Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Renal Physiol ; 326(6): F981-F987, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38545650

RESUMEN

Cystinosis is an autosomal recessive lysosomal storage disorder, caused by mutations in the CTNS gene, resulting in an absent or altered cystinosin (CTNS) protein. Cystinosin exports cystine out of the lysosome, with a malfunction resulting in cystine accumulation and a defect in other cystinosin-mediated pathways. Cystinosis is a systemic disease, but the kidneys are the first and most severely affected organs. In the kidney, the disease initially manifests as a generalized dysfunction in the proximal tubules (also called renal Fanconi syndrome). MFSD12 is a lysosomal cysteine importer that directly affects the cystine levels in melanoma cells, HEK293T cells, and cystinosis patient-derived fibroblasts. In this study, we aimed to evaluate MFSD12 mRNA levels in cystinosis patient-derived proximal tubular epithelial cells (ciPTECs) and to study the effect of MFSD12 knockout on cystine levels. We showed similar MFSD12 mRNA expression in patient-derived ciPTECs in comparison with the control cells. CRISPR MFSD12 knockout in a patient-derived ciPTEC (CTNSΔ57kb) resulted in significantly reduced cystine levels. Furthermore, we evaluated proximal tubular reabsorption after injection of mfsd12a translation-blocking morpholino (TB MO) in a ctns-/- zebrafish model. This resulted in decreased cystine levels but caused a concentration-dependent increase in embryo dysmorphism. Furthermore, the mfsd12a TB MO injection did not improve proximal tubular reabsorption or megalin expression. In conclusion, MFSD12 mRNA depletion reduced cystine levels in both tested models without improvement of the proximal tubular function in the ctns-/- zebrafish embryo. In addition, the apparent toxicity of higher mfsd12a TB MO concentrations on the zebrafish development warrants further evaluation.NEW & NOTEWORTHY In this study, we show that MFSD12 depletion with either CRISPR/Cas9-mediated gene editing or a translation-blocking morpholino significantly reduced cystine levels in cystinosis ciPTECs and ctns-/- zebrafish embryos, respectively. However, we observed no improvement in the proximal tubular reabsorption of dextran in the ctns-/- zebrafish embryos injected with mfsd12a translation-blocking morpholino. Furthermore, a negative effect of the mfsd12a morpholino on the zebrafish development warrants further investigation.


Asunto(s)
Cistina , Cistinosis , Modelos Animales de Enfermedad , Túbulos Renales Proximales , Pez Cebra , Animales , Pez Cebra/metabolismo , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Cistinosis/metabolismo , Cistinosis/genética , Cistinosis/patología , Humanos , Cistina/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Células Epiteliales/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Sistemas CRISPR-Cas
2.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38338900

RESUMEN

Cystinosis is a low-prevalence lysosomal storage disease. The pathomechanism involves abnormal functioning of the cystinosine lysosomal cystine transporter (CTNS), causing intraliposomal accumulation of the amino acid cysteine disulfide, which crystallizes and deposits in several parts of the body. The most common ophthalmic complication of cystinosis is the deposition of "gold dust" cystine crystals on the cornea, which already occurs in infancy and leads to severe photosensitivity and dry eyes as it gradually progresses with age. In the specific treatment of cystinosis, preparations containing cysteamine (CYA) are used. The availability of commercialized eyedrops for the targeted treatment is scarce, and only Cystadrops® are commercially available with strong limitations. Thus, magistral CYA-containing compounded eyedrops (CYA-CED) could have a key role in patient care; however, a rationally designed comprehensive study on the commercialized and magistral products is still missing. This work aims to build up a comprehensive study about commercialized and magistral CYA eye drops, involving pharmacokinetic and physicochemical characterization (applying mucoadhesivity, rheology test, investigation of drug release, and parallel artificial membrane permeability assays), as well as ex vivo tests, well supported by statistical analysis.


Asunto(s)
Cistinosis , Humanos , Cistinosis/metabolismo , Cisteamina/uso terapéutico , Cisteamina/metabolismo , Cistina/metabolismo , Soluciones Oftálmicas/uso terapéutico , Córnea/metabolismo
3.
Cells ; 13(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38607085

RESUMEN

Cystinosis is a rare, autosomal recessive, lysosomal storage disease caused by mutations in the gene CTNS, leading to cystine accumulation in the lysosomes. While cysteamine lowers the cystine levels, it does not cure the disease, suggesting that CTNS exerts additional functions besides cystine transport. This study investigated the impact of infantile and juvenile CTNS mutations with discrepant genotype/phenotype correlations on CTNS expression, and subcellular localisation and function in clinically relevant cystinosis cell models to better understand the link between genotype and CTNS function. Using CTNS-depleted proximal tubule epithelial cells and patient-derived fibroblasts, we expressed a selection of CTNSmutants under various promoters. EF1a-driven expression led to substantial overexpression, resulting in CTNS protein levels that localised to the lysosomal compartment. All CTNSmutants tested also reversed cystine accumulation, indicating that CTNSmutants still exert transport activity, possibly due to the overexpression conditions. Surprisingly, even CTNSmutants expression driven by the less potent CTNS and EFS promoters reversed the cystine accumulation, contrary to the CTNSG339R missense mutant. Taken together, our findings shed new light on CTNS mutations, highlighting the need for robust assessment methodologies in clinically relevant cellular models and thus paving the way for better stratification of cystinosis patients, and advocating for the development of more personalized therapy.


Asunto(s)
Sistemas de Transporte de Aminoácidos Neutros , Cistinosis , Humanos , Cistina/metabolismo , Cistinosis/metabolismo , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Cisteamina , Mutación/genética
4.
Front Immunol ; 15: 1373224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38633264

RESUMEN

Cystinosis is a rare autosomal recessive disorder caused by mutations in the CTNS gene that encodes cystinosin, a ubiquitous lysosomal cystine/H+ antiporter. The hallmark of the disease is progressive accumulation of cystine and cystine crystals in virtually all tissues. At the kidney level, human cystinosis is characterized by the development of renal Fanconi syndrome and progressive glomerular and interstitial damage leading to end-stage kidney disease in the second or third decade of life. The exact molecular mechanisms involved in the pathogenesis of renal disease in cystinosis are incompletely elucidated. We have previously shown upregulation of NLRP2 in human cystinotic proximal tubular epithelial cells and its role in promoting inflammatory and profibrotic responses. Herein, we have investigated the role of NLRP2 in vivo using a mouse model of cystinosis in which we have confirmed upregulation of Nlrp2 in the renal parenchyma. Our studies show that double knock out Ctns-/- Nlrp2-/- animals exhibit delayed development of Fanconi syndrome and kidney tissue damage. Specifically, we observed at 4-6 months of age that animals had less glucosuria and calciuria and markedly preserved renal tissue, as assessed by significantly lower levels of inflammatory cell infiltration, tubular atrophy, and interstitial fibrosis. Also, the mRNA expression of some inflammatory mediators (Cxcl1 and Saa1) and the rate of apoptosis were significantly decreased in 4-6-month old kidneys harvested from Ctns-/- Nlrp2-/- mice compared to those obtained from Ctns-/-mice. At 12-14 months of age, renal histological was markedly altered in both genetic models, although double KO animals had lower degree of polyuria and low molecular weight proteinuria and decreased mRNA expression levels of Il6 and Mcp1. Altogether, these data indicate that Nlrp2 is a potential pharmacological target for delaying progression of kidney disease in cystinosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Cistinosis , Enfermedades Renales , Animales , Cistina/metabolismo , Cistinosis/genética , Cistinosis/metabolismo , Cistinosis/patología , Riñón/patología , Enfermedades Renales/patología , ARN Mensajero , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Modelos Animales de Enfermedad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA