. We have elucidated the structural basis of the Mago-Y14 nuclear import cycle. The 3.35 A structure of the Drosophila Imp13-Mago-Y14 complex shows that Imp13 forms a ring-like molecule, reminiscent of Crm1, and encircles the Mago-Y14 cargo with a conserved interaction surface. The 2.8 A structure of human Imp13 bound to RanGTP reveals how Mago-Y14 is released in the nucleus by a steric hindrance mechanism. Comparison of the two structures suggests how this unusual karyopherin might function in bidirectional nucleocytoplasmic transport.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Proteínas de Drosophila/química , Drosophila/metabolismo , Carioferinas/química , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiología , Humanos , Carioferinas/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiología , Estructura Terciaria de Proteína , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/fisiología , Alineación de Secuencia , Proteína de Unión al GTP ran/química , Proteína de Unión al GTP ran/metabolismo
16.
J Biol Chem ; 291(40): 21171-21183, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27528606

RESUMEN

N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impß, Kapß2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapß2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impß, Kapß2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.


Asunto(s)
Histonas/química , Carioferinas/química , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Carioferinas/genética , Carioferinas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutagénesis , Unión Proteica , Dominios Proteicos
17.
EMBO J ; 32(6): 899-913, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23435562

RESUMEN

Importin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago-Y14 and the E2 SUMO-conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.6-Å crystal structure of Imp13 in complex with RanGTP and with eIF1A. eIF1A binds at the inner surface of the Imp13 C-terminal arch adjacent and concomitantly to RanGTP illustrating how eIF1A can be exported by Imp13. Moreover, the 3.0-Å structure of Imp13 in its unbound state reveals the existence of an open conformation in the cytoplasm that explains export cargo release and completes the export branch of the Imp13 pathway. Finally, we demonstrate that Imp13 is able to bind and export eIF1A in vivo and that its function is essential.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/química , Carioferinas/metabolismo , Transporte Activo de Núcleo Celular/genética , Sitios de Unión/genética , Citoplasma/metabolismo , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 1 Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Carioferinas/genética , Modelos Biológicos , Modelos Moleculares , Proteínas Nucleares/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Transporte de Proteínas/genética
18.
Cell Mol Life Sci ; 73(24): 4685-4699, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27312238

RESUMEN

The exportin CRM1 binds nuclear export signals (NESs), and mediates active transport of NES-bearing proteins from the nucleus to the cytoplasm. Structural and biochemical analyses have uncovered the molecular mechanisms underlying CRM1/NES interaction. CRM1 binds NESs through a hydrophobic cleft, whose open or closed conformation facilitates NES binding and release. Several cofactors allosterically modulate the conformation of the NES-binding cleft through intramolecular interactions involving an acidic loop and a C-terminal helix in CRM1. This current model of CRM1-mediated nuclear export has not yet been evaluated in a cellular setting. Here, we describe SRV100, a cellular reporter to interrogate CRM1 nuclear export activity. Using this novel tool, we provide evidence further validating the model of NES binding and release by CRM1. Furthermore, using both SRV100-based cellular assays and in vitro biochemical analyses, we investigate the functional consequences of a recurrent cancer-related mutation, which targets a residue near CRM1 NES-binding cleft. Our data indicate that this mutation does not necessarily abrogate the nuclear export activity of CRM1, but may increase its affinity for NES sequences bearing a more negatively charged C-terminal end.


Asunto(s)
Núcleo Celular/metabolismo , Genes Reporteros , Carioferinas/metabolismo , Proteínas Mutantes/metabolismo , Neoplasias/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Carioferinas/química , Proteínas Mutantes/química , Mutación/genética , Neoplasias/patología , Señales de Exportación Nuclear , Dominios Proteicos , Estructura Secundaria de Proteína , Receptores Citoplasmáticos y Nucleares/química , Proteína Exportina 1
19.
Proc Natl Acad Sci U S A ; 111(7): 2530-5, 2014 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-24505056

RESUMEN

Nucleocytoplasmic transport is facilitated by nuclear pore complexes (NPCs), which are massive proteinaceous transport channels embedded in the nuclear envelope. Nup192 is a major component of an adaptor nucleoporin subcomplex proposed to link the NPC coat with the central transport channel. Here, we present the structure of the ∼110-kDa N-terminal domain (NTD) of Nup192 at 2.7-Å resolution. The structure reveals an open ring-shaped architecture composed of Huntingtin, EF3, PP2A, and TOR1 (HEAT) and Armadillo (ARM) repeats. A comparison of different conformations indicates that the NTD consists of two rigid halves connected by a flexible hinge. Unexpectedly, the two halves of the ring are structurally related to karyopherin-α (Kap-α) and ß-karyopherin family members. Biochemically, we identify a conserved patch that binds an unstructured segment in Nup53 and show that a C-terminal tail region binds to a putative helical fragment in Nic96. The Nup53 segment that binds Nup192 is a classical nuclear localization-like sequence that interacts with Kap-α in a mutually exclusive and mechanistically distinct manner. The disruption of the Nup53 and Nic96 binding sites in vivo yields growth and mRNA export defects, revealing their critical role in proper NPC function. Surprisingly, both interactions are dispensable for NPC localization, suggesting that Nup192 possesses another nucleoporin interaction partner. These data indicate that the structured domains in the adaptor nucleoporin complex are held together by peptide interactions that resemble those found in karyopherin•cargo complexes and support the proposal that the adaptor nucleoporins arose from ancestral karyopherins.


Asunto(s)
Evolución Molecular , Carioferinas/genética , Modelos Moleculares , Proteínas de Complejo Poro Nuclear/química , Proteínas de Complejo Poro Nuclear/genética , Conformación Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Calorimetría , Cristalografía por Rayos X , Hibridación Fluorescente in Situ , Carioferinas/química , Mutagénesis Sitio-Dirigida , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Plant J ; 81(1): 40-52, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25284001

RESUMEN

Importin-αs are essential adapter proteins that recruit cytoplasmic proteins destined for active nuclear import to the nuclear transport machinery. Cargo proteins interact with the importin-α armadillo repeat domain via nuclear localization sequences (NLSs), short amino acids motifs enriched in Lys and Arg residues. Plant genomes typically encode several importin-α paralogs that can have both specific and partially redundant functions. Although some cargos are preferentially imported by a distinct importin-α it remains unknown how this specificity is generated and to what extent cargos compete for binding to nuclear transport receptors. Here we report that the effector protein HaRxL106 from the oomycete pathogen Hyaloperonospora arabidopsidis co-opts the host cell's nuclear import machinery. We use HaRxL106 as a probe to determine redundant and specific functions of importin-α paralogs from Arabidopsis thaliana. A crystal structure of the importin-α3/MOS6 armadillo repeat domain suggests that five of the six Arabidopsis importin-αs expressed in rosette leaves have an almost identical NLS-binding site. Comparison of the importin-α binding affinities of HaRxL106 and other cargos in vitro and in plant cells suggests that relatively small affinity differences in vitro affect the rate of transport complex formation in vivo. Our results suggest that cargo affinity for importin-α, sequence variation at the importin-α NLS-binding sites and tissue-specific expression levels of importin-αs determine formation of cargo/importin-α transport complexes in plant cells.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Carioferinas/fisiología , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Escherichia coli/genética , Interacciones Huésped-Patógeno , Carioferinas/química , Carioferinas/genética , Carioferinas/metabolismo , Modelos Moleculares , Oomicetos/genética , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA