Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.800
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 155(1): 21-6, 2013 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-24074858

RESUMEN

Technologies for genome-wide sequence interrogation have dramatically improved our ability to identify loci associated with complex human disease. However, a chasm remains between correlations and causality that stems, in part, from a limiting theoretical framework derived from Mendelian genetics and an incomplete understanding of disease physiology. Here we propose a set of criteria, akin to Koch's postulates for infectious disease, for assigning causality between genetic variants and human disease phenotypes.


Asunto(s)
Enfermedad/genética , Genómica/métodos , Fenotipo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Causalidad , Variación Genética , Humanos , Herencia Multifactorial
2.
Annu Rev Cell Dev Biol ; 30: 23-37, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25000992

RESUMEN

The physicist Ernest Rutherford said, "If your experiment needs statistics, you ought to have done a better experiment." Although this aphorism remains true for much of today's research in cell biology, a basic understanding of statistics can be useful to cell biologists to help in monitoring the conduct of their experiments, in interpreting the results, in presenting them in publications, and when critically evaluating research by others. However, training in statistics is often focused on the sophisticated needs of clinical researchers, psychologists, and epidemiologists, whose conclusions depend wholly on statistics, rather than the practical needs of cell biologists, whose experiments often provide evidence that is not statistical in nature. This review describes some of the basic statistical principles that may be of use to experimental biologists, but it does not cover the sophisticated statistics needed for papers that contain evidence of no other kind.


Asunto(s)
Biología Celular , Estadística como Asunto , Causalidad , Interpretación Estadística de Datos , Probabilidad , Reproducibilidad de los Resultados , Proyectos de Investigación , Distribuciones Estadísticas
3.
Am J Hum Genet ; 111(8): 1717-1735, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39059387

RESUMEN

Mendelian randomization (MR), which utilizes genetic variants as instrumental variables (IVs), has gained popularity as a method for causal inference between phenotypes using genetic data. While efforts have been made to relax IV assumptions and develop new methods for causal inference in the presence of invalid IVs due to confounding, the reliability of MR methods in real-world applications remains uncertain. Instead of using simulated datasets, we conducted a benchmark study evaluating 16 two-sample summary-level MR methods using real-world genetic datasets to provide guidelines for the best practices. Our study focused on the following crucial aspects: type I error control in the presence of various confounding scenarios (e.g., population stratification, pleiotropy, and family-level confounders like assortative mating), the accuracy of causal effect estimates, replicability, and power. By comprehensively evaluating the performance of compared methods over one thousand exposure-outcome trait pairs, our study not only provides valuable insights into the performance and limitations of the compared methods but also offers practical guidance for researchers to choose appropriate MR methods for causal inference.


Asunto(s)
Benchmarking , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Análisis de la Aleatorización Mendeliana/métodos , Humanos , Estudio de Asociación del Genoma Completo/métodos , Fenotipo , Variación Genética , Causalidad , Polimorfismo de Nucleótido Simple , Modelos Genéticos
4.
Am J Hum Genet ; 110(2): 195-214, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36736292

RESUMEN

Evidence on the validity of drug targets from randomized trials is reliable but typically expensive and slow to obtain. In contrast, evidence from conventional observational epidemiological studies is less reliable because of the potential for bias from confounding and reverse causation. Mendelian randomization is a quasi-experimental approach analogous to a randomized trial that exploits naturally occurring randomization in the transmission of genetic variants. In Mendelian randomization, genetic variants that can be regarded as proxies for an intervention on the proposed drug target are leveraged as instrumental variables to investigate potential effects on biomarkers and disease outcomes in large-scale observational datasets. This approach can be implemented rapidly for a range of drug targets to provide evidence on their effects and thus inform on their priority for further investigation. In this review, we present statistical methods and their applications to showcase the diverse opportunities for applying Mendelian randomization in guiding clinical development efforts, thus enabling interventions to target the right mechanism in the right population group at the right time. These methods can inform investigators on the mechanisms underlying drug effects, their related biomarkers, implications for the timing of interventions, and the population subgroups that stand to gain the most benefit. Most methods can be implemented with publicly available data on summarized genetic associations with traits and diseases, meaning that the only major limitations to their usage are the availability of appropriately powered studies for the exposure and outcome and the existence of a suitable genetic proxy for the proposed intervention.


Asunto(s)
Descubrimiento de Drogas , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Causalidad , Biomarcadores , Sesgo
5.
Am J Hum Genet ; 110(7): 1177-1199, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37419091

RESUMEN

The existing framework of Mendelian randomization (MR) infers the causal effect of one or multiple exposures on one single outcome. It is not designed to jointly model multiple outcomes, as would be necessary to detect causes of more than one outcome and would be relevant to model multimorbidity or other related disease outcomes. Here, we introduce multi-response Mendelian randomization (MR2), an MR method specifically designed for multiple outcomes to identify exposures that cause more than one outcome or, conversely, exposures that exert their effect on distinct responses. MR2 uses a sparse Bayesian Gaussian copula regression framework to detect causal effects while estimating the residual correlation between summary-level outcomes, i.e., the correlation that cannot be explained by the exposures, and vice versa. We show both theoretically and in a comprehensive simulation study how unmeasured shared pleiotropy induces residual correlation between outcomes irrespective of sample overlap. We also reveal how non-genetic factors that affect more than one outcome contribute to their correlation. We demonstrate that by accounting for residual correlation, MR2 has higher power to detect shared exposures causing more than one outcome. It also provides more accurate causal effect estimates than existing methods that ignore the dependence between related responses. Finally, we illustrate how MR2 detects shared and distinct causal exposures for five cardiovascular diseases in two applications considering cardiometabolic and lipidomic exposures and uncovers residual correlation between summary-level outcomes reflecting known relationships between cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/genética , Teorema de Bayes , Multimorbilidad , Análisis de la Aleatorización Mendeliana/métodos , Causalidad , Estudio de Asociación del Genoma Completo
6.
Am J Hum Genet ; 110(4): 592-605, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36948188

RESUMEN

Mendelian randomization (MR) is a powerful tool for causal inference with observational genome-wide association study (GWAS) summary data. Compared to the more commonly used univariable MR (UVMR), multivariable MR (MVMR) not only is more robust to the notorious problem of genetic (horizontal) pleiotropy but also estimates the direct effect of each exposure on the outcome after accounting for possible mediating effects of other exposures. Despite promising applications, there is a lack of studies on MVMR's theoretical properties and robustness in applications. In this work, we propose an efficient and robust MVMR method based on constrained maximum likelihood (cML), called MVMR-cML, with strong theoretical support. Extensive simulations demonstrate that MVMR-cML performs better than other existing MVMR methods while possessing the above two advantages over its univariable counterpart. An application to several large-scale GWAS summary datasets to infer causal relationships between eight cardiometabolic risk factors and coronary artery disease (CAD) highlights the usefulness and some advantages of the proposed method. For example, after accounting for possible pleiotropic and mediating effects, triglyceride (TG), low-density lipoprotein cholesterol (LDL), and systolic blood pressure (SBP) had direct effects on CAD; in contrast, the effects of high-density lipoprotein cholesterol (HDL), diastolic blood pressure (DBP), and body height diminished after accounting for other risk factors.


Asunto(s)
Enfermedad de la Arteria Coronaria , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo , Factores de Riesgo , Causalidad , Enfermedad de la Arteria Coronaria/genética , HDL-Colesterol/genética
7.
Am J Hum Genet ; 110(8): 1304-1318, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37433298

RESUMEN

Multimorbidity is a rising public health challenge with important implications for health management and policy. The most common multimorbidity pattern is the combination of cardiometabolic and osteoarticular diseases. Here, we study the genetic underpinning of the comorbidity between type 2 diabetes and osteoarthritis. We find genome-wide genetic correlation between the two diseases and robust evidence for association-signal colocalization at 18 genomic regions. We integrate multi-omics and functional information to resolve the colocalizing signals and identify high-confidence effector genes, including FTO and IRX3, which provide proof-of-concept insights into the epidemiologic link between obesity and both diseases. We find enrichment for lipid metabolism and skeletal formation pathways for signals underpinning the knee and hip osteoarthritis comorbidities with type 2 diabetes, respectively. Causal inference analysis identifies complex effects of tissue-specific gene expression on comorbidity outcomes. Our findings provide insights into the biological basis for the type 2 diabetes-osteoarthritis disease co-occurrence.


Asunto(s)
Diabetes Mellitus Tipo 2 , Osteoartritis , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Comorbilidad , Osteoartritis/epidemiología , Osteoartritis/genética , Obesidad/complicaciones , Obesidad/epidemiología , Obesidad/genética , Causalidad , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética
8.
Brief Bioinform ; 25(2)2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38487847

RESUMEN

Causal discovery is a powerful tool to disclose underlying structures by analyzing purely observational data. Genetic variants can provide useful complementary information for structure learning. Recently, Mendelian randomization (MR) studies have provided abundant marginal causal relationships of traits. Here, we propose a causal network pruning algorithm MRSL (MR-based structure learning algorithm) based on these marginal causal relationships. MRSL combines the graph theory with multivariable MR to learn the conditional causal structure using only genome-wide association analyses (GWAS) summary statistics. Specifically, MRSL utilizes topological sorting to improve the precision of structure learning. It proposes MR-separation instead of d-separation and three candidates of sufficient separating set for MR-separation. The results of simulations revealed that MRSL had up to 2-fold higher F1 score and 100 times faster computing time than other eight competitive methods. Furthermore, we applied MRSL to 26 biomarkers and 44 International Classification of Diseases 10 (ICD10)-defined diseases using GWAS summary data from UK Biobank. The results cover most of the expected causal links that have biological interpretations and several new links supported by clinical case reports or previous observational literatures.


Asunto(s)
Algoritmos , Estudio de Asociación del Genoma Completo , Causalidad , Fenotipo , Transporte de Proteínas , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple
9.
Proc Natl Acad Sci U S A ; 120(41): e2301843120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37782809

RESUMEN

When it comes to questions of fact in a legal context-particularly questions about measurement, association, and causality-courts should employ ordinary standards of applied science. Applied sciences generally develop along a path that proceeds from a basic scientific discovery about some natural process to the formation of a theory of how the process works and what causes it to fail, to the development of an invention intended to assess, repair, or improve the process, to the specification of predictions of the instrument's actions and, finally, empirical validation to determine that the instrument achieves the intended effect. These elements are salient and deeply embedded in the cultures of the applied sciences of medicine and engineering, both of which primarily grew from basic sciences. However, the inventions that underlie most forensic science disciplines have few roots in basic science, and they do not have sound theories to justify their predicted actions or results of empirical tests to prove that they work as advertised. Inspired by the "Bradford Hill Guidelines"-the dominant framework for causal inference in epidemiology-we set forth four guidelines that can be used to establish the validity of forensic comparison methods generally. This framework is not intended as a checklist establishing a threshold of minimum validity, as no magic formula determines when particular disciplines or hypotheses have passed a necessary threshold. We illustrate how these guidelines can be applied by considering the discipline of firearm and tool mark examination.


Asunto(s)
Medicina Legal , Ciencias Forenses , Causalidad
10.
PLoS Genet ; 19(6): e1010823, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37390109

RESUMEN

Non-linear Mendelian randomization is an extension to standard Mendelian randomization to explore the shape of the causal relationship between an exposure and outcome using an instrumental variable. A stratification approach to non-linear Mendelian randomization divides the population into strata and calculates separate instrumental variable estimates in each stratum. However, the standard implementation of stratification, referred to as the residual method, relies on strong parametric assumptions of linearity and homogeneity between the instrument and the exposure to form the strata. If these stratification assumptions are violated, the instrumental variable assumptions may be violated in the strata even if they are satisfied in the population, resulting in misleading estimates. We propose a new stratification method, referred to as the doubly-ranked method, that does not require strict parametric assumptions to create strata with different average levels of the exposure such that the instrumental variable assumptions are satisfied within the strata. Our simulation study indicates that the doubly-ranked method can obtain unbiased stratum-specific estimates and appropriate coverage rates even when the effect of the instrument on the exposure is non-linear or heterogeneous. Moreover, it can also provide unbiased estimates when the exposure is coarsened (that is, rounded, binned into categories, or truncated), a scenario that is common in applied practice and leads to substantial bias in the residual method. We applied the proposed doubly-ranked method to investigate the effect of alcohol intake on systolic blood pressure, and found evidence of a positive effect of alcohol intake, particularly at higher levels of alcohol consumption.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Análisis de la Aleatorización Mendeliana/métodos , Causalidad , Simulación por Computador , Sesgo , Presión Sanguínea/genética
11.
Proc Natl Acad Sci U S A ; 120(31): e2301972120, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37487079

RESUMEN

PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.


Asunto(s)
ADP-Ribosilación , Inestabilidad Genómica , Femenino , Embarazo , Animales , Ratones , Causalidad , Alelos , Genotipo
12.
Proc Natl Acad Sci U S A ; 120(3): e2207595120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623178

RESUMEN

Over the past two decades, multiple countries with high vaccine coverage have experienced resurgent outbreaks of mumps. Worryingly, in these countries, a high proportion of cases have been among those who have completed the recommended vaccination schedule, raising alarm about the effectiveness of existing vaccines. Two putative mechanisms of vaccine failure have been proposed as driving observed trends: 1) gradual waning of vaccine-derived immunity (necessitating additional booster doses) and 2) the introduction of novel viral genotypes capable of evading vaccinal immunity. Focusing on the United States, we conduct statistical likelihood-based hypothesis testing using a mechanistic transmission model on age-structured epidemiological, demographic, and vaccine uptake time series data. We find that the data are most consistent with the waning hypothesis and estimate that 32.8% (32%, 33.5%) of individuals lose vaccine-derived immunity by age 18 y. Furthermore, we show using our transmission model how waning vaccine immunity reproduces qualitative and quantitatively consistent features of epidemiological data, namely 1) the shift in mumps incidence toward older individuals, 2) the recent recurrence of mumps outbreaks, and 3) the high proportion of mumps cases among previously vaccinated individuals.


Asunto(s)
Paperas , Vacunas , Humanos , Estados Unidos/epidemiología , Adolescente , Paperas/epidemiología , Paperas/prevención & control , Funciones de Verosimilitud , Virus de la Parotiditis/genética , Causalidad , Brotes de Enfermedades , Vacunación
13.
PLoS Genet ; 19(5): e1010762, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37200398

RESUMEN

Mendelian randomization (MR) has been increasingly applied for causal inference with observational data by using genetic variants as instrumental variables (IVs). However, the current practice of MR has been largely restricted to investigating the total causal effect between two traits, while it would be useful to infer the direct causal effect between any two of many traits (by accounting for indirect or mediating effects through other traits). For this purpose we propose a two-step approach: we first apply an extended MR method to infer (i.e. both estimate and test) a causal network of total effects among multiple traits, then we modify a graph deconvolution algorithm to infer the corresponding network of direct effects. Simulation studies showed much better performance of our proposed method than existing ones. We applied the method to 17 large-scale GWAS summary datasets (with median N = 256879 and median #IVs = 48) to infer the causal networks of both total and direct effects among 11 common cardiometabolic risk factors, 4 cardiometabolic diseases (coronary artery disease, stroke, type 2 diabetes, atrial fibrillation), Alzheimer's disease and asthma, identifying some interesting causal pathways. We also provide an R Shiny app (https://zhaotongl.shinyapps.io/cMLgraph/) for users to explore any subset of the 17 traits of interest.


Asunto(s)
Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Análisis de la Aleatorización Mendeliana/métodos , Estudio de Asociación del Genoma Completo , Causalidad , Polimorfismo de Nucleótido Simple
14.
Genet Epidemiol ; 48(2): 59-73, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38263619

RESUMEN

Mendelian randomization (MR) has become a popular tool for inferring causality of risk factors on disease. There are currently over 45 different methods available to perform MR, reflecting this extremely active research area. It would be desirable to have a standard simulation environment to objectively evaluate the existing and future methods. We present simmrd, an open-source software for performing simulations to evaluate the performance of MR methods in a range of scenarios encountered in practice. Researchers can directly modify the simmrd source code so that the research community may arrive at a widely accepted framework for researchers to evaluate the performance of different MR methods.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Modelos Genéticos , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Variación Genética , Factores de Riesgo , Causalidad
15.
Genet Epidemiol ; 48(1): 27-41, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37970963

RESUMEN

Mendelian randomization (MR) is a statistical method that utilizes genetic variants as instrumental variables (IVs) to investigate causal relationships between risk factors and outcomes. Although MR has gained popularity in recent years due to its ability to analyze summary statistics from genome-wide association studies (GWAS), it requires a substantial number of single nucleotide polymorphisms (SNPs) as IVs to ensure sufficient power for detecting causal effects. Unfortunately, the complex genetic heritability of many traits can lead to the use of invalid IVs that affect both the risk factor and the outcome directly or through an unobserved confounder. This can result in biased and imprecise estimates, as reflected by a larger mean squared error (MSE). In this study, we focus on the widely used two-stage least squares (2SLS) method and derive formulas for its bias and MSE when estimating causal effects using invalid IVs. Using those formulas, we identify conditions under which the 2SLS estimate is unbiased and reveal how the independent or correlated pleiotropic effects influence the accuracy and precision of the 2SLS estimate. We validate these formulas through extensive simulation studies and demonstrate the application of those formulas in an MR study to evaluate the causal effect of the waist-to-hip ratio on various sleeping patterns. Our results can aid in designing future MR studies and serve as benchmarks for assessing more sophisticated MR methods.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Humanos , Análisis de la Aleatorización Mendeliana/métodos , Modelos Genéticos , Factores de Riesgo , Causalidad , Sesgo
16.
Am J Hum Genet ; 109(5): 767-782, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35452592

RESUMEN

Mendelian randomization and colocalization are two statistical approaches that can be applied to summarized data from genome-wide association studies (GWASs) to understand relationships between traits and diseases. However, despite similarities in scope, they are different in their objectives, implementation, and interpretation, in part because they were developed to serve different scientific communities. Mendelian randomization assesses whether genetic predictors of an exposure are associated with the outcome and interprets an association as evidence that the exposure has a causal effect on the outcome, whereas colocalization assesses whether two traits are affected by the same or distinct causal variants. When considering genetic variants in a single genetic region, both approaches can be performed. While a positive colocalization finding typically implies a non-zero Mendelian randomization estimate, the reverse is not generally true: there are several scenarios which would lead to a non-zero Mendelian randomization estimate but lack evidence for colocalization. These include the existence of distinct but correlated causal variants for the exposure and outcome, which would violate the Mendelian randomization assumptions, and a lack of strong associations with the outcome. As colocalization was developed in the GWAS tradition, typically evidence for colocalization is concluded only when there is strong evidence for associations with both traits. In contrast, a non-zero estimate from Mendelian randomization can be obtained despite only nominally significant genetic associations with the outcome at the locus. In this review, we discuss how the two approaches can provide complementary information on potential therapeutic targets.


Asunto(s)
Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Causalidad , Humanos , Fenotipo
17.
Am J Hum Genet ; 109(11): 2009-2017, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36265482

RESUMEN

Theory for liability-scale models of the underlying genetic basis of complex disease provides an important way to interpret, compare, and understand results generated from biological studies. In particular, through estimation of the liability-scale heritability (LSH), liability models facilitate an understanding and comparison of the relative importance of genetic and environmental risk factors that shape different clinically important disease outcomes. Increasingly, large-scale biobank studies that link genetic information to electronic health records, containing hundreds of disease diagnosis indicators that mostly occur infrequently within the sample, are becoming available. Here, we propose an extension of the existing liability-scale model theory suitable for estimating LSH in biobank studies of low-prevalence disease. In a simulation study, we find that our derived expression yields lower mean square error (MSE) and is less sensitive to prevalence misspecification as compared to previous transformations for diseases with ≤2% population prevalence and LSH of ≤0.45, especially if the biobank sample prevalence is less than that of the wider population. Applying our expression to 13 diagnostic outcomes of ≤3% prevalence in the UK Biobank study revealed important differences in LSH obtained from the different theoretical expressions that impact the conclusions made when comparing LSH across disease outcomes. This demonstrates the importance of careful consideration for estimation and prediction of low-prevalence disease outcomes and facilitates improved inference of the underlying genetic basis of ≤2% population prevalence diseases, especially where biobank sample ascertainment results in a healthier sample population.


Asunto(s)
Bancos de Muestras Biológicas , Estudio de Asociación del Genoma Completo , Humanos , Prevalencia , Causalidad , Simulación por Computador
18.
Am J Hum Genet ; 109(10): 1761-1776, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36150388

RESUMEN

Family-based designs can eliminate confounding due to population substructure and can distinguish direct from indirect genetic effects, but these designs are underpowered due to limited sample sizes. Here, we propose KnockoffTrio, a statistical method to identify putative causal genetic variants for father-mother-child trio design built upon a recently developed knockoff framework in statistics. KnockoffTrio controls the false discovery rate (FDR) in the presence of arbitrary correlations among tests and is less conservative and thus more powerful than the conventional methods that control the family-wise error rate via Bonferroni correction. Furthermore, KnockoffTrio is not restricted to family-based association tests and can be used in conjunction with more powerful, potentially nonlinear models to improve the power of standard family-based tests. We show, using empirical simulations, that KnockoffTrio can prioritize causal variants over associations due to linkage disequilibrium and can provide protection against confounding due to population stratification. In applications to 14,200 trios from three study cohorts for autism spectrum disorders (ASDs), including AGP, SPARK, and SSC, we show that KnockoffTrio can identify multiple significant associations that are missed by conventional tests applied to the same data. In particular, we replicate known ASD association signals with variants in several genes such as MACROD2, NRXN1, PRKAR1B, CADM2, PCDH9, and DOCK4 and identify additional associations with variants in other genes including ARHGEF10, SLC28A1, ZNF589, and HINT1 at FDR 10%.


Asunto(s)
Trastorno del Espectro Autista , Estudio de Asociación del Genoma Completo , Trastorno del Espectro Autista/genética , Causalidad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Proteínas del Tejido Nervioso/genética
19.
Am J Hum Genet ; 109(12): 2253-2269, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413998

RESUMEN

Heterozygous pathogenic variants in DNM1 cause developmental and epileptic encephalopathy (DEE) as a result of a dominant-negative mechanism impeding vesicular fission. Thus far, pathogenic variants in DNM1 have been studied with a canonical transcript that includes the alternatively spliced exon 10b. However, after performing RNA sequencing in 39 pediatric brain samples, we find the primary transcript expressed in the brain includes the downstream exon 10a instead. Using this information, we evaluated genotype-phenotype correlations of variants affecting exon 10a and identified a cohort of eleven previously unreported individuals. Eight individuals harbor a recurrent de novo splice site variant, c.1197-8G>A (GenBank: NM_001288739.1), which affects exon 10a and leads to DEE consistent with the classical DNM1 phenotype. We find this splice site variant leads to disease through an unexpected dominant-negative mechanism. Functional testing reveals an in-frame upstream splice acceptor causing insertion of two amino acids predicted to impair oligomerization-dependent activity. This is supported by neuropathological samples showing accumulation of enlarged synaptic vesicles adherent to the plasma membrane consistent with impaired vesicular fission. Two additional individuals with missense variants affecting exon 10a, p.Arg399Trp and p.Gly401Asp, had a similar DEE phenotype. In contrast, one individual with a missense variant affecting exon 10b, p.Pro405Leu, which is less expressed in the brain, had a correspondingly less severe presentation. Thus, we implicate variants affecting exon 10a as causing the severe DEE typically associated with DNM1-related disorders. We highlight the importance of considering relevant isoforms for disease-causing variants as well as the possibility of splice site variants acting through a dominant-negative mechanism.


Asunto(s)
Encefalopatías , Dinaminas , Síndromes Epilépticos , Humanos , Encefalopatías/genética , Causalidad , Dinaminas/genética , Exones/genética , Heterocigoto , Mutación/genética , Síndromes Epilépticos/genética
20.
Lancet ; 403(10423): 283-292, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245248

RESUMEN

The epidemiology of Parkinson's disease shows marked variations in time, geography, ethnicity, age, and sex. Internationally, prevalence has increased over and above demographic changes. There are several potential reasons for this increase, including the decline in other competing causes of death. Whether incidence is increasing, especially in women or in many low-income and middle-income countries where there is a shortage of high-quality data, is less certain. Parkinson's disease is more common in older people and men, and a variety of environmental factors have been suggested to explain why, including exposure to neurotoxic agents. Within countries, there appear to be ethnic differences in disease risk, although these differences might reflect differential access to health care. The cause of Parkinson's disease is multifactorial, and involves genetic and environmental factors. Both risk factors (eg, pesticides) and protective factors (eg, physical activity and tendency to smoke) have been postulated to have a role in Parkinson's disease, although elucidating causality is complicated by the long prodromal period. Following the establishment of public health strategies to prevent cardiovascular diseases and some cancers, chronic neurodegenerative diseases such as Parkinson's disease and dementia are gaining a deserved higher priority. Multipronged prevention strategies are required that tackle population-based primary prevention, high-risk targeted secondary prevention, and Parkinson's disease-modifying therapies for tertiary prevention. Future international collaborations will be required to triangulate evidence from basic, applied, and epidemiological research, thereby enhancing the understanding and prevention of Parkinson's disease at a global level.


Asunto(s)
Enfermedad de Parkinson , Masculino , Humanos , Femenino , Anciano , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Factores de Riesgo , Causalidad , Incidencia , Pobreza
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA