Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.302
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Immunol ; 21(1): 86-100, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31844327

RESUMEN

By developing a high-density murine immunophenotyping platform compatible with high-throughput genetic screening, we have established profound contributions of genetics and structure to immune variation (http://www.immunophenotype.org). Specifically, high-throughput phenotyping of 530 unique mouse gene knockouts identified 140 monogenic 'hits', of which most had no previous immunologic association. Furthermore, hits were collectively enriched in genes for which humans show poor tolerance to loss of function. The immunophenotyping platform also exposed dense correlation networks linking immune parameters with each other and with specific physiologic traits. Such linkages limit freedom of movement for individual immune parameters, thereby imposing genetically regulated 'immunologic structures', the integrity of which was associated with immunocompetence. Hence, we provide an expanded genetic resource and structural perspective for understanding and monitoring immune variation in health and disease.


Asunto(s)
Infecciones por Enterobacteriaceae/inmunología , Variación Genética/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Inmunofenotipificación/métodos , Infecciones por Salmonella/inmunología , Animales , Citrobacter/inmunología , Infecciones por Enterobacteriaceae/microbiología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Salmonella/inmunología , Infecciones por Salmonella/microbiología
2.
PLoS Genet ; 20(5): e1011064, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709821

RESUMEN

The capacity for bacterial extracellular electron transfer via secreted metabolites is widespread in natural, clinical, and industrial environments. Recently, we discovered the biological oxidation of phenazine-1-carboxylic acid (PCA), the first example of biological regeneration of a naturally produced extracellular electron shuttle. However, it remained unclear how PCA oxidation was catalyzed. Here, we report the mechanism, which we uncovered by genetically perturbing the branched electron transport chain (ETC) of the soil isolate Citrobacter portucalensis MBL. Biological PCA oxidation is coupled to anaerobic respiration with nitrate, fumarate, dimethyl sulfoxide, or trimethylamine-N-oxide as terminal electron acceptors. Genetically inactivating the catalytic subunits for all redundant complexes for a given terminal electron acceptor abolishes PCA oxidation. In the absence of quinones, PCA can still donate electrons to certain terminal reductases, albeit much less efficiently. In C. portucalensis MBL, PCA oxidation is largely driven by flux through the ETC, which suggests a generalizable mechanism that may be employed by any anaerobically respiring bacterium with an accessible cytoplasmic membrane. This model is supported by analogous genetic experiments during nitrate respiration by Pseudomonas aeruginosa.


Asunto(s)
Oxidación-Reducción , Fenazinas , Microbiología del Suelo , Fenazinas/metabolismo , Transporte de Electrón/genética , Citrobacter/genética , Citrobacter/metabolismo , Anaerobiosis/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
3.
Proc Natl Acad Sci U S A ; 121(21): e2402554121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748580

RESUMEN

Cell surface glycans are major drivers of antigenic diversity in bacteria. The biochemistry and molecular biology underpinning their synthesis are important in understanding host-pathogen interactions and for vaccine development with emerging chemoenzymatic and glycoengineering approaches. Structural diversity in glycostructures arises from the action of glycosyltransferases (GTs) that use an immense catalog of activated sugar donors to build the repeating unit and modifying enzymes that add further heterogeneity. Classical Leloir GTs incorporate α- or ß-linked sugars by inverting or retaining mechanisms, depending on the nucleotide sugar donor. In contrast, the mechanism of known ribofuranosyltransferases is confined to ß-linkages, so the existence of α-linked ribofuranose in some glycans dictates an alternative strategy. Here, we use Citrobacter youngae O1 and O2 lipopolysaccharide O antigens as prototypes to describe a widespread, versatile pathway for incorporating side-chain α-linked pentofuranoses by extracytoplasmic postpolymerization glycosylation. The pathway requires a polyprenyl phosphoribose synthase to generate a lipid-linked donor, a MATE-family flippase to transport the donor to the periplasm, and a GT-C type GT (founding the GT136 family) that performs the final glycosylation reaction. The characterized system shares similarities, but also fundamental differences, with both cell wall arabinan biosynthesis in mycobacteria, and periplasmic glucosylation of O antigens first discovered in Salmonella and Shigella. The participation of auxiliary epimerases allows the diversification of incorporated pentofuranoses. The results offer insight into a broad concept in microbial glycobiology and provide prototype systems and bioinformatic guides that facilitate discovery of further examples from diverse species, some in currently unknown glycans.


Asunto(s)
Glicosiltransferasas , Glicosiltransferasas/metabolismo , Glicosiltransferasas/genética , Glicosilación , Citrobacter/metabolismo , Citrobacter/genética , Antígenos O/metabolismo , Antígenos O/química , Polisacáridos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Polisacáridos Bacterianos/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(28): e2301115120, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399418

RESUMEN

Enteric bacterial pathogens pose significant threats to human health; however, the mechanisms by which they infect the mammalian gut in the face of daunting host defenses and an established microbiota remain poorly defined. For the attaching and effacing (A/E) bacterial family member and murine pathogen Citrobacter rodentium, its virulence strategy likely involves metabolic adaptation to the host's intestinal luminal environment, as a necessary precursor to reach and infect the mucosal surface. Suspecting this adaptation involved the intestinal mucus layer, we found that C. rodentium was able to catabolize sialic acid, a monosaccharide derived from mucins, and utilize it as its sole carbon source for growth. Moreover, C. rodentium also sensed and displayed chemotactic activity toward sialic acid. These activities were abolished when the nanT gene, encoding a sialic acid transporter, was deleted (ΔnanT). Correspondingly, the ΔnanT C. rodentium strain was significantly impaired in its ability to colonize the murine intestine. Intriguingly, sialic acid was also found to induce the secretion of two autotransporter proteins, Pic and EspC, which possess mucinolytic and host-adherent properties. As a result, sialic acid enhanced the ability of C. rodentium to degrade intestinal mucus (through Pic), as well as to adhere to intestinal epithelial cells (through EspC). We thus demonstrate that sialic acid, a monosaccharide constituent of the intestinal mucus layer, functions as an important nutrient and a key signal for an A/E bacterial pathogen to escape the colonic lumen and directly infect its host's intestinal mucosa.


Asunto(s)
Citrobacter rodentium , Infecciones por Enterobacteriaceae , Animales , Ratones , Bacterias , Citrobacter , Infecciones por Enterobacteriaceae/microbiología , Mucosa Intestinal/microbiología , Mamíferos , Monosacáridos , Ácido N-Acetilneuramínico
5.
Appl Environ Microbiol ; 90(8): e0116524, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-39012101

RESUMEN

Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of ß-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 ß-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE: The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.


Asunto(s)
Proteínas Bacterianas , Citrobacter , Enterobacter , Hospitales , Aguas Residuales , beta-Lactamasas , Aguas Residuales/microbiología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Citrobacter/genética , Citrobacter/enzimología , Citrobacter/efectos de los fármacos , Citrobacter/aislamiento & purificación , Enterobacter/genética , Enterobacter/efectos de los fármacos , Enterobacter/aislamiento & purificación , Enterobacter/enzimología , Antibacterianos/farmacología , México
6.
Arch Microbiol ; 206(2): 74, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253939

RESUMEN

A bacteriophage BD49 specific for Citrobacter braakii was screened out and purified by double-layer plate method. It consists of a polyhedral head of 93.1 ± 1.2 nm long and 72.9 ± 4.2 nm wide, tail fibers, collar, sheath and baseplate. The bacteriophage was identified by morphology observed with transmission electron microscope (TEM), whole genome sequencing carried out by Illumina next generation sequencing (NGS) technique, and gene annotation based on Clusters of Orthologous Groups of proteins (COG) database. It was identified primarily as a member of Caudovirales by morphology and further determined as Caudovirales, Myoviridae, and Citrobacter bacteriophage by alignment of its whole genome sequence with the NCBI database and establishment of phylogenetic tree. The bacteriophage showed good environmental suitability with optimal multiplicity of infection (MOI) of 0.01, proliferation time of 80 min, optimum living temperature of 30-40 °C, and living pH of 5-10. In addition, it exhibited synergistic effect with ciprofloxacin against C. braakii in antibacterial tests.


Asunto(s)
Antibacterianos , Bacteriófagos , Antibacterianos/farmacología , Bacteriófagos/genética , Filogenia , Citrobacter/genética
7.
Artículo en Inglés | MEDLINE | ID: mdl-38270510

RESUMEN

Two Gram-stain-negative, facultative anaerobic, rod-shaped bacterial strains, S171T and S2-9, were isolated from seleniferous soil in China. Comprehensive phylogenetic analyses based on 16S rRNA genes, multilocus sequences and whole genome sequences indicated that the two strains belonged to the genus Citrobacter. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains S171T and S2-9 with the closest relative Citrobacter koseri NCTC 10786T were 83.6-83.7% and 27.7-27.8 %, respectively, which were below the species cutoff values. The ANI and dDDH values between the two strains were 97.9% and 84.8 %, respectively. The biochemical characteristics revealed that selenite tolerance, H2S and indole production, arginine dihydrolase, ornithine decarboxylase, as well as acid production from carbon sources such as d-sorbitol and arbutin are distinctive features of the two strains. Based on these results, strain S171T and strain S2-9 represent a novel species of the genus Citrobacter, for which the name Citrobacter enshiensis sp. nov. is proposed, with strain S171T (=GDMCC 1.3637T=JCM 35851T) as the type strain. The genome size of strain S171T was 4.92 Mb with a G+C content of 52.6 mol%. The genome size of strain S2-9 was 4.89 Mb with a G+C content of 52.6 mol%.


Asunto(s)
Citrobacter , Ácidos Grasos , Composición de Base , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Ácidos Grasos/química , Nucleótidos
8.
BMC Infect Dis ; 24(1): 662, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956542

RESUMEN

BACKGROUND: Infections due to Citrobacter species are increasingly observed in hospitalized patients and are often multidrug-resistant. Yet, the magnitude and burden of Citrobacter spp. resistance in the hospital setting have not been reported. We aimed to evaluate the epidemiology of Citrobacter spp. infections among hospitalized patients, their main resistance patterns and Citrobacter spp. involvement in hospital outbreaks. METHODS: We conducted a systematic review and meta-analysis of published literature (PROSPERO registration Jan-2023, CRD42023390084). We searched Embase, Medline and grey literature for studies on hospitalized patients diagnosed with Citrobacter spp. infections, and nosocomial outbreaks due to Citrobacter spp. published during the years 2000-2022. We included observational, interventional, surveillance studies and outbreak reports. Outcomes of interest were the frequency of Citrobacter spp. infections among hospitalized patients and 3rd generation cephalosporin and/or carbapenem resistance percentages in these infections. We used random-effects models to generate pooled outcome estimates and evaluated risk of bias and quality of reporting of outbreaks. RESULTS: We screened 1609 deduplicated publications, assessed 148 full-texts, and included 41 studies (15 observational, 13 surveillance and 13 outbreak studies). Citrobacter spp. urinary tract- and bloodstream infections were most frequently reported, with Citrobacter freundii being the main causative species. Hospital-acquired infection occurred in 85% (838/990) of hospitalized patients with Citrobacter infection. After 2010, an increasing number of patients with Citrobacter spp. infections was reported in observational studies. Pooled frequency estimates for Citrobacter spp. infections could not be generated due to lack of data. The pooled prevalence of ESBL and carbapenemase producers among Citrobacter isolates were 22% (95%CI 4-50%, 7 studies) and 18% (95%CI 0-63%, 4 studies), respectively. An increased frequency of reported Citrobacter outbreaks was observed after 2016, with an infection/colonization ratio of 1:3 and a case-fatality ratio of 7% (6/89 patients). Common outbreak sources were sinks, toilets, contaminated food and injection material. Implemented preventive measures included environmental cleaning, isolation of positive patients and reinforcement of hand hygiene. Only seven out of 13 outbreaks (54%) were definitively controlled. CONCLUSION: This review highlights the clinical importance of endemic and epidemic Citrobacter spp. in healthcare settings. As an emerging, multidrug­resistant nosocomial pathogen it requires heightened awareness and further dedicated surveillance efforts.


Asunto(s)
Citrobacter , Infección Hospitalaria , Infecciones por Enterobacteriaceae , Humanos , Infecciones por Enterobacteriaceae/epidemiología , Infecciones por Enterobacteriaceae/microbiología , Citrobacter/aislamiento & purificación , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Hospitalización/estadística & datos numéricos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Brotes de Enfermedades , Farmacorresistencia Bacteriana Múltiple , Infecciones Urinarias/epidemiología , Infecciones Urinarias/microbiología
9.
Ann Clin Microbiol Antimicrob ; 23(1): 38, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685062

RESUMEN

OBJECTIVE: To analyze the clinical infection characteristics and genetic environments of resistance genes in carbapenem-resistant Citrobacter europaeus using whole-genome sequencing. METHODS: The susceptibility of two clinical isolates of C. europaeus (WF0003 and WF1643) to 24 antimicrobial agents was assessed using the BD Phoenix™ M50 System and Kirby-Bauer (K-B) disk-diffusion method. Whole-genome sequencing was performed on the Illumina and Nanopore platforms, and ABRicate software was used to predict resistance and virulence genes of carbapenem-resistant C. europaeus. The characteristics of plasmids carrying carbapenem-resistance genes and their genetic environments were analyzed. Single nucleotide polymorphisms were used to construct a phylogenetic tree to analyze the homology of these two C. europaeus strains with ten strains of C. europaeus in the NCBI database. RESULTS: The two strains of carbapenem-resistant C. europaeus are resistant to various antimicrobial agents, particularly carbapenems and ß-lactams. WF0003 carries blaNDM- 1, which is located on an IncX3 plasmid that has high homology to the pNDM-HN380 plasmid. blaNDM- 1 is located on a truncated Tn125. It differs from Tn125 by the insertion of IS5 in the upstream ISAba125 and the deletion of the downstream ISAba125, which is replaced by IS26. WF1643 carries blaOXA- 48 in a Tn1999 transposon on the IncL/M plasmid, carrying only that single drug resistance gene. Homology analysis of these two strains of C. europaeus with ten C. europaeus strains in the NCBI database revealed that the 12 strains can be classified into three clades, with both WF0003 and WF1643 in the B clade. CONCLUSION: To the best of our knowledge, this is the first study to report an IncX3 plasmid carrying blaNDM- 1 in C. europaeus in China. C. europaeus strains harboring carbapenem-resistance genes are concerning in relation to the spread of antimicrobial resistance, and the presence of carbapenem-resistance genes in C. europaeus should be continuously monitored.


Asunto(s)
Antibacterianos , Carbapenémicos , Infecciones por Enterobacteriaceae , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos , Secuenciación Completa del Genoma , beta-Lactamasas , beta-Lactamasas/genética , Humanos , China , Infecciones por Enterobacteriaceae/microbiología , Plásmidos/genética , Carbapenémicos/farmacología , Antibacterianos/farmacología , Citrobacter/genética , Citrobacter/efectos de los fármacos , Citrobacter/aislamiento & purificación , Genoma Bacteriano , Proteínas Bacterianas/genética , Masculino , Femenino
10.
Clin Lab ; 70(8)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39193949

RESUMEN

BACKGROUND: In this study, Escherichia coli, Klebsiella oxytoca, and Citrobacter amalonaticus carrying blaNDM-5 were isolated from a single patient. METHODS: The antibiotic susceptibility of the isolates was evaluated by using E-test and agar dilution methods, and blaNDM-5 was identified in genomic and plasmid DNA by using polymerase chain reaction and sequencing. Whole genome sequencing and de novo assembly were used for species characterization, resistance gene identification, and plasmid analysis. RESULTS: All three species had identical plasmids, which were similar to pEC463-NDM5, a plasmid harboring blaNDM-5. Transconjugation experiments confirmed the horizontal gene transfer of blaNDM-5, highlighting the need for a close monitoring of Enterobacteriaceae species harboring this gene. CONCLUSIONS: This study conclusively demonstrates the propensity for horizontal gene transfer of blaNDM-5 among Enterobacteriaceae species, underlining the importance of vigilant monitoring to combat antibiotic resistance.


Asunto(s)
Antibacterianos , Enterobacteriaceae , Transferencia de Gen Horizontal , Pruebas de Sensibilidad Microbiana , Plásmidos , beta-Lactamasas , Humanos , beta-Lactamasas/genética , Enterobacteriaceae/genética , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/aislamiento & purificación , Antibacterianos/farmacología , Plásmidos/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/diagnóstico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Secuenciación Completa del Genoma , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/aislamiento & purificación , Klebsiella oxytoca/genética , Klebsiella oxytoca/aislamiento & purificación , Klebsiella oxytoca/efectos de los fármacos , Citrobacter/genética , Citrobacter/aislamiento & purificación , Citrobacter/efectos de los fármacos
11.
Ecotoxicol Environ Saf ; 284: 116892, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39153279

RESUMEN

Citrobacter sp. XT1-2-2, a functional microorganism with potential utilization, has the ability to immobilize soil cadmium. In this study, the regulatory gene cysH, as a rate-limiting enzyme in the sulfur metabolic pathway, was selected for functional analysis affecting cadmium immobilization in soil. To verify the effect of APS reductase on CdS formation, the ΔAPS and ΔAPS-com strains were constructed by conjugation transfer. Through TEM analysis, it was found that the adsorption of Cd2+ was affected by the absence of APS reductase in XT1-2-2 strain. The difference analysis of biofilm formation indicated that APS reductase was necessary for cell aggregation and biofilm formation. The p-XRD, XPS and FT-IR analysis revealed that APS reductase played an important role in the cadmium immobilization process of XT1-2-2 strain and promoting the formation of CdS. According to the pot experiments, the cadmium concentration of roots, culms, leaves and grains inoculated with ΔAPS strain was significantly higher than that of wild-type and ΔAPS-com strains, and the cadmium removal ability of ΔAPS strain was significantly lower than that of wild-type strain. The study provided insights into the exploration of new bacterial assisted technique for the remediation and safe production of rice in cadmium-contaminated paddy soils.


Asunto(s)
Cadmio , Citrobacter , Oryza , Contaminantes del Suelo , Cadmio/metabolismo , Cadmio/toxicidad , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Biopelículas , Biodegradación Ambiental , Arseniato Reductasas/metabolismo , Arseniato Reductasas/genética
12.
Euro Surveill ; 29(14)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38577805

RESUMEN

In 2019-2022, a prolonged outbreak of oxacillinase (OXA)-48-producing Citrobacter farmeri due to a persistent environmental contamination, occurred in our haematology intensive care unit. In April 2019, we isolated OXA-48-producing C. farmeri from rectal samples of two patients in weekly screenings. The cases had stayed in the same hospital room but 4 months apart. We screened five patients who had stayed in this room between the two cases and identified a third case. Over the following 3 years, five other cases were detected, the last case in September 2022. In total, eight cases were detected: seven colonised with the bacterium and one infected with a lethal outcome. All cases stayed in the same hospital room. We detected OXA-48-producing C. farmeri from a shower, washbasin drains and wastewater drainage of the bathroom of the hospital room. Molecular typing confirmed that all C. farmeri isolates from the environment and the cases were indistinguishable. Despite bundle measures to control the outbreak, the bacterium persisted in the system, which resulted in transmission to new patients. A design defect in the placement of wastewater drains contributed to the persistence and proliferation of the bacterium. The room was closed after the last case and the bathroom rebuilt.


Asunto(s)
Citrobacter , Infección Hospitalaria , Aguas Residuales , Humanos , Infección Hospitalaria/microbiología , beta-Lactamasas , Proteínas Bacterianas/genética , Brotes de Enfermedades , Hospitales , Cuidados Críticos , Klebsiella pneumoniae
13.
Euro Surveill ; 29(15)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38606571

RESUMEN

BackgroundCarbapenemase-producing Enterobacterales are a public health threat worldwide and OXA-48 is the most prevalent carbapenemase in Germany and western Europe. However, the molecular epidemiology of OXA-48 in species other than Escherichia coli and Klebsiella pneumoniae remains poorly understood.AimTo analyse the molecular epidemiology of OXA-48 and OXA-48-like carbapenemases in Citrobacter species (spp.) in Germany between 2011 and 2022.MethodsData of 26,822 Enterobacterales isolates sent to the National Reference Centre (NRC) for Gram-negative bacteria were evaluated. Ninety-one Citrobacter isolates from 40 German hospitals harbouring bla OXA-48/OXA-48­like were analysed by whole genome sequencing and conjugation experiments.ResultsThe frequency of OXA-48 in Citrobacter freundii (CF) has increased steadily since 2011 and is now the most prevalent carbapenemase in this species in Germany. Among 91 in-depth analysed Citrobacter spp. isolates, CF (n = 73) and C. koseri (n = 8) were the most common species and OXA-48 was the most common variant (n = 77), followed by OXA-162 (n = 11) and OXA­181 (n = 3). Forty percent of the isolates belonged to only two sequence types (ST19 and ST22), while most other STs were singletons. The plasmids harbouring bla OXA­48 and bla OXA-162 belonged to the plasmid types IncL (n = 85) or IncF (n = 3), and plasmids harbouring bla OXA­181 to IncX3 (n = 3). Three IncL plasmid clusters (57/85 IncL plasmids) were identified, which were highly transferable in contrast to sporadic plasmids.ConclusionIn CF in Germany, OXA-48 is the predominant carbapenemase. Dissemination is likely due to distinct highly transmissible plasmids harbouring bla OXA­48 or bla OXA-48-like and the spread of the high-risk clonal lineages ST19 and ST22.


Asunto(s)
Proteínas Bacterianas , Citrobacter , Humanos , Citrobacter/genética , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Plásmidos/genética , Klebsiella pneumoniae/genética , Escherichia coli/genética , Secuenciación Completa del Genoma , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología
14.
Foodborne Pathog Dis ; 21(7): 440-446, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38597592

RESUMEN

Salmonella spp. and Citrobacter spp. are among the microorganisms causing important foodborne outbreaks. In this study, it was tried to determine the presence and rate of Salmonella spp. and Citrobacter spp. in salad samples collected from certain regions of province of Isparta in Türkiye. A total of 50 salad samples were analyzed. Classical culture technique was used for microbiological analysis of salad samples. Suspected isolates obtained were identified using the VITEK-2 system. Although no negative visual changes were observed in the salad samples used in the study, it was determined that the number of Gram-negative microorganisms was very high and six salad samples were not suitable for public health. In 50 salad samples, 2% Salmonella and 4% Citrobacter freundii were detected. In addition, it was determined that the Salmonella strain isolated from the salad sample was resistant to three different antibiotics and Citrobacter was resistant to two different antibiotics. Salmonella spp. and Citrobacter spp. are considered very dangerous to public health because they are associated with foodborne outbreaks and can develop antibiotic resistance very quickly. Salad producers should try to reduce the possibility of microbial contamination by using different technologies.


Asunto(s)
Citrobacter , Microbiología de Alimentos , Salud Pública , Salmonella , Salmonella/aislamiento & purificación , Citrobacter/aislamiento & purificación , Humanos , Turquía , Ensaladas/microbiología , Contaminación de Alimentos/análisis , Pruebas de Sensibilidad Microbiana , Comida Rápida/microbiología , Antibacterianos/farmacología , Recuento de Colonia Microbiana , Citrobacter freundii/aislamiento & purificación , Enfermedades Transmitidas por los Alimentos/microbiología , Enfermedades Transmitidas por los Alimentos/prevención & control , Farmacorresistencia Bacteriana
15.
Int J Mol Sci ; 25(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39337377

RESUMEN

The demand for terrestrial snails as a food source is still on the increase globally, yet this has been overlooked in disease epidemiology and the spread of antimicrobial resistance. This study conducted genomic analyses of twenty Citrobacter portucalensis strains isolated from live edible snails traded in two hubs. The isolates were subjected to MALDI-TOF MS, antimicrobial resistance testing, whole genome sequencing, and analyses for in-depth characterization. The findings disclosed that seventeen strains across the two trading hubs were distinct from previously reported ones. Four isolates were found to share the same sequence type (ST881). Genome-based comparison suggests a clonal transmission of strains between snails traded in these hubs. All the isolates across the two hubs harbored similar variety of antimicrobial resistance genes, with notable ones being blaCMY and qnrB. Sixteen isolates (80%) expressed phenotypic resistance to second-generation cephalosporins, while eleven isolates (55%) exhibited resistance to third-generation cephalosporins. This report of multi-drug-resistant C. portucalensis strains in edible snails highlights significant concerns for food safety and clinical health because of the potential transmission to humans. Enhanced surveillance and stringent monitoring by health authorities are essential to evaluate the impact of these strains on the burden of antimicrobial resistance and to address the associated risk.


Asunto(s)
Citrobacter , Farmacorresistencia Bacteriana Múltiple , Genómica , Caracoles , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Caracoles/microbiología , Citrobacter/genética , Citrobacter/efectos de los fármacos , Genómica/métodos , Antibacterianos/farmacología , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , Filogenia
16.
BMC Genomics ; 24(1): 755, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062371

RESUMEN

BACKGROUND: Citrobacter species are Gram-negative opportunistic pathogens commonly reported in nosocomial-acquired infections. This study characterised four Citrobacter species that were isolated from surface water in the North West Province, South Africa. RESULTS: Phenotypic antimicrobial susceptibility profiles of the isolates demonstrated their ability to produce the extended-spectrum ß-lactamase (ESBL). Whole genomes were sequenced to profile antibiotic resistance and virulence genes, as well as mobile genetic elements. In silico taxonomic identification was conducted by using multi-locus sequence typing and average nucleotide identity. A pangenome was used to determine the phylogenomic landscape of the Citrobacter species by using 109 publicly available genomes. The strains S21 and S23 were identified as C. braakii, while strains S24 and S25 were C. murliniae and C. portucalensis, respectively. Comparative genomics and sequenced genomes of the ESBL-producing isolates consisted of n = 91; 83% Citrobacter species in which bla-CMY-101 (n = 19; 32,2%) and bla-CMY-59 (n = 12; 38,7%) were prevalent in C. braakii, and C. portucalensis strains, respectively. Macrolide (acrAB-TolC, and mdtG) and aminoglycoside (acrD) efflux pumps genes were identified in the four sequenced Citrobacter spp. isolates. The quinolone resistance gene, qnrB13, was exclusive to the C. portucalensis S25 strain. In silico analysis detected plasmid replicon types IncHI1A, IncP, and Col(VCM04) in C. murliniae S24 and C. portucalensis S25, respectively. These potentially facilitate the T4SS secretion system in Citrobacter species. In this study, the C. braakii genomes could be distinguished from C. murliniae and C. portucalensis on the basis of gene encoding for cell surface localisation of the CPS (vexC) and identification of genes involved in capsule polymer synthesis (tviB and tviE). A cluster for the salmochelin siderophore system (iro-BCDEN) was found in C. murliniae S24. This is important when it comes to the pathogenicity pathway that confers an advantage in colonisation. CONCLUSIONS: The emerging and genomic landscapes of these ESBL-producing Citrobacter species are of significant concern due to their dissemination potential in freshwater systems. The presence of these ESBL and multidrug-resistant (MDR) pathogens in aquatic environments is of One Health importance, since they potentially impact the clinical domain, that is, in terms of human health and the agricultural domain, that is, in terms of animal health and food production as well as the environmental domain.


Asunto(s)
Agua , beta-Lactamasas , Animales , Humanos , Filogenia , Tipificación de Secuencias Multilocus , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Antibacterianos/farmacología , Citrobacter/genética
17.
BMC Microbiol ; 23(1): 226, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596536

RESUMEN

BACKGROUND: While the human oral microbiome is known to play an important role in systemic health, its average composition and diversity patterns are still poorly understood. To gain better insights into the general composition of the microbiome on a global scale, the characterization of microbiomes from a broad range of populations, including non-industrialized societies, is needed. Here, we used the portion of non-human reads obtained through an expanded exome capture sequencing approach to characterize the saliva microbiomes of 52 individuals from eight ethnolinguistically diverse southern African populations from Angola (Kuvale, Kwepe, Himba, Tjimba, Kwisi, Twa, !Xun) and Zimbabwe (Tshwa), including foragers, food-producers, and peripatetic groups (low-status communities who provide services to their dominant neighbors). RESULTS: Our results indicate that neither host genetics nor livelihood seem to influence the oral microbiome profile, with Neisseria, Streptococcus, Prevotella, Rothia, and Porphyromonas being the five most frequent genera in southern African groups, in line with what has been shown for other human populations. However, we found that some Tshwa and Twa individuals display an enrichment of pathogenic genera from the Enterobacteriaceae family (i.e. Enterobacter, Citrobacter, Salmonella) of the Proteobacteria phylum, probably reflecting deficient sanitation and poor health conditions associated with social marginalization. CONCLUSIONS: Taken together, our results suggest that socio-economic status, rather than ethnolinguistic affiliation or subsistence mode, is a key factor in shaping the salivary microbial profiles of human populations in southern Africa.


Asunto(s)
Citrobacter , Microbiota , Humanos , Zimbabwe , Angola , África Austral , Microbiota/genética
18.
Arch Microbiol ; 205(7): 270, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37356030

RESUMEN

Nitrogen metabolism in the genus Citrobacter is very poorly studied despite its several implications in wastewater treatment. In the current study, Citrobacter portucalensis strain AAK_AS5 was assessed for remediation of simulated wastewater supplemented with different inorganic nitrogen sources. Combination of (NH4)2SO4 with KNO3 was the most preferred for achieving high growth density followed by (NH4)2SO4 and KNO3 alone. This was in agreement with highest ammonical nitrogen removal of 92.9% in the presence of combined nitrogen sources and the corresponding nitrate nitrogen removal of 93% in the presence of KNO3. Furthermore, these removal capacities were validated by investigating the uniqueness and the spread of metabolic features through pan-genomic approach that revealed the largest number of unique genes (2097) and accessory genes (705) in strain AAK_AS5. Of the total 44 different types of nitrogen metabolism-related genes, 39 genes were associated with the core genome, while 5 genes such as gltI, nasA, nasR, nrtA, and ntrC uniquely belonged to the accessory genome. Strain AAK_AS5 possessed three major nitrate removal pathways viz., assimilatory and dissimilatory nitrate reduction to ammonia (ANRA & DNRA), and denitrification; however, the absence of nitrification was compensated by ammonia assimilation catalyzed by gene products of the GDH and GS-GOGAT pathways. narGHIJ encoding the respiratory nitrate reductase was commonly identified in all the studied genomes, while genes such as nirK, norB, and nosZ were uniquely present in the strain AAK_AS5 only. A markedly different genetic content and metabolic diversity between the strains reflected their adaptive evolution in the environment thus highlighting the significance of C. portucalensis AAK_AS5 for potential application in nitrogen removal from wastewater.


Asunto(s)
Desnitrificación , Aguas Residuales , Nitratos , Amoníaco , Nitrógeno/metabolismo , Nitrificación , Citrobacter/genética , Citrobacter/metabolismo , Procesos Heterotróficos , Aerobiosis , Nitritos/metabolismo
19.
Artículo en Inglés | MEDLINE | ID: mdl-36943338

RESUMEN

A Gram-stain-negative strain, designated BR102T, isolated from a soil sample in Brazil was characterized by a polyphasic approach. Comparative 16S rRNA gene sequences indicated that strain BR102T belonged to the genus Citrobacter. The recN- and whole-genome-based phylogeny, and multilocus sequence analysis based on concatenated partial fusA, leuS, pyrG and rpoB sequences strongly supported a clade encompassing strain BR102T and a strain from public database that was distinct from currently recognized species of the genus Citrobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain BR102T and the closest relative Citrobacter freundii ATCC 8090T were 91.8 and 48.8 %, respectively. The ability to metabolize different compounds further discriminated strain BR102T from other closely related species of the genus Citrobacter. The novel variants bla CMY-179 and qnrB97, which encoded a CMY-2-like ß-lactamase and a QnrB-type protein, respectively, were identified in strain BR102T. BR102T was resistant to ampicillin, amoxicillin/clavulanate and cefoxitin. The DNA G+C content of strain BR102T is 51.3 mol%. Based on these results, strain BR102T represents a novel species of the genus Citrobacter, for which the name Citrobacter meridianamericanus sp. nov. is proposed. The type strain is BR102T (=MUM 22.55T=IMI 507229T).


Asunto(s)
Citrobacter , Genes Bacterianos , Análisis de Secuencia de ADN , ARN Ribosómico 16S/genética , Ácidos Grasos/química , ADN Bacteriano/genética , Filogenia , Composición de Base , Técnicas de Tipificación Bacteriana , Suelo
20.
Environ Res ; 224: 115527, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36822539

RESUMEN

Bacterial strains belonging to Citrobacter spp. were reported to produce polysaccharides consisting of N-acetylglucosamine and glucosamine like chitosan, with high flocculation activity. In this work, the flocculation dewatering performance of activated sludge conditioned by a novel cationic chitosan-like bioflocculant (BF) named BF01314, produced from Citrobacter youngae GTC 01314, was evaluated under the influences of flocculant dosage, pH, and temperature. At BF dosage as low as 0.5 kg/t DS, the sludge dewaterability was significantly enhanced in comparison to the raw (untreated) sludge, featuring well-flocculated characteristic (reduction in CST from 22.0 s to 9.4 s) and good sludge filterability with reduced resistance (reduction in SRF by one order from 7.42 × 1011 to 9.59 × 1010 m/kg) and increased compactness of sludge (increase in CSC from 15.2 to 23.2%). Besides, the BF demonstrated comparable high sludge dewatering performance within the pH range between 2 and 8, and temperature range between 25 °C and 80 °C. Comparison between the BF, the pristine chitosan and the commercial cationic copolymer MF 7861 demonstrated equivalent performance with enhanced dewaterability at the dosage between 2.0 and 3.0 kg/t DS. Besides, the BF demonstrated strong flocculation activity (>99%) when added to the sludge suspension using moderate to high flocculation speeds (100-200 rpm) with at least 3-min mixing time. The BF's reaction in sludge flocculation was best fitted with a pseudo first-order kinetic model. Electrostatic charge patching and polymer bridging mechanisms are believed to be the dominant mechanistic phenomena during the BF's sludge conditioning process (coagulation-flocculation).


Asunto(s)
Quitosano , Aguas del Alcantarillado , Cinética , Citrobacter , Floculación , Polímeros , Eliminación de Residuos Líquidos , Agua , Filtración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA