Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.875
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(7): 1762-1768.e9, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38471501

RESUMEN

Biological dinitrogen (N2) fixation is a key metabolic process exclusively performed by prokaryotes, some of which are symbiotic with eukaryotes. Species of the marine haptophyte algae Braarudosphaera bigelowii harbor the N2-fixing endosymbiotic cyanobacteria UCYN-A, which might be evolving organelle-like characteristics. We found that the size ratio between UCYN-A and their hosts is strikingly conserved across sublineages/species, which is consistent with the size relationships of organelles in this symbiosis and other species. Metabolic modeling showed that this size relationship maximizes the coordinated growth rate based on trade-offs between resource acquisition and exchange. Our findings show that the size relationships of N2-fixing endosymbionts and organelles in unicellular eukaryotes are constrained by predictable metabolic underpinnings and that UCYN-A is, in many regards, functioning like a hypothetical N2-fixing organelle (or nitroplast).


Asunto(s)
Cianobacterias , Haptophyta , Fijación del Nitrógeno , Cianobacterias/metabolismo , Haptophyta/citología , Haptophyta/metabolismo , Haptophyta/microbiología , Nitrógeno/metabolismo , Simbiosis
2.
Cell ; 184(21): 5266-5270, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34562360

RESUMEN

This year's Lasker Award recognizes Dieter Oesterhelt, Peter Hegemann, and Karl Deisseroth for their discovery of microbial opsins as light-activated ion conductors and the development of optogenetics using these proteins to regulate neural activity in awake, behaving animals. Optogenetics has revolutionized neuroscience and transformed our understanding of brain function.


Asunto(s)
Bacterias/metabolismo , Opsinas/metabolismo , Optogenética , Animales , Bacteriorodopsinas/metabolismo , Encéfalo/metabolismo , Channelrhodopsins/metabolismo , Cianobacterias/metabolismo , Humanos , Membrana Púrpura
3.
Cell ; 183(2): 457-473.e20, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32979320

RESUMEN

Rubisco, the key enzyme of CO2 fixation in photosynthesis, is prone to inactivation by inhibitory sugar phosphates. Inhibited Rubisco undergoes conformational repair by the hexameric AAA+ chaperone Rubisco activase (Rca) in a process that is not well understood. Here, we performed a structural and mechanistic analysis of cyanobacterial Rca, a close homolog of plant Rca. In the Rca:Rubisco complex, Rca is positioned over the Rubisco catalytic site under repair and pulls the N-terminal tail of the large Rubisco subunit (RbcL) into the hexamer pore. Simultaneous displacement of the C terminus of the adjacent RbcL opens the catalytic site for inhibitor release. An alternative interaction of Rca with Rubisco is mediated by C-terminal domains that resemble the small Rubisco subunit. These domains, together with the N-terminal AAA+ hexamer, ensure that Rca is packaged with Rubisco into carboxysomes. The cyanobacterial Rca is a dual-purpose protein with functions in Rubisco repair and carboxysome organization.


Asunto(s)
Cianobacterias/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Orgánulos/metabolismo , Fotosíntesis/fisiología , Ribulosa-Bifosfato Carboxilasa/fisiología , Activador de Tejido Plasminógeno/química , Activador de Tejido Plasminógeno/metabolismo
4.
Annu Rev Biochem ; 84: 631-57, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25839341

RESUMEN

Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.


Asunto(s)
Células Vegetales/enzimología , ATPasas de Translocación de Protón/química , ATPasas de Translocación de Protón/metabolismo , Bacterias/clasificación , Bacterias/citología , Bacterias/enzimología , Respiración de la Célula , Cloroplastos/química , Cloroplastos/enzimología , Cianobacterias/citología , Cianobacterias/enzimología , Mitocondrias/química , Mitocondrias/enzimología , Fotosíntesis
5.
Annu Rev Biochem ; 84: 659-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25747397

RESUMEN

Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.


Asunto(s)
Oxígeno/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Tomografía con Microscopio Electrónico , Proteínas del Complejo del Centro de Reacción Fotosintética/ultraestructura , Proteínas de Plantas/metabolismo , Plantas/metabolismo
6.
Nature ; 625(7995): 529-534, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172638

RESUMEN

Today oxygenic photosynthesis is unique to cyanobacteria and their plastid relatives within eukaryotes. Although its origin before the Great Oxidation Event is still debated1-4, the accumulation of O2 profoundly modified the redox chemistry of the Earth and the evolution of the biosphere, including complex life. Understanding the diversification of cyanobacteria is thus crucial to grasping the coevolution of our planet and life, but their early fossil record remains ambiguous5. Extant cyanobacteria include the thylakoid-less Gloeobacter-like group and the remainder of cyanobacteria that acquired thylakoid membranes6,7. The timing of this divergence is indirectly estimated at between 2.7 and 2.0 billion years ago (Ga) based on molecular clocks and phylogenies8-11 and inferred from the earliest undisputed fossil record of Eoentophysalis belcherensis, a 2.018-1.854 Ga pleurocapsalean cyanobacterium preserved in silicified stromatolites12,13. Here we report the oldest direct evidence of thylakoid membranes in a parallel-to-contorted arrangement within the enigmatic cylindrical microfossils Navifusa majensis from the McDermott Formation, Tawallah Group, Australia (1.78-1.73 Ga), and in a parietal arrangement in specimens from the Grassy Bay Formation, Shaler Supergroup, Canada (1.01-0.9 Ga). This discovery extends their fossil record by at least 1.2 Ga and provides a minimum age for the divergence of thylakoid-bearing cyanobacteria at roughly 1.75 Ga. It allows the unambiguous identification of early oxygenic photosynthesizers and a new redox proxy for probing early Earth ecosystems, highlighting the importance of examining the ultrastructure of fossil cells to decipher their palaeobiology and early evolution.


Asunto(s)
Cianobacterias , Fósiles , Oxígeno , Fotosíntesis , Tilacoides , Evolución Biológica , Cianobacterias/clasificación , Cianobacterias/citología , Cianobacterias/metabolismo , Ecosistema , Evolución Química , Origen de la Vida , Oxidación-Reducción , Oxígeno/metabolismo , Tilacoides/metabolismo
7.
Nature ; 630(8018): 899-904, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723661

RESUMEN

Nitrogen (N2) fixation in oligotrophic surface waters is the main source of new nitrogen to the ocean1 and has a key role in fuelling the biological carbon pump2. Oceanic N2 fixation has been attributed almost exclusively to cyanobacteria, even though genes encoding nitrogenase, the enzyme that fixes N2 into ammonia, are widespread among marine bacteria and archaea3-5. Little is known about these non-cyanobacterial N2 fixers, and direct proof that they can fix nitrogen in the ocean has so far been lacking. Here we report the discovery of a non-cyanobacterial N2-fixing symbiont, 'Candidatus Tectiglobus diatomicola', which provides its diatom host with fixed nitrogen in return for photosynthetic carbon. The N2-fixing symbiont belongs to the order Rhizobiales and its association with a unicellular diatom expands the known hosts for this order beyond the well-known N2-fixing rhizobia-legume symbioses on land6. Our results show that the rhizobia-diatom symbioses can contribute as much fixed nitrogen as can cyanobacterial N2 fixers in the tropical North Atlantic, and that they might be responsible for N2 fixation in the vast regions of the ocean in which cyanobacteria are too rare to account for the measured rates.


Asunto(s)
Diatomeas , Fijación del Nitrógeno , Nitrógeno , Océanos y Mares , Rhizobium , Agua de Mar , Simbiosis , Carbono/metabolismo , Diatomeas/metabolismo , Diatomeas/fisiología , Nitrógeno/metabolismo , Fotosíntesis , Filogenia , Rhizobium/clasificación , Rhizobium/metabolismo , Rhizobium/fisiología , Agua de Mar/microbiología , Agua de Mar/química , Cianobacterias/aislamiento & purificación , Cianobacterias/metabolismo , Océano Atlántico
8.
Annu Rev Biochem ; 83: 221-47, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24905782

RESUMEN

For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value.


Asunto(s)
Ritmo Circadiano/fisiología , Cianobacterias/fisiología , Proteínas Bacterianas/fisiología , Relojes Circadianos , Péptidos y Proteínas de Señalización del Ritmo Circadiano/fisiología , Retroalimentación Fisiológica , Regulación Bacteriana de la Expresión Génica , Homeostasis , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Temperatura , Transcripción Genética
9.
Annu Rev Biochem ; 83: 165-89, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24606143

RESUMEN

Circadian clocks are cellular timekeeping mechanisms that coordinate behavior and physiology around the 24-h day in most living organisms. Misalignment of an organism's clock with its environment is associated with long-term adverse fitness consequences, as exemplified by the link between circadian disruption and various age-related diseases in humans. Current eukaryotic models of the circadian oscillator rely on transcription/translation feedback loop mechanisms, supplemented with accessory cytosolic loops that connect them to cellular physiology. However, mounting evidence is questioning the absolute necessity of transcription-based oscillators for circadian rhythmicity, supported by the recent discovery of oxidation-reduction cycles of peroxiredoxin proteins, which persist even in the absence of transcription. A more fundamental mechanism based on metabolic cycles could thus underlie circadian transcriptional and cytosolic rhythms, thereby promoting circadian oscillations to integral properties of cellular metabolism.


Asunto(s)
Relojes Circadianos , Ritmo Circadiano , Eucariontes/fisiología , Transcripción Genética , Animales , Cianobacterias/metabolismo , Citosol/metabolismo , Retroalimentación Fisiológica , Humanos , Oxidación-Reducción , Peroxirredoxinas/fisiología , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN
10.
Cell ; 158(4): 701-703, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126779

RESUMEN

Photosystem II uses metal ions to oxidize water to form O2. Two recent papers employ the new technique of serial femtosecond crystallography utilizing X-ray free-electron lasers and nanocrystals to obtain initial structures of intermediate states of photosystem II catalysis at the site of oxygen production.


Asunto(s)
Cristalografía por Rayos X , Cianobacterias/química , Modelos Moleculares , Complejo de Proteína del Fotosistema II/química
11.
Nature ; 615(7954): 836-840, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949188

RESUMEN

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Tiempo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Cianobacterias/metabolismo , Electrones , Termodinámica
12.
Nature ; 615(7952): 535-540, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36859551

RESUMEN

Energy transfer from light-harvesting ketocarotenoids to the light-driven proton pump xanthorhodopsins has been previously demonstrated in two unique cases: an extreme halophilic bacterium1 and a terrestrial cyanobacterium2. Attempts to find carotenoids that bind and transfer energy to abundant rhodopsin proton pumps3 from marine photoheterotrophs have thus far failed4-6. Here we detected light energy transfer from the widespread hydroxylated carotenoids zeaxanthin and lutein to the retinal moiety of xanthorhodopsins and proteorhodopsins using functional metagenomics combined with chromophore extraction from the environment. The light-harvesting carotenoids transfer up to 42% of the harvested energy in the violet- or blue-light range to the green-light absorbing retinal chromophore. Our data suggest that these antennas may have a substantial effect on rhodopsin phototrophy in the world's lakes, seas and oceans. However, the functional implications of our findings are yet to be discovered.


Asunto(s)
Organismos Acuáticos , Procesos Fototróficos , Bombas de Protones , Rodopsinas Microbianas , Organismos Acuáticos/metabolismo , Organismos Acuáticos/efectos de la radiación , Bacterias/metabolismo , Bacterias/efectos de la radiación , Carotenoides/metabolismo , Color , Cianobacterias/metabolismo , Cianobacterias/efectos de la radiación , Procesos Heterotróficos/efectos de la radiación , Luz , Océanos y Mares , Procesos Fototróficos/efectos de la radiación , Bombas de Protones/metabolismo , Bombas de Protones/efectos de la radiación , Rodopsinas Microbianas/metabolismo , Rodopsinas Microbianas/efectos de la radiación , Zeaxantinas/metabolismo , Zeaxantinas/efectos de la radiación , Luteína/metabolismo , Luteína/efectos de la radiación , Metagenoma , Lagos
13.
Mol Cell ; 81(21): 4457-4466.e5, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34450043

RESUMEN

The type V-K CRISPR-Cas system, featured by Cas12k effector with a naturally inactivated RuvC domain and associated with Tn7-like transposon for RNA-guided DNA transposition, is a promising tool for precise DNA insertion. To reveal the mechanism underlying target DNA recognition, we determined a cryoelectron microscopy (cryo-EM) structure of Cas12k from cyanobacteria Scytonema hofmanni in complex with a single guide RNA (sgRNA) and a double-stranded target DNA. Coupled with mutagenesis and in vitro DNA transposition assay, our results revealed mechanisms for the recognition of the GGTT protospacer adjacent motif (PAM) sequence and the structural elements of Cas12k critical for RNA-guided DNA transposition. These structural and mechanistic insights should aid in the development of type V-K CRISPR-transposon systems as tools for genome editing.


Asunto(s)
Sistemas CRISPR-Cas , Microscopía por Crioelectrón/métodos , ADN/química , ARN Guía de Kinetoplastida , ARN/química , Secuencias de Aminoácidos , Cianobacterias , ADN/metabolismo , Edición Génica , Técnicas Genéticas , Mutagénesis , Mutagénesis Sitio-Dirigida , Mutación , Conformación Proteica , Dominios Proteicos , Recombinación Genética
14.
Annu Rev Biochem ; 82: 577-606, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23527694

RESUMEN

Photosystem II (PSII) uses light energy to split water into chemical products that power the planet. The stripped protons contribute to a membrane electrochemical potential before combining with the stripped electrons to make chemical bonds and releasing O2 for powering respiratory metabolisms. In this review, we provide an overview of the kinetics and thermodynamics of water oxidation that highlights the conserved performance of PSIIs across species. We discuss recent advances in our understanding of the site of water oxidation based upon the improved (1.9-Å resolution) atomic structure of the Mn4CaO5 water-oxidizing complex (WOC) within cyanobacterial PSII. We combine these insights with recent knowledge gained from studies of the biogenesis and assembly of the WOC (called photoassembly) to arrive at a proposed chemical mechanism for water oxidation.


Asunto(s)
Calcio/química , Cianobacterias/metabolismo , Manganeso/química , Oxígeno/metabolismo , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema II/metabolismo , Agua/química , Calcio/metabolismo , Cinética , Manganeso/metabolismo , Oxidación-Reducción , Oxígeno/química , Complejo de Proteína del Fotosistema II/química , Termodinámica , Agua/metabolismo
15.
Trends Biochem Sci ; 49(3): 236-246, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38185606

RESUMEN

Circadian clocks evolved in diverse organisms as an adaptation to the daily swings in ambient light and temperature that derive from Earth's rotation. These timing systems, based on intracellular molecular oscillations, synchronize organisms' behavior and physiology with the 24-h environmental rhythm. The cyanobacterial clock serves as a special model for understanding circadian rhythms because it can be fully reconstituted in vitro. This review summarizes recent advances that leverage new biochemical, biophysical, and mathematical approaches to shed light on the molecular mechanisms of cyanobacterial Kai proteins that support the clock, and their homologues in other bacteria. Many questions remain in circadian biology, and the tools developed for the Kai system will bring us closer to the answers.


Asunto(s)
Relojes Circadianos , Cianobacterias , Proteínas Bacterianas/metabolismo , Ritmo Circadiano , Cianobacterias/metabolismo , Péptidos y Proteínas de Señalización del Ritmo Circadiano/genética
16.
EMBO J ; 43(14): 3072-3083, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38806660

RESUMEN

Autotrophy is the basis for complex life on Earth. Central to this process is rubisco-the enzyme that catalyzes almost all carbon fixation on the planet. Yet, with only a small fraction of rubisco diversity kinetically characterized so far, the underlying biological factors driving the evolution of fast rubiscos in nature remain unclear. We conducted a high-throughput kinetic characterization of over 100 bacterial form I rubiscos, the most ubiquitous group of rubisco sequences in nature, to uncover the determinants of rubisco's carboxylation velocity. We show that the presence of a carboxysome CO2 concentrating mechanism correlates with faster rubiscos with a median fivefold higher rate. In contrast to prior studies, we find that rubiscos originating from α-cyanobacteria exhibit the highest carboxylation rates among form I enzymes (≈10 s-1 median versus <7 s-1 in other groups). Our study systematically reveals biological and environmental properties associated with kinetic variation across rubiscos from nature.


Asunto(s)
Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/genética , Cinética , Dióxido de Carbono/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/metabolismo , Cianobacterias/enzimología , Cianobacterias/genética , Bacterias/enzimología , Bacterias/metabolismo , Bacterias/genética
17.
Annu Rev Microbiol ; 77: 149-171, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37068777

RESUMEN

Biological soil crusts are thin, inconspicuous communities along the soil atmosphere ecotone that, until recently, were unrecognized by ecologists and even more so by microbiologists. In its broadest meaning, the term biological soil crust (or biocrust) encompasses a variety of communities that develop on soil surfaces and are powered by photosynthetic primary producers other than higher plants: cyanobacteria, microalgae, and cryptogams like lichens and mosses. Arid land biocrusts are the most studied, but biocrusts also exist in other settings where plant development is constrained. The minimal requirement is that light impinge directly on the soil; this is impeded by the accumulation of plant litter where plants abound. Since scientists started paying attention, much has been learned about their microbial communities, their composition, ecological extent, and biogeochemical roles, about how they alter the physical behavior of soils, and even how they inform an understanding of early life on land. This has opened new avenues for ecological restoration and agriculture.


Asunto(s)
Cianobacterias , Líquenes , Suelo/química , Ecosistema , Microbiología del Suelo
18.
Trends Biochem Sci ; 48(10): 832-834, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37487910

RESUMEN

Synthetically reconstructed carboxysomes form the basis of CO2-concentrating mechanisms (CCMs) that could enhance the photosynthetic efficiency of crops and improve yield. Recently, Chen et al. revealed another step toward the reconstruction of bacterial carboxysomes in plants, reporting the formation of almost-complete carboxysomes in the chloroplast of Nicotiana tabacum.


Asunto(s)
Cianobacterias , Dióxido de Carbono , Ribulosa-Bifosfato Carboxilasa , Orgánulos , Cloroplastos
19.
Annu Rev Microbiol ; 76: 597-618, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671534

RESUMEN

Heterocyst differentiation that occurs in some filamentous cyanobacteria, such as Anabaena sp. PCC 7120, provides a unique model for prokaryotic developmental biology. Heterocyst cells are formed in response to combined-nitrogen deprivation and possess a microoxic environment suitable for nitrogen fixation following extensive morphological and physiological reorganization. A filament of Anabaena is a true multicellular organism, as nitrogen and carbon sources are exchanged among different cells and cell types through septal junctions to ensure filament growth. Because heterocysts are terminally differentiated cells and unable to divide, their activity is an altruistic behavior dedicated to providing fixed nitrogen for neighboring vegetative cells. Heterocyst development is also a process of one-dimensional pattern formation, as heterocysts are semiregularly intercalated among vegetative cells. Morphogens form gradients along the filament and interact with each other in a fashion that fits well into the Turing model, a mathematical framework to explain biological pattern formation.


Asunto(s)
Anabaena , Cianobacterias , Anabaena/metabolismo , Proteínas Bacterianas/metabolismo , Cianobacterias/metabolismo , Regulación Bacteriana de la Expresión Génica , Nitrógeno/metabolismo , Fijación del Nitrógeno
20.
Nature ; 599(7885): 497-502, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34759315

RESUMEN

Canonical CRISPR-Cas systems provide adaptive immunity against mobile genetic elements1. However, type I-F, I-B and V-K systems have been adopted by Tn7-like transposons to direct RNA-guided transposon insertion2-7. Type V-K CRISPR-associated transposons rely on the pseudonuclease Cas12k, the transposase TnsB, the AAA+ ATPase TnsC and the zinc-finger protein TniQ7, but the molecular mechanism of RNA-directed DNA transposition has remained elusive. Here we report cryo-electron microscopic structures of a Cas12k-guide RNA-target DNA complex and a DNA-bound, polymeric TnsC filament from the CRISPR-associated transposon system of the photosynthetic cyanobacterium Scytonema hofmanni. The Cas12k complex structure reveals an intricate guide RNA architecture and critical interactions mediating RNA-guided target DNA recognition. TnsC helical filament assembly is ATP-dependent and accompanied by structural remodelling of the bound DNA duplex. In vivo transposition assays corroborate key features of the structures, and biochemical experiments show that TniQ restricts TnsC polymerization, while TnsB interacts directly with TnsC filaments to trigger their disassembly upon ATP hydrolysis. Together, these results suggest that RNA-directed target selection by Cas12k primes TnsC polymerization and DNA remodelling, generating a recruitment platform for TnsB to catalyse site-specific transposon insertion. Insights from this work will inform the development of CRISPR-associated transposons as programmable site-specific gene insertion tools.


Asunto(s)
Sistemas CRISPR-Cas , Cianobacterias , Elementos Transponibles de ADN/genética , Edición Génica/métodos , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Biopolímeros , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Microscopía por Crioelectrón , Cianobacterias/enzimología , Cianobacterias/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/ultraestructura , Modelos Moleculares , Mutagénesis Insercional , Polimerizacion , ARN/genética , ARN/metabolismo , Especificidad por Sustrato , Transposasas/metabolismo , Transposasas/ultraestructura , Dedos de Zinc
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA