Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.748
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(4): 943-956.e18, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33571432

RESUMEN

Dopamine receptors, including D1- and D2-like receptors, are important therapeutic targets in a variety of neurological syndromes, as well as cardiovascular and kidney diseases. Here, we present five cryoelectron microscopy (cryo-EM) structures of the dopamine D1 receptor (DRD1) coupled to Gs heterotrimer in complex with three catechol-based agonists, a non-catechol agonist, and a positive allosteric modulator for endogenous dopamine. These structures revealed that a polar interaction network is essential for catecholamine-like agonist recognition, whereas specific motifs in the extended binding pocket were responsible for discriminating D1- from D2-like receptors. Moreover, allosteric binding at a distinct inner surface pocket improved the activity of DRD1 by stabilizing endogenous dopamine interaction at the orthosteric site. DRD1-Gs interface revealed key features that serve as determinants for G protein coupling. Together, our study provides a structural understanding of the ligand recognition, allosteric regulation, and G protein coupling mechanisms of DRD1.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Dopamina D1/metabolismo , Transducción de Señal , Regulación Alostérica , Sitio Alostérico , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Catecoles/metabolismo , Microscopía por Crioelectrón , Fenoldopam/química , Fenoldopam/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Células HEK293 , Humanos , Ligandos , Modelos Moleculares , Multimerización de Proteína , Receptores de Dopamina D1/química , Receptores de Dopamina D1/ultraestructura , Receptores de Dopamina D2/metabolismo , Homología Estructural de Proteína
2.
Nat Immunol ; 17(10): 1159-66, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27548435

RESUMEN

CD1a is a lipid-presenting molecule that is abundantly expressed on Langerhans cells. However, the in vivo role of CD1a has remained unclear, principally because CD1a is lacking in mice. Through the use of mice with transgenic expression of CD1a, we found that the plant-derived lipid urushiol triggered CD1a-dependent skin inflammation driven by CD4(+) helper T cells that produced the cytokines IL-17 and IL-22 (TH17 cells). Human subjects with poison-ivy dermatitis had a similar cytokine signature following CD1a-mediated recognition of urushiol. Among various urushiol congeners, we identified diunsaturated pentadecylcatechol (C15:2) as the dominant antigen for CD1a-restricted T cells. We determined the crystal structure of the CD1a-urushiol (C15:2) complex, demonstrating the molecular basis of urushiol interaction with the antigen-binding cleft of CD1a. In a mouse model and in patients with psoriasis, CD1a amplified inflammatory responses that were mediated by TH17 cells that reacted to self lipid antigens. Treatment with blocking antibodies to CD1a alleviated skin inflammation. Thus, we propose CD1a as a potential therapeutic target in inflammatory skin diseases.


Asunto(s)
Antígenos CD1/metabolismo , Autoantígenos/metabolismo , Catecoles/metabolismo , Dermatitis por Toxicodendron/inmunología , Células de Langerhans/inmunología , Psoriasis/inmunología , Células Th17/inmunología , Animales , Anticuerpos Bloqueadores/administración & dosificación , Antígenos CD1/genética , Antígenos CD1/inmunología , Catecoles/química , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Humanos , Interleucina-17/metabolismo , Interleucinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Conformación Proteica , Toxicodendron/inmunología , Interleucina-22
3.
Plant J ; 118(3): 682-695, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38251816

RESUMEN

Ginger is cultivated in tropical and subtropical regions and is one of the most crucial spices worldwide owing to its special taste and scent. Here, we present a high-quality genome assembly for 'Small Laiwu Ginger', a famous cultivated ginger in northern China. The ginger genome was phased into two haplotypes, haplotype A (1.55Gb), and haplotype B (1.44Gb). Analysis of Ty1/Copia and Ty3/Gypsy LTR retrotransposon families revealed that both have undergone multiple retrotransposon bursts about 0-1 million years ago. In addition to a recent whole-genome duplication event, there has been a lineage-specific expansion of genes involved in stilbenoid, diarylheptanoid, and gingerol biosynthesis, thereby enhancing 6-gingerol biosynthesis. Furthermore, we focused on the biosynthesis of 6-gingerol, the most important gingerol, and screened key transcription factors ZoMYB106 and ZobHLH148 that regulate 6-gingerol synthesis by transcriptomic and metabolomic analysis in the ginger rhizome at four growth stages. The results of yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase reporter gene assays showed that both ZoMYB106 and ZobHLH148 bind to the promoters of the key rate-limiting enzyme genes ZoCCOMT1 and ZoCCOMT2 in the 6-gingerol synthesis pathway and promote their transcriptional activities. The reference genome, transcriptome, and metabolome data pave the way for further research on the molecular mechanism underlying the biosynthesis of 6-gingerol. Furthermore, it provides precious new resources for the study on the biology and molecular breeding of ginger.


Asunto(s)
Catecoles , Alcoholes Grasos , Genoma de Planta , Zingiber officinale , Zingiber officinale/genética , Zingiber officinale/metabolismo , Alcoholes Grasos/metabolismo , Catecoles/metabolismo , Genoma de Planta/genética , Evolución Molecular , Retroelementos/genética , Haplotipos , Rizoma/genética , Rizoma/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Regulación de la Expresión Génica de las Plantas
4.
Plant J ; 119(2): 927-941, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38872484

RESUMEN

Acteoside is a bioactive phenylethanoid glycoside widely distributed throughout the plant kingdom. Because of its two catechol moieties, acteoside displays a variety of beneficial activities. The biosynthetic pathway of acteoside has been largely elucidated, but the assembly logic of two catechol moieties in acteoside remains unclear. Here, we identified a novel polyphenol oxidase OfPPO2 from Osmanthus fragrans, which could hydroxylate various monophenolic substrates, including tyrosine, tyrosol, tyramine, 4-hydroxyphenylacetaldehyde, salidroside, and osmanthuside A, leading to the formation of corresponding catechol-containing intermediates for acteoside biosynthesis. OfPPO2 could also convert osmanthuside B into acteoside, creating catechol moieties directly via post-modification of the acteoside skeleton. The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis and subcellular localization assay further support the involvement of OfPPO2 in acteoside biosynthesis in planta. These findings suggest that the biosynthesis of acteoside in O. fragrans may follow "parallel routes" rather than the conventionally considered linear route. In support of this hypothesis, the glycosyltransferase OfUGT and the acyltransferase OfAT could direct the flux of diphenolic intermediates generated by OfPPO2 into acteoside. Significantly, OfPPO2 and its orthologs constitute a functionally conserved enzyme family that evolved independently from other known biosynthetic enzymes of acteoside, implying that the substrate promiscuity of this PPO family may offer acteoside-producing plants alternative ways to synthesize acteoside. Overall, this work expands our understanding of parallel pathways plants may employ to efficiently synthesize acteoside, a strategy that may contribute to plants' adaptation to environmental challenges.


Asunto(s)
Catecol Oxidasa , Glucósidos , Fenoles , Proteínas de Plantas , Catecol Oxidasa/metabolismo , Catecol Oxidasa/genética , Glucósidos/metabolismo , Glucósidos/biosíntesis , Fenoles/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vías Biosintéticas , Oleaceae/enzimología , Oleaceae/genética , Oleaceae/metabolismo , Catecoles/metabolismo , Regulación de la Expresión Génica de las Plantas , Polifenoles
5.
Proc Natl Acad Sci U S A ; 119(43): e2212343119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36227945

RESUMEN

The natural black-brown pigment eumelanin protects humans from high-energy UV photons by absorbing and rapidly dissipating their energy before proteins and DNA are damaged. The extremely weak fluorescence of eumelanin points toward nonradiative relaxation on the timescale of picoseconds or shorter. However, the extreme chemical and physical complexity of eumelanin masks its photoprotection mechanism. We sought to determine the electronic and structural relaxation pathways in eumelanin using three complementary ultrafast optical spectroscopy methods: fluorescence, transient absorption, and stimulated Raman spectroscopies. We show that photoexcitation of chromophores across the UV-visible spectrum rapidly generates a distribution of visible excitation energies via ultrafast internal conversion among neighboring coupled chromophores, and then all these excitations relax on a timescale of ∼4 ps without transferring their energy to other chromophores. Moreover, these picosecond dynamics are shared by the monomeric building block, 5,6-dihydroxyindole-2-carboxylic acid. Through a series of solvent and pH-dependent measurements complemented by quantum chemical modeling, we show that these ultrafast dynamics are consistent with the partial excited-state proton transfer from the catechol hydroxy groups to the solvent. The use of this multispectroscopic approach allows the minimal functional unit in eumelanin and the role of exciton coupling and excited-state proton transfer to be determined, and ultimately reveals the mechanism of photoprotection in eumelanin. This knowledge has potential for use in the design of new soft optical components and organic sunscreens.


Asunto(s)
Protones , Protectores Solares , Catecoles , Humanos , Melaninas , Solventes
6.
Proc Natl Acad Sci U S A ; 119(10): e2118227119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238645

RESUMEN

SignificanceHost-emitted stress hormones significantly influence the growth and behavior of various bacterial species; however, their cellular targets have so far remained elusive. Here, we used customized probes and quantitative proteomics to identify the target of epinephrine and the α-adrenoceptor agonist phenylephrine in live cells of the aquatic pathogen Vibrio campbellii. Consequently, we have discovered the coupling protein CheW, which is in the center of the chemotaxis signaling network, as a target of both molecules. We not only demonstrate direct ligand binding to CheW but also elucidate how this affects chemotactic control. These findings are pivotal for further research on hormone-specific effects on bacterial behavior.


Asunto(s)
Proteínas Bacterianas/metabolismo , Catecolaminas/fisiología , Factores Quimiotácticos/fisiología , Quimiotaxis/fisiología , Vibrio/fisiología , Catecoles/química , Factores Quimiotácticos/metabolismo , Hierro/análisis , Sondas Moleculares/química , Unión Proteica , Proteómica/métodos , Transducción de Señal
7.
Proc Natl Acad Sci U S A ; 119(30): e2122309119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858445

RESUMEN

Plants and microbes share common metabolic pathways for producing a range of bioproducts that are potentially foundational to the future bioeconomy. However, in planta accumulation and microbial production of bioproducts have never been systematically compared on an economic basis to identify optimal routes of production. A detailed technoeconomic analysis of four exemplar compounds (4-hydroxybenzoic acid [4-HBA], catechol, muconic acid, and 2-pyrone-4,6-dicarboxylic acid [PDC]) is conducted with the highest reported yields and accumulation rates to identify economically advantaged platforms and breakeven targets for plants and microbes. The results indicate that in planta mass accumulation ranging from 0.1 to 0.3 dry weight % (dwt%) can achieve costs comparable to microbial routes operating at 40 to 55% of maximum theoretical yields. These yields and accumulation rates are sufficient to be cost competitive if the products are sold at market prices consistent with specialty chemicals ($20 to $50/kg). Prices consistent with commodity chemicals will require an order-of-magnitude-greater accumulation rate for plants and/or yields nearing theoretical maxima for microbial production platforms. This comparative analysis revealed that the demonstrated accumulation rates of 4-HBA (3.2 dwt%) and PDC (3.0 dwt%) in engineered plants vastly outperform microbial routes, even if microbial platforms were to reach theoretical maximum yields. Their recovery and sale as part of a lignocellulosic biorefinery could enable biofuel prices to be competitive with petroleum. Muconic acid and catechol, in contrast, are currently more attractive when produced microbially using a sugar feedstock. Ultimately, both platforms can play an important role in replacing fossil-derived products.


Asunto(s)
Bacterias , Productos Biológicos , Biotecnología , Redes y Vías Metabólicas , Plantas , Levaduras , Bacterias/genética , Bacterias/metabolismo , Productos Biológicos/metabolismo , Biotecnología/economía , Biotecnología/tendencias , Catecoles/metabolismo , Parabenos/metabolismo , Plantas/genética , Plantas/metabolismo , Pironas/metabolismo , Ácido Sórbico/análogos & derivados , Ácido Sórbico/metabolismo , Levaduras/genética , Levaduras/metabolismo
8.
Cancer Sci ; 115(8): 2701-2717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38888067

RESUMEN

The rhizome of Zingiber officinale (Z. officinale), commonly known as ginger, has been characterized as a potential drug candidate due to its antitumor effects. However, the chemotherapeutic effect of ginger on human oral cancer remains poorly understood. In this study, we examined the effects of an ethanol extract of Z. officinale rhizomes (ZOE) on oral cancer and identified the components responsible for its pharmacological activity. ZOE exerts its inhibitory activity in oral cancer by inducing both autophagy and apoptosis simultaneously. Mechanistically, ZOE-induced autophagy and apoptosis in oral cancer are attributed to the reactive oxygen species (ROS)-mediated endoplasmic reticulum stress response. Additionally, we identified two active components of ZOE, 1-dehydro-6-gingerdione and 8-shogaol, which were sufficient to stimulate autophagy initiation and apoptosis induction by enhancing CHOP expression. These results suggest that ZOE and its two active components induce ROS generation, upregulate CHOP, initiate autophagy and apoptosis, and hold promising therapeutics against human oral cancer.


Asunto(s)
Apoptosis , Autofagia , Estrés del Retículo Endoplásmico , Neoplasias de la Boca , Extractos Vegetales , Especies Reactivas de Oxígeno , Factor de Transcripción CHOP , Zingiber officinale , Zingiber officinale/química , Humanos , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Extractos Vegetales/farmacología , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Animales , Catecoles/farmacología , Ratones , Rizoma/química , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos Fitogénicos/farmacología
9.
Cell Physiol Biochem ; 58(1): 49-62, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38329001

RESUMEN

BACKGROUND/AIMS: Bladder cancer is considered one of the most aggressive neoplasms due to its recurrence and progression profile, and even with the improvement in diagnosis and treatment methods, the mortality rate has not shown a declining trend in recent decades. From this perspective, the search and development of more effective and safer therapeutic alternatives are necessary. Phytochemicals are excellent sources of active principles with therapeutic potential. [6]-Shogaol is a phenolic compound extracted from the ginger rhizomes that has shown antitumor effects in a wide variety of cancer models. However, there is no record in the literature of studies reporting these effects in models of bladder cancer. Thus, this study aimed to investigate the in vitro cytotoxic and pro-apoptotic potential of [6]-Shogaol against murine bladder cancer urothelial cells (MB49). METHODS: The cytotoxic effects of [6]-Shogaol on cell viability (MTT method), cell morphology (light microscopy), alteration of proliferative processes (clonogenic assay), oxidative stress pathway (levels of reactive oxygen species) and the induction of apoptotic events (flow cytometry and high-resolution epifluorescence imaging) were evaluated in murine urothelial bladder cancer cell lines (MB49), relative to non-tumor murine fibroblasts (L929). RESULTS: The results showed that [6]-Shogaol was able to induce concentration-dependent cytotoxic effects, which compromised cell viability, exhibiting an inhibitory concentration of 50% of cells (IC50) of 146.8 µM for MB49 tumor cells and 236.0 µM for L929 non-tumor fibroblasts. In addition to inhibiting and altering the proliferative processes if colony formation, it presented pro-apoptotic activity identified through a quantitative analysis and the observation of apoptotic phenotypes, events apparently mediated by the induction of nuclear fragmentation. CONCLUSION: The data presented suggest that [6]-Shogaol has a higher concentration-dependent cytotoxic and apoptosis-inducing potential in MB49 cells than in L929 fibroblasts. These results may contribute to the development of therapeutic alternatives for bladder cancer.


Asunto(s)
Antineoplásicos , Neoplasias de la Vejiga Urinaria , Ratones , Animales , Humanos , Apoptosis , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Catecoles/farmacología , Catecoles/uso terapéutico , Catecoles/química , Antineoplásicos/farmacología , Línea Celular Tumoral
10.
Biochem Biophys Res Commun ; 709: 149822, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38547604

RESUMEN

Aromatic nitriles are of considerable environmental concern, because of their hazardous impacts on the health of both humans and wildlife. In the present study, Burkholderia sp. strain BC1 was observed to be capable of utilizing toxic benzonitrile and hydroxybenzonitrile isomers singly, as sole carbon and energy sources. The results of chromatographic and spectrometric analyses in combination with oxygen uptake and enzyme activity studies, revealed the metabolism of benzonitrile as well as 2-, 3-, and 4-hydroxybenzonitriles by nitrile hydratase-amidase to the corresponding carboxylates. These carboxylates were further metabolized via central pathways, namely benzoate-catechol, salicylate-catechol, 3-hydroxybenzoate-gentisate and 4-hydroxybenzoate-protocatechute pathways in strain BC1, ultimately leading to the TCA cycle intermediates. Studies also evaluated substrate specificity profiles of both nitrile hydratase and amidase(s) involved in the denitrification of the nitriles. In addition, a few metabolic crosstalk events due to the induction of multiple operons by central metabolites were appraised in strain BC1. The present study illustrates the broad degradative potential of strain BC1, harboring diverse catabolic machinery of biotechnological importance, elucidating pathways for the assimilation of benzonitrile and that of hydroxybenzonitrile isomers for the first time.


Asunto(s)
Burkholderia , Humanos , Nitrilos/química , Amidohidrolasas/metabolismo , Catecoles , Biodegradación Ambiental
11.
Biochem Biophys Res Commun ; 708: 149786, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38493545

RESUMEN

Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.


Asunto(s)
Enfermedades Metabólicas , Enfermedades Mitocondriales , Humanos , Músculo Esquelético/metabolismo , Mitocondrias/metabolismo , Alcoholes Grasos/farmacología , Alcoholes Grasos/metabolismo , Catecoles/farmacología , Fructosa/metabolismo , Enfermedades Metabólicas/metabolismo , Enfermedades Mitocondriales/metabolismo
12.
Anal Biochem ; 688: 115464, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38244752

RESUMEN

This study describes the development of a highly sensitive amperometric biosensor for the analysis of phenolic compounds such as catechol. The biosensor architecture is based on the immobilization of tyrosinase (Tyr) on a screen-printed carbon electrode (SPE) modified with nanodiamond particles (ND), 1-butyl-3-methylimidazolium hexafluorophosphate (IL) and poly-l-lysine (PLL). Surface morphologies of the electrodes during the modification process were evaluated by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to investigate the electrochemical characteristics of the modified electrodes. Owing to the synergistic effect of the modification materials, the Tyr/PLL/ND-IL/SPE exhibited high sensitivity (328.2 µA mM-1) towards catechol with a wide linear range (5.0 × 10-8 - 1.2 × 10-5 M) and low detection limit (1.1 × 10-8 M). Furthermore, the method demonstrated good reproducibility and stability. The amperometric response of the biosensor towards other phenolic compounds such as bisphenol A, phenol, p-nitrophenol, m-cresol, p-cresol and o-cresol was also investigated. The analytical applicability of the biosensor was tested by the analysis of catechol in tap water. The results of the tap water analysis showed that the Tyr/PLL/ND-IL/SPE can be used as a practical and effective method for catechol determination.


Asunto(s)
Técnicas Biosensibles , Líquidos Iónicos , Nanodiamantes , Líquidos Iónicos/análisis , Polilisina , Reproducibilidad de los Resultados , Fenoles/análisis , Catecoles/análisis , Catecoles/química , Monofenol Monooxigenasa/química , Carbono/química , Agua , Técnicas Biosensibles/métodos , Electrodos , Técnicas Electroquímicas/métodos
13.
Biotechnol Bioeng ; 121(3): 1036-1049, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38116701

RESUMEN

The biodegradation of chloroethene compounds under oxic and anoxic conditions is well established. However, the biological reactions that take place under microoxic conditions are unknown. Here, we report the biostimulated (BIOST: addition of lactate) and natural attenuated (NAT) degradation of chloroethene compounds under microoxic conditions by bacterial communities from chloroethene compounds-contaminated groundwater. The degradation of tetrachloroethene was significantly higher in NAT (15.14% on average) than in BIOST (10.13% on average) conditions at the end of the experiment (90 days). Sporomusa, Paracoccus, Sedimentibacter, Pseudomonas, and Desulfosporosinus were overrepresented in NAT and BIOST compared to the source groundwater. The NAT metagenome contains phenol hydrolase P1 oxygenase (dmpL), catechol-1,2-dioxygenase (catA), catechol-2,3-dioxygenases (dmpB, todE, and xylE) genes, which could be involved in the cometabolic degradation of chloroethene compounds; and chlorate reductase (clrA), that could be associated with partial reductive dechlorination of chloroethene compounds. Our data provide a better understanding of the bacterial communities, genes, and pathways potentially implicated in the reductive and cometabolic degradation of chloroethene compounds under microoxic conditions.


Asunto(s)
Bacterias , Tetracloroetileno , Bacterias/metabolismo , Tetracloroetileno/metabolismo , Ácido Láctico/metabolismo , Biodegradación Ambiental , Catecoles/metabolismo
14.
Neurochem Res ; 49(2): 379-387, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37847330

RESUMEN

Oligomeric aggregates of the amyloid-beta (Aß) peptide have been implicated as the toxic species for Alzheimer's disease by contributing to oxidative cytotoxicity and physical disruption in cell membranes in the brain. Recent evidence points to the ability of the catecholamine neurotransmitter dopamine in the presence of copper ions to both stabilize oligomers and decrease the toxic effects of these oligomers. Based on these results, physical characterization of aggregates and subsequent cell studies with a neuroblastoma line were performed that show both dopamine and the related neurotransmitter, norepinephrine, can stabilize oligomers and decrease toxicity of Aß aggregates without copper present. To investigate this reduction of toxicity, structural characterization of oligomers in the presence of neurotransmitters was compared to aggregates formed with Aß alone. Gel electrophoresis and transmission electron microscopy show higher levels of oligomers in the presence of dopamine and norepinephrine, yet the oligomer structure is largely amorphous. Aß aggregated alone forms the predicted highly organized fibrillar species, with increased levels of dityrosine covalent linkages, which are largely absent in the presence of the neurotransmitters. A proposed mechanism for the observed decrease in cell death by Aß in the presence of dopamine and norepinephrine suggests the neurotransmitters both block the formation of organized oligomer structures and dityrosine stabilizing linkages while also behaving as antioxidants, providing a dual mechanism for increased cell viability.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Humanos , Péptidos beta-Amiloides/metabolismo , Cobre/metabolismo , Dopamina , Enfermedad de Alzheimer/metabolismo , Catecoles , Norepinefrina , Neurotransmisores , Fragmentos de Péptidos/metabolismo , Amiloide/toxicidad
15.
J Neural Transm (Vienna) ; 131(3): 213-228, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38238531

RESUMEN

The present study was performed to examine if catechol oxidation is higher in brains from patients with Parkinson's disease compared to age-matched controls, and if catechol oxidation increases with age. Brain tissue from Parkinson patients and age-matched controls was examined for oxidation of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC) and 3,4-dihydroxyphenylalanine (DOPA) to corresponding quinones, by measurement of 5-S-cysteinyl-dopamine, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA. The cysteinyl catechols are assumed to be biomarkers for DA, DOPAC and DOPA autoxidation and part of the biosynthetic pathway of neuromelanin. The concentrations of the 5-S-cysteinyl catechols were lower, whereas the 5-S-cysteinyl-DA/DA and 5-S-cysteinyl-DOPAC/DOPAC ratios tended to be higher in the Parkinson group compared to controls, which was interpreted as a higher degree of oxidation. High 5-S-cysteinyl-DA/DA ratios were found in the substantia nigra of a sub-population of the Parkinson group. Based on 5-S-cysteinyl-DA/DA ratios, dopamine oxidation was found to increase statistically significantly with age in the caudate nucleus, and non-significantly in the substantia nigra. In conclusion, the occurrence of 5-S-cysteinyl-DA, 5-S-cysteinyl-DOPAC and 5-S-cysteinyl-DOPA was demonstrated in dopaminergic brain areas of humans, a tendency for higher oxidation of DA in the Parkinson group compared to controls was observed as well as a statistically significant increase in DA oxidation with age. Possibly, autoxidation of DA and other catechols are involved in both normal and pathological ageing of the brain. This study confirms one earlier but small study, as well as complements one study on non-PD cases and one study on both PD cases and controls on NM bound or integrated markers or catechols.


Asunto(s)
Cisteinildopa/análogos & derivados , Dopamina , Enfermedad de Parkinson , Humanos , Dopamina/metabolismo , Enfermedad de Parkinson/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Dihidroxifenilalanina , Encéfalo/metabolismo , Catecoles/metabolismo , Envejecimiento
16.
Biomacromolecules ; 25(8): 5281-5287, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38967045

RESUMEN

Slow-digesting starch with bioactive functionality has been attracting much interest with the increasing incidence of type-2 diabetes and other diet-related illnesses. The present study demonstrates a simple method for preparing a starch inclusion complex with reduced enzymic digestion and enhanced antioxidant activities using debranched pea starch (PS) and 10-gingerol (10G). Enzymically debranched starch complexed more 10G and formed more structurally ordered starch-10G complexes compared to PS that had not been debranched. Debranching for 6 h resulted in starch with better complexing ability for 10G than starches debranched for longer times. The debranched starch-10G complexes had higher antioxidant activities and a much slower in vitro enzymic digestion profile (rate and hydrolysis extent) than the 10G complex prepared with starch that was not debranched. Our study demonstrates that debranched pea starch-10G complexes with slow-digesting and antioxidant properties are likely to be of interest for developing ingredients for healthier food choices.


Asunto(s)
Antioxidantes , Catecoles , Pisum sativum , Almidón , Antioxidantes/química , Antioxidantes/farmacología , Almidón/química , Catecoles/química , Pisum sativum/química , Alcoholes Grasos/química , Hidrólisis , Amilosa/química
17.
Biomacromolecules ; 25(5): 2914-2924, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38676646

RESUMEN

With the increasing number of diabetic patients in the world, there is an urgent requirement to reduce the incidence of diabetes. It is considered that a viable prophylactic treatment for type 2 diabetes mellitus is to reduce starch digestibility and oxidative stress. In this study, a novel type of slowly digested starch [pea starch (PS)-gingerol complex] was fabricated to evaluate its in vitro enzymatic digestibility and antioxidant activities. Theoretical and experimental analyses showed that PS can encapsulate gingerols with long alkyl chains to form starch-gingerol complexes, which are further stacked into a mixture of V6- and V7-crystallites. These complexes, in particular the PS-10-gingerol complex, showed high resistance to amylolysis and good antioxidant activities. This study demonstrates that these novel starch-gingerol complexes have the potential to deliver antioxidants encapsulated in starch with slow-digesting properties and reduce oxidative stress. Moreover, this new type of slowly digested starch with antioxidant properties showed great potential in the prevention of type 2 diabetes.


Asunto(s)
Antioxidantes , Catecoles , Diabetes Mellitus Tipo 2 , Alcoholes Grasos , Almidón , Almidón/química , Antioxidantes/química , Alcoholes Grasos/química , Catecoles/química , Diabetes Mellitus Tipo 2/prevención & control , Estrés Oxidativo/efectos de los fármacos , Humanos
18.
J Org Chem ; 89(5): 3143-3149, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38373048

RESUMEN

The challenging preparation of "difficult peptides" has always hindered the development of peptide-active pharmaceutical ingredients. Pseudoproline (ψpro) building blocks have been proven effective and powerful tools for the synthesis of "difficult peptides". In this paper, we efficiently prepared a set of novel 2-(oxazolidin-2-yl)phenol compounds as proline surrogates (2-hydroxyphenol-pseudoprolines, ψ2-hydroxyphenolpro) and applied it in the synthesis of many well-known "difficult peptides", including human thymosin α1, amylin, and ß-amyloid (1-42) (Aß42).


Asunto(s)
Catecoles , Prolina/análogos & derivados , Tiazoles , Humanos , Polipéptido Amiloide de los Islotes Pancreáticos
19.
Fish Shellfish Immunol ; 151: 109717, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914179

RESUMEN

Aquaculture is one of the fastest growing sectors in global food production, recognized as a significant contributor to poverty alleviation, food security, and income generation. However, the frequent occurrence of diseases caused by pathogen infections result in reduced yields and economic losses, posing a substantial constraint to the sustainable development of aquaculture. Here, our study identified that four catechol compounds, quercetin, luteolin, caffeic acid, and chlorogenic acid, exhibited potent antiparasitic effects against Ichthyophthirius multifiliis in both, in vitro and in vivo. The parasite is recognized as one of the most pathogenic to fish worldwide. Using a combination of in silico methods, the dipeptidyl peptidase (DPP) was identified as a critical target for catechol compounds. The two hydroxyl radicals of the catechol group were essential for its binding to and interacting with the DPP protein. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that catechol compounds disrupt pathways associated with the metabolism and growth of I. multifiliis, thereby exerting antiparasitic effects. Furthermore, these compounds attenuated the expression of proinflammatory cytokines in vivo in fish and promoted macrophage polarization toward M2 phenotype by inhibiting the STAT1 signaling pathway. The dual activity of catechol compounds, acting as both direct antiparasitic and anti-inflammatory agents in fish, offers a promising therapeutic approach for combating I. multifiliis infections in aquaculture.


Asunto(s)
Catecoles , Infecciones por Cilióforos , Enfermedades de los Peces , Hymenostomatida , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Enfermedades de los Peces/prevención & control , Hymenostomatida/efectos de los fármacos , Catecoles/farmacología , Infecciones por Cilióforos/veterinaria , Infecciones por Cilióforos/inmunología , Infecciones por Cilióforos/parasitología , Infecciones por Cilióforos/prevención & control , Antiparasitarios/farmacología
20.
Environ Sci Technol ; 58(4): 2123-2132, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38237556

RESUMEN

Advanced oxidation processes (AOPs) often employ strong oxidizing inorganic radicals (e.g., hydroxyl and sulfate radicals) to oxidize contaminants in water treatment. However, the water matrix could scavenge the strong oxidizing radicals, significantly deteriorating the treatment efficiency. Here, we report a periodate/catechol process in which reactive quinone species (RQS) including the o-semiquinone radical (o-SQ•-) and o-benzoquinone (o-Q) were dominant to effectively degrade anilines within 60 s. The second-order reaction rate constants of o-SQ•- and o-Q with aniline were determined to be 1.0 × 108 and 4.0 × 103 M-1 s-1, respectively, at pH 7.0, which accounted for 21% and 79% of the degradation of aniline with a periodate-to-catechol molar ratio of 1:1. The major byproducts were generated via addition or polymerization. The RQS-based process exhibited excellent anti-interference performance in the degradation of aniline-containing contaminants in real water samples in the presence of diverse inorganic ions and organics. Subsequently, we extended the RQS-based process by employing tea extract and dissolved organic matter as catechol replacements as well as metal ions [e.g., Fe(III) or Cu(II)] as periodate replacements, which also exhibited good performance in aniline degradation. This study provides a novel strategy to develop RQS-based AOPs for the highly selective degradation of aniline-containing emerging contaminants.


Asunto(s)
Compuestos Férricos , Ácido Peryódico , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Benzoquinonas , Compuestos de Anilina , Catecoles , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA