Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 612
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Exp Biol ; 227(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38904077

RESUMEN

Natural temperature variation in many marine ecosystems is stochastic and unpredictable, and climate change models indicate that this thermal irregularity is likely to increase. Temperature acclimation may be more challenging when conditions are highly variable and stochastic, and there is a need for empirical physiological data in these thermal environments. Using the hermaphroditic, amphibious mangrove rivulus (Kryptolebias marmoratus), we hypothesized that compared with regular, warming diel thermal fluctuations, stochastic warm fluctuations would negatively affect physiological performance. To test this, we acclimated fish to: (1) non-stochastic and (2) stochastic thermal fluctuations with a similar thermal load (27-35°C), and (3) a stable/consistent control temperature at the low end of the cycle (27°C). We determined that fecundity was reduced in both cycles, with reproduction ceasing in stochastic thermal environments. Fish acclimated to non-stochastic thermal cycles had growth rates lower than those of control fish. Exposure to warm, fluctuating cycles did not affect emersion temperature, and only regular diel cycles modestly increased critical thermal tolerance. We predicted that warm diel cycling temperatures would increase gill surface area. Notably, fish acclimated to either thermal cycle had a reduced gill surface area and increased intralamellar cell mass when compared with control fish. This decreased gill surface area with warming contrasts with what is observed for exclusively aquatic fish and suggests a preparatory gill response for emersion in these amphibious fish. Collectively, our data reveal the importance of considering stochastic thermal variability when studying the effects of temperature on fishes.


Asunto(s)
Aclimatación , Branquias , Procesos Estocásticos , Animales , Branquias/fisiología , Aclimatación/fisiología , Ciprinodontiformes/fisiología , Temperatura , Cambio Climático , Organismos Hermafroditas/fisiología , Calor
2.
J Anim Ecol ; 93(5): 599-605, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38420662

RESUMEN

The mere presence of predators causes prey organisms to display predation-avoidance strategies. Predator presence is often communicated through predator-released chemical signals. Ovipositing female mosquitoes of several species are repelled by unknown signals released from larvivorous fish. It was previously suggested that in many cases, a predator's microbiota plays an important role in the release of these signals; however, this mechanism is still poorly understood. In this study, we looked into the effects of the microbiota originating from the larvivorous Gambusia affinis (Baird and Girard) on the oviposition behaviour of gravid female mosquitoes. We used fish with altered microbiota and bacterial isolates in a set of outdoor mesocosm experiments to address this aim. We show that interference with the fish microbiota significantly reduces fish's repellent effect. We further show that the bacterium Pantoea pleuroti, isolated from the skin of the fish, repels oviposition of Culex laticinctus Edwards and Culiseta longiareolata Macquart mosquitoes similarly to the way in which live fish repel them. Our results highlight the importance of bacteria in the interspecies interactions of their hosts. Furthermore, this finding may lead to the development of an ecologically friendly mosquito repellent, that may reduce the use of larvivorous fish for mosquito control.


Asunto(s)
Culicidae , Ciprinodontiformes , Microbiota , Oviposición , Animales , Femenino , Ciprinodontiformes/fisiología , Culicidae/fisiología , Culicidae/microbiología , Culex/fisiología , Culex/microbiología , Repelentes de Insectos
3.
Biol Lett ; 20(7): 20230394, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38982850

RESUMEN

Urban stream syndrome alters stream habitat complexity. We define habitat complexity as the degree of variation in physical habitat structure, with increasing variation equating to higher complexity. Habitat complexity affects species composition and shapes animal ecology, physiology, behaviour and cognition. We used a delayed detour test to measure whether cognitive processes (motor self-regulation) and behaviour (risk-taking) of female Western mosquitofish, Gambusia affinis, varied with habitat structural complexity (low, moderate and high) that was quantified visually for nine populations. We predicted that motor self-regulation and risk-taking behaviour would increase with increasing habitat complexity, yet we found support for the opposite. Lower complexity habitats offer less refuge potentially leading to higher predation pressure and selecting for greater risk-taking by fish with higher motor self-regulation. Our findings provide insight into how habitat complexity can shape cognitive processes and behaviour and offers a broader understanding of why some species may tolerate conditions of urbanized environments.


Asunto(s)
Conducta Animal , Cognición , Ciprinodontiformes , Ecosistema , Animales , Ciprinodontiformes/fisiología , Femenino , Asunción de Riesgos , Ríos
4.
Oecologia ; 205(3-4): 461-471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38995364

RESUMEN

Individual predator and prey species exhibit coupled population dynamics in simple laboratory systems and simple natural communities. It is unclear how often such pairwise coupling occurs in more complex communities, in which an individual predator species might feed on several prey species and an individual prey species might be attacked by several predators. To examine this problem, we applied multivariate autoregressive state-space (MARSS) models to 5-year time-series of monthly surveys of a predatory fish, the eastern mosquitofish (Gambusia holbrooki), and its littoral zone prey species, the least killifish (Heterandria formosa), in three locations in north Florida. The MARSS models were consistent with coupled predator-prey dynamics at two of the three locations. In one of these two locations, the estimated densities of the two species displayed classic predator-prey oscillations. In the third location, there was a positive effect of killifish density on mosquitofish density but no detectable effect of mosquitofish density on killifish density. In all three locations, increased submergent vegetation cover was associated with increased prey density but not increased predator density. Eigenvalues analyses for the joint predator-prey dynamics indicated that one of the cyclic locations had more stable dynamics than the other locations. The three different patterns demonstrate that the dynamics of a pairwise predator-prey interaction emerge not only from the characteristics of the prey and the predator, but also those of the habitat and trophic web in which the predator and prey are embedded.


Asunto(s)
Cadena Alimentaria , Dinámica Poblacional , Conducta Predatoria , Animales , Florida , Ciprinodontiformes/fisiología , Densidad de Población , Ecosistema
5.
Artículo en Inglés | MEDLINE | ID: mdl-38043639

RESUMEN

Amphibious fishes on land encounter higher oxygen (O2) availability and novel energetic demands, which impacts metabolism. Previous work on the amphibious mangrove killifish (Kryptolebias marmoratus) has shown that cortisol becomes elevated in response to air exposure, suggesting a possible role in regulating metabolism as fish move into terrestrial environments. We tested the hypothesis that cortisol is the mechanism by which oxidative processes are upregulated during the transition to land in amphibious fishes. We used two groups of fish, treated fish (+metyrapone, a cortisol synthesis inhibitor) and control (-metyrapone), to determine the impact of cortisol during air exposure (0 and 1 h, 7 days) on O2 consumption, terrestrial locomotion, the phenotype of red skeletal muscle, and muscle lipid concentration. Metyrapone-treated fish had an attenuated elevation in O2 consumption rate during the water to air transition and an immediate reduction in terrestrial exercise performance relative to control fish. In contrast, we found no short- (0 h) or long-term (7 days) differences between treatments in the oxidative phenotype of red muscles, nor in muscle lipid concentrations. Our results suggest that cortisol stimulates the necessary increase in aerobic metabolism needed to fuel the physiological changes that amphibious fishes undergo during the acclimation to air, although further studies are required to determine specific mechanisms of cortisol regulation.


Asunto(s)
Ciprinodontiformes , Peces Killi , Animales , Ciprinodontiformes/fisiología , Hidrocortisona/farmacología , Metirapona/farmacología , Oxígeno , Lípidos
6.
Artículo en Inglés | MEDLINE | ID: mdl-39004302

RESUMEN

We explored the relationship between gestational states, fecundity, and steroid hormone levels in three species of live-bearing fish with different maternal provisioning strategies. We studied two lecithotrophic species, Gambusia affinis and Xiphophorus couchianus, where embryos feed exclusively on yolk stored in the eggs, and one matrotrophic species, Heterandria formosa, which actively transfers nutrients to embryos through a follicular placenta. We measured water-borne cortisol, estradiol, and progesterone along with brood size (fecundity) and gestational stage(s). We examined the physiological costs of both maternal provisioning modes. Matrotrophy likely imposes energetic demands due to active nutrient transfer, while lecithotrophy may incur costs from carrying many large embryos. We hypothesized that fecundity, gestational stage, and hormones would covary differently in lecithotrophic vs. matrotrophic species. We found no relationships between hormones and fecundity or gestational stage in any species. However, in H. formosa, we found a positive relationship between estradiol levels and female mass, and a negative relationship between progesterone levels and female mass indicating a change in the circulating levels of both hormones as females grow. We observed differences in average hormone levels among species: the matrotrophic species had higher progesterone and lower estradiol compared to lecithotrophic species. Higher estradiol in lecithotrophic species may relate to egg yolk formation, while placental structures could play a role in progesterone production in matrotrophic species. Elevated cortisol in H. formosa suggests either higher energetic costs or a preparative role for reproduction. Our findings highlight progesterone's importance in maintaining gestation in matrotrophic species, like other placental species.


Asunto(s)
Ciprinodontiformes , Estradiol , Progesterona , Reproducción , Animales , Femenino , Progesterona/sangre , Progesterona/metabolismo , Estradiol/sangre , Estradiol/metabolismo , Reproducción/fisiología , Ciprinodontiformes/fisiología , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Fertilidad/fisiología
7.
J Fish Biol ; 104(5): 1276-1289, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38279195

RESUMEN

Predation exerts strong selection pressure on morphological traits and is often studied in freshwater fishes. A common morphological ecophenotype driven by predation from pursuit predators is the predator-associated burst speed (PABS) ecophenotype. This ecophenotype, characterized by a smaller head, smaller body, and larger caudal region, is commonly found in western mosquitofish (Gambusia affinis) residing in environments with sunfish (family Centrarchidae) predators. However, the repeatability and transferability of the PABS ecophenotype across populations have not been tested. The four objectives of this study were to (1) assess the repeatability of methods to confirm the presence of the PABS ecophenotype in independent populations, (2) test whether morphology is correlated with predator abundance, (3) assess the repeatability of utilizing a discriminant function analysis (DFA) to accurately classify fish to predator status, and (4) use a DFA to conduct a cross-validation test of the PABS model using previously studied populations of G. affinis to predict predator status of newly studied populations. There was consistency in the occurrence of the PABS ecophenotype among populations with predators. Permuted MANOVA (PMANOVA) models fit to each dataset revealed a significant effect of collection site nested within predator status (i.e., presence or absence of predator), suggesting location-specific variations of the PABS ecophenotype. In addition, a PMANOVA model fit to body shape as a function of predator abundance (i.e., 0, 0.1-1.0, or >1.0 predators per minute of electrofishing) revealed a significant effect of predation level in the newly studied populations, suggesting morphology differs among populations with varying predator abundances. Cross-study validation of the DFA revealed low between-study accuracy compared to within-study accuracy, but elongation of the caudal region in the presence of predators was consistent across studies. Our findings ultimately suggest that although the PABS ecophenotype at studied locations provides partial predictive capacity at unstudied locations, the nature and magnitude of the PABS ecophenotype depend on environmental settings, encounter histories with predators, level of abundance of predators, or other spatially structured mechanisms.


Asunto(s)
Ciprinodontiformes , Conducta Predatoria , Animales , Ciprinodontiformes/fisiología , Ciprinodontiformes/anatomía & histología , Fenotipo , Tamaño Corporal , Análisis Discriminante , Cadena Alimentaria , Reproducibilidad de los Resultados
8.
J Fish Biol ; 105(2): 526-538, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38468594

RESUMEN

Rising water temperatures across aquatic habitats, in the current global climate change scenario, can directly affect metabolism and food intake in fish species. This can potentially alter their physiological, behavioral, and shoaling properties. In the current study, we examined the effects of high temperatures on metabolism, foraging, and shoaling in tropical fish. Mixed-species (comprising flying barbs, zebrafish, and gambusia) and single-species (flying barbs and zebrafish) shoals were conditioned for 45 days to three kinds of temperature regimes: the current temperature regime (CTR), in which shoals were maintained at water temperature of 24°C (i.e., the current mean temperature of their habitat), the predicted temperature regime (PTR) at 31°C (i.e., simulating conditions projected for their habitat in 2100), and the dynamic temperature regime (DTR), which experienced daily temperature fluctuations between 24 and 31°C (i.e., resembling rapid temperature changes expected in their natural environments). We found species-specific responses to these temperature regimes. Flying barbs exhibited significantly lower body weight at PTR but maintained consistent muscle glycogen content across all temperature regimes. In contrast, zebrafish and gambusia displayed significantly elevated muscle glycogen content at PTR, with similar body weights across all three temperature regimes. Cohesion within flying barb shoals and cohesion/polarization in mixed-species shoals decreased significantly at PTR. Shoals exposed to DTR exhibited intermediate characteristics between those conditioned to CTR and PTR, suggesting that shoals may be less impacted by dynamic temperatures compared to prolonged high temperatures. This study highlights species-specific metabolic responses to temperature changes and their potential implications for larger-scale shoal properties.


Asunto(s)
Ciprinodontiformes , Pez Cebra , Animales , Ciprinodontiformes/fisiología , Pez Cebra/fisiología , Temperatura , Cambio Climático , Conducta Alimentaria , Ecosistema , Especificidad de la Especie , Glucógeno/metabolismo , Conducta Social
9.
J Exp Biol ; 226(16)2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37470196

RESUMEN

Understanding the factors affecting the capacity of ectothermic fishes to cope with warming temperature is critical given predicted climate change scenarios. We know that a fish's social environment introduces plasticity in how it responds to high temperature. However, the magnitude of this plasticity and the mechanisms underlying socially modulated thermal responses are unknown. Using the amphibious hermaphroditic mangrove rivulus fish Kryptolebias marmoratus as a model, we tested three hypotheses: (1) social stimulation affects physiological and behavioural thermal responses of isogenic lineages of fish; (2) social experience and acute social stimulation result in distinct physiological and behavioural responses; and (3) a desensitization of thermal receptors is responsible for socially modulated thermal responses. To test the first two hypotheses, we measured the temperature at which fish emerged from the water (i.e. pejus temperature) upon acute warming with socially naive isolated fish and with fish that were raised alone and then given a short social experience prior to exposure to increasing temperature (i.e. socially experienced fish). Our results did not support our first hypothesis as fish socially stimulated by mirrors during warming (i.e. acute social stimulation) emerged at similar temperatures to isolated fish. However, in support of our second hypothesis, a short period of prior social experience resulted in fish emerging at a higher temperature than socially naive fish suggesting an increase in pejus temperature with social experience. To test our third hypothesis, we exposed fish that had been allowed a brief social interaction and naive fish to capsaicin, an agonist of TRPV1 thermal receptors. Socially experienced fish emerged at significantly higher capsaicin concentrations than socially naive fish suggesting a desensitization of their TRPV1 thermal receptors. Collectively, our data indicate that past and present social experiences impact the behavioural response of fish to high temperature. We also provide novel data suggesting that brief periods of social experience affect the capacity of fish to perceive warm temperature.


Asunto(s)
Capsaicina , Ciprinodontiformes , Animales , Ciprinodontiformes/fisiología
10.
Dev Dyn ; 251(11): 1848-1861, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35766167

RESUMEN

BACKGROUND: Temporary pools are variable environments with seasonal drought/flood phases. Annual killifish have adapted to life in temporary pools by producing embryos that undergo diapause to traverse the dry phase. To fill existing knowledge gaps about embryo diapause regulation and evolution in annual killifishes, we test the effect of maternal age, incubation temperature, and incubation medium on diapause induction and length in Millerichthys robustus, the only North American fish species that has evolved an annual life history. RESULTS: All embryos at extreme temperatures follow a defined developmental pathway: skipping diapause at 30°C, and entering diapause at 18°C, both regardless of maternal age, and incubation medium. However, maternal age, and incubation medium influenced whether diapause is entered, and time arrested in diapause for embryos incubated at 25°C. At 25°C, five-week-old, and 52-week-old females produced more embryos that entered diapause than 26-week-old females. Also, embryos incubated in aqueous medium skipped diapause more frequently at this intermediate temperature. CONCLUSIONS: Millerichthys developmental dynamics associated with maternal age under intermediate range of temperatures are likely adapted to the particular patterns of flood/drought in North American temporary pools. Millerichthys also exhibits developmental patterns largely comparable with other annual fishes, probably due to common seasonal patterns in temporary pools.


Asunto(s)
Ciprinodontiformes , Diapausa , Fundulidae , Animales , Femenino , Edad Materna , Señales (Psicología) , Diapausa/fisiología , Ciprinodontiformes/fisiología , América del Norte , Embrión no Mamífero
11.
J Exp Biol ; 225(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35303097

RESUMEN

Understanding the mechanisms that create phenotypic variation within and among populations is a major goal of physiological ecology. Variation may be a consequence of functional trade-offs (i.e. improvement in one trait comes at the expense of another trait) or alternatively may reflect the intrinsic quality of an organism (i.e. some individuals are simply better overall performers than others). There is evidence for both ideas in the literature, suggesting that environmental context may mediate whether variation results from trade-offs or differences in individual quality. We tested this overarching 'context dependence' hypothesis by comparing the aquatic and terrestrial athletic performance of the amphibious fish Kryptolebias marmoratus captured from two contrasting habitats, a large pond and small burrows. Overall, pond fish were superior terrestrial athletes but burrow fish were better burst swimmers, suggestive of a performance trade-off at the population level. Within each population, however, there was no evidence of a performance trade-off. In burrow fish, athletic performance was positively correlated with muscle content and body condition, consistent with the individual quality hypothesis. In pond fish, there was only a relationship between glycolytic white muscle and aquatic burst performance. Notably, pond fish were in better body condition, which may mask relationships between condition and athletic performance. Overall, our data highlight that population-level trends are insufficient evidence for the existence of phenotypic trade-offs in the absence of similar within-population patterns. Furthermore, we only found evidence for the individual quality hypothesis in one population, suggesting that patterns of phenotypic covariance are context dependent.


Asunto(s)
Ciprinodontiformes , Peces Killi , Animales , Composición Corporal , Ciprinodontiformes/fisiología , Ecosistema , Peces , Humanos , Natación
12.
Biol Lett ; 18(10): 20220173, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36196554

RESUMEN

The causes and consequences of the evolution of placentotrophy (post-fertilization nutrition of developing embryos of viviparous organisms by means of a maternal placenta) in non-mammalian vertebrates are still not fully understood. In particular, in the fish family Poeciliidae there is an evolutionary link between placentotrophy and superfetation (ability of females to simultaneously bear embryos at distinct developmental stages), with no conclusive evidence for which of these two traits facilitates the evolution of more advanced degrees of the other. Using a robust phylogenetic comparative method based on Ornstein-Uhlenbeck models of adaptive evolution and data from 36 poeciliid species, we detected a clear causality pattern. The evolution of extensive placentotrophy has been facilitated by the preceding evolution of more simultaneous broods. Therefore, placentas became increasingly complex as an adaptive response to evolutionary increases in the degree of superfetation. This finding represents a substantial contribution to our knowledge of the factors that have shaped placental evolution in poeciliid fishes.


Asunto(s)
Ciprinodontiformes , Superfetación , Animales , Evolución Biológica , Ciprinodontiformes/fisiología , Femenino , Filogenia , Placenta , Embarazo , Superfetación/fisiología , Viviparidad de Animales no Mamíferos/fisiología
13.
Artículo en Inglés | MEDLINE | ID: mdl-34737084

RESUMEN

We tested whether crowding stress affects the hypothalamo-pituitary-interrenal (HPI) axis of the self-fertilizing fish, Kryptolebias marmoratus, which is known to be aggressive in the laboratory conditions but sometimes found as a group from a single land crab burrow in the wild. The projection of corticotropin-releasing hormone (CRH) neurons to the adrenocorticotropic hormone (ACTH) cells in the pituitary was confirmed by dual-label immunohistochemistry; CRH-immunoreactive (ir) fibers originating from cell bodies located in the lateral tuberal nucleus (NLT) of the hypothalamus were observed to project to ACTH-ir cells in the rostral pars distalis of the pituitary. Then, fish were reared solitary or in pairs for 14 days, and the number of CRH-ir cell bodies in the NLT of the hypothalamus and cortisol levels in the body without head region were compared. The number of CRH-ir cell bodies and cortisol levels were significantly higher in paired fish. These results indicate that crowding stress affects the HPI axis in K. marmoratus which thrive in small burrows with limited water volume.


Asunto(s)
Ciprinodontiformes/fisiología , Sistema Hipotálamo-Hipofisario/fisiología , Peces Killi/fisiología , Autofecundación/fisiología , Hormona Adrenocorticotrópica/fisiología , Animales , Hormona Liberadora de Corticotropina/fisiología , Ciprinodontiformes/anatomía & histología , Femenino , Proteínas de Peces/fisiología , Organismos Hermafroditas/fisiología , Sistema Hipotálamo-Hipofisario/anatomía & histología , Inmunohistoquímica , Riñón/fisiología , Peces Killi/anatomía & histología , Masculino , Fibras Nerviosas/fisiología , Estrés Fisiológico
14.
J Fish Biol ; 100(4): 894-908, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35195903

RESUMEN

The absence of a controlled diet is unfortunate in a promising model organism for ageing, the turquoise killifish (Nothobranchius furzeri Jubb, 1971). Currently captive N. furzeri are fed bloodworms but it is not known whether this is an optimal diet. Replacing bloodworms with a practical dry feed would reduce diet variability. In the present study, we estimated the nutritional value of the diet ingested by wild fish and determined the fish-body amino acid profile as a proxy for their nutritional requirements. We compared the performance of fish fed four commercial feeds containing 46%-64% protein to that achieved with bloodworms and that of wild fish. Wild fish target a high-protein (60%) diet and this is supported by their superior performance on high-protein diets in captivity. In contrast, feeds for omnivores led to slower growth, lower fecundity and unnatural liver size. In comparison to wild fish, a bloodworm diet led to lower body condition, overfeeding and male liver enlargement. Out of the four dry feeds tested, the fish fed Aller matched wild fish in body condition and liver size, and was comparable to bloodworms in terms of growth and fecundity. A starter feed for carnivorous species appears to be a practical replacement for bloodworms for N. furzeri. The use of dry feeds improved performance in comparison to bloodworms and thus may contribute to reducing response variability and improving research reproducibility in N. furzeri research.


Asunto(s)
Ciprinodontiformes , Fundulidae , Envejecimiento , Animales , Carnivoría , Ciprinodontiformes/fisiología , Fundulidae/fisiología , Masculino , Reproducibilidad de los Resultados
15.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35163698

RESUMEN

Collagens are the most abundant proteins in vertebrates and constitute the major components of the extracellular matrix. Collagens play an important and multifaceted role in the development and functioning of the nervous system and undergo structural remodeling and quantitative modifications during aging. Here, we investigated the age-dependent regulation of col4a1 and col25a1 in the brain of the short-lived vertebrate Nothobranchius furzeri, a powerful model organism for aging research due to its natural fast-aging process and further characterized typical hallmarks of brain aging in this species. We showed that col4a1 and col25a1 are relatively well conserved during vertebrate evolution, and their expression significantly increases in the brain of N. furzeri upon aging. Noteworthy, we report that both col4a1 and col25a1 are expressed in cells with a neuronal phenotype, unlike what has already been documented in mammalian brain, in which only col25a1 is considered a neuronal marker, whereas col4a1 seems to be expressed only in endothelial cells. Overall, our findings encourage further investigation on the role of col4a1 and col25a1 in the biology of the vertebrate brain as well as the onset of aging and neurodegenerative diseases.


Asunto(s)
Envejecimiento , Encéfalo/fisiología , Colágeno Tipo IV/fisiología , Neuronas/fisiología , Animales , Encéfalo/metabolismo , Ciprinodontiformes/metabolismo , Ciprinodontiformes/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/metabolismo , Fenotipo
16.
Fish Physiol Biochem ; 48(4): 1057-1073, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35834112

RESUMEN

Krill oil (KO) extracted from Antarctic krill (Euphausia superba) mainly comprises phospholipids and triglycerides. KO has been shown to prolong the median lifespan of the nematode Caenorhabditis elegans, but to shorten the lifespan of long-lived F1 mice; therefore, it remains controversial over the life-extending property of KO. In this study, we clearly demonstrated that dietary intake of KO extended both the mean and maximum lifespans of aged male Nothobranchius guentheri (p < 0.05), reduced the accumulation of lipofuscin (LF) (p < 0.05) in the gills and senescence-associated ß-galactosidase (SA-ß-Gal) (p < 0.05) in the caudal fins, and lowered the levels of protein oxidation (p < 0.05), lipid peroxidation (p < 0.01), and reactive oxygen species (ROS) (p < 0.01) in the muscles and livers, indicating that KO possesses rejuvenation and anti-aging activity. We also showed that KO enhanced the activities of antioxidant enzymes catalase (CAT) (p < 0.05), superoxide dismutase (SOD) (p < 0.05), and glutathione peroxidase (GPX) (p < 0.05) in aged male N. guentheri. In addition, KO administration effectively reversed histological lesions including inflammatory cell infiltration and structural collapse in the muscles and livers of aged N. guentheri and suppressed the nuclear factor kappa-B (NF-κB) signaling pathway (p < 0.05), a master regulator of inflammation. Altogether, our study indicates that KO has anti-aging and rejuvenation property. It also suggests that KO exerts its anti-aging and rejuvenation effects via enhancement of the antioxidant system and suppression of the NF-κB signaling pathway.


Asunto(s)
Ciprinodontiformes , Euphausiacea , Longevidad , Animales , Antioxidantes/metabolismo , Ciprinodontiformes/fisiología , Euphausiacea/química , Longevidad/efectos de los fármacos , Masculino , FN-kappa B/metabolismo
17.
Proc Biol Sci ; 288(1965): 20212324, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34933603

RESUMEN

Cortisol is a major osmoregulatory hormone in fishes. Cortisol acts upon the gills, the primary site of ionoregulation, through modifications to specialized ion-transporting cells called ionocytes. We tested the hypothesis that cortisol also acts as a major regulator of skin ionocyte remodelling in the amphibious mangrove rivulus (Kryptolebias marmoratus) when gill function ceases during the water-to-land transition. When out of water, K. marmoratus demonstrated a robust cortisol response, which was linked with the remodelling of skin ionocytes to increase cell cross-sectional area and Na+-K+-ATPase (NKA) content, but not when cortisol synthesis was chemically inhibited by metyrapone. Additionally, we discovered a novel morphology of skin-specific ionocyte that are spikey with multiple cell processes. Spikey ionocytes increased in density, cell cross-sectional area and NKA content during air exposure, but not in metyrapone-treated fish. Our findings demonstrate that skin ionocyte remodelling during the water-to-land transition in amphibious fish is regulated by cortisol, the same hormone that regulates gill ionocyte remodelling in salinity-challenged teleosts, suggesting conserved hormonal function across diverse environmental disturbances and organs in fishes.


Asunto(s)
Ciprinodontiformes , Hidrocortisona , Animales , Ciprinodontiformes/fisiología , Branquias/anatomía & histología , Metirapona , Piel , Agua
18.
Artículo en Inglés | MEDLINE | ID: mdl-33301892

RESUMEN

In his early career, August Krogh made fundamental discoveries of the properties of cutaneous respiration in fish, frogs and other vertebrates. Following Krogh's example, the study of amphibious fishes provides an excellent model to understand how the skin morphology and physiological mechanisms evolved to meet the dual challenges of aquatic and terrestrial environments. The skin of air-exposed fishes takes on many of the functions that are typically associated with the gills of fish in water: gas exchange, gas sensing, iono- and osmoregulation, and nitrogen excretion. The skin of amphibious fishes has capillaries close to the surface in the epidermis. Skin ionocytes or mitochondrial-rich cells (MRCs) in the epidermis are thought to be responsible for ion exchange, as well as ammonia excretion in the amphibious mangrove rivulus Kryptolebias marmoratus. Ammonia gas (NH3) moves down the partial pressure gradient from skin capillaries to the surface through ammonia transporters (e.g., Rhcg) and NH3 is volatilized from the mucus film on the skin. Future studies are needed on the skin of amphibious fishes from diverse habitats to understand more broadly the role of the skin as a multifunctional organ.


Asunto(s)
Ciprinodontiformes/fisiología , Branquias/fisiología , Osmorregulación/fisiología , Fenómenos Fisiológicos Respiratorios , Fenómenos Fisiológicos de la Piel , Animales , Ecosistema , Modelos Biológicos , Nitrógeno/metabolismo , Agua/metabolismo
19.
Ecotoxicol Environ Saf ; 220: 112325, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34052755

RESUMEN

Triclosan (TCS), a ubiquitous antimicrobial agent, has been frequently detected in wild fish, leading to concerns regarding TCS safety in the aquatic environment. The present work aims to investigate the TCS-mediated effects on various tissues (the liver, gills, brain, and testes) of wild-sourced adult mosquitofish based on histological analysis and transcriptome. Severe morphological injuries were only found in the liver and gills. The histopathological alterations in the liver were characterized by cytoplasmic vacuolation and degeneration, eosinophilic cytoplasmic inclusions, and nuclear polymorphism. The gill lesions contained epithelial lifting, intraepithelial edema, fusion and shortening of the secondary lamellae. Consistently, the numbers of differently expressed genes (DEGs) identified by transcriptome were in the order of liver (1627) > gills (182) > brain (9) > testes (4). Trend-aligned histopathological and transcriptomic changes in the 4 tissues, suggesting the tissue-specific response manner of mosquitofish to TCS, and the liver and gills were the target organs. TCS interrupted many biological pathways associated with lipogenesis and lipid metabolism, transmembrane transporters, protein synthesis, and carbohydrate metabolism in the liver, and it induced nonspecific immune response in the gills. TCS-triggered hepatotoxicity and gills damnification may lead to inflammation, apoptosis, diseases, and even death in mosquitofish. TCS showed moderate acute toxicity and bioaccumulative property on mosquitofish, suggesting that prolonged or massive use of TCS may pose an ecological risk.


Asunto(s)
Antiinfecciosos/toxicidad , Ciprinodontiformes/fisiología , Branquias/efectos de los fármacos , Hígado/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Triclosán/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Masculino , Especificidad de Órganos , Distribución Aleatoria
20.
Ecotoxicol Environ Saf ; 208: 111566, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396095

RESUMEN

Androgens and estrogens often co-exist in aquatic environments and pose potential risks to fish populations. However, little is known about the endocrine disrupting effects of the mixture of androgens and estrogens in fish. In this study, transcriptional level of target genes related to the hypothalamic-pituitary-gonadal-liver (HPGL) axis, sex hormone level, VTG protein concentration, histology and secondary sex characteristic were assessed in the ovaries and livers of adult female western mosquitofish (Gambusia affinis) exposed to 17ß-estradiol (E2), testosterone (T), and mixtures of E2 and T for 91 days. The results showed that the transcriptional expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (Cyp19a1a) was suppressed in the 200 ng/L T treatment and the 50 ng/L E2 + 200 ng/L T treatment in the ovaries. Steroidogenic acute regulatory protein (Star) and Cyp11a1 showed a similar expression pattern in the T treatment to its corresponding T + E2 mixtures. In the ovaries, the concentrations of 17ß-estradiol and testosterone were decreased in most treatments compared with the solvent control. VTG protein was induced in all steroid treatment. However, exposure to T or E2 + T mixture did not cause the abnormal cells of the ovaries and livers and an extension of the anal fins in female G. affinis. This study demonstrates that chronic exposure to E2, T and their mixtures affects the transcripts of genes in the HPGL axis, steroid hormone level and VTG protein concentration in the ovaries and livers, but fails to cause the histopathological effect of the ovaries and livers and alter the morphology of the anal fins in G. affinis.


Asunto(s)
Ciprinodontiformes/fisiología , Disruptores Endocrinos/toxicidad , Estradiol/toxicidad , Andrógenos/metabolismo , Animales , Ciprinodontiformes/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Disruptores Endocrinos/metabolismo , Estradiol/metabolismo , Estrógenos/metabolismo , Femenino , Hormonas Esteroides Gonadales/metabolismo , Hígado/efectos de los fármacos , Masculino , Ovario/efectos de los fármacos , Testosterona/metabolismo , Vitelogeninas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA