Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 145(7): 1075-87, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21683433

RESUMEN

In the ubiquitin-proteasome system (UPS), E2 enzymes mediate the conjugation of ubiquitin to substrates and thereby control protein stability and interactions. The E2 enzyme hCdc34 catalyzes the ubiquitination of hundreds of proteins in conjunction with the cullin-RING (CRL) superfamily of E3 enzymes. We identified a small molecule termed CC0651 that selectively inhibits hCdc34. Structure determination revealed that CC0651 inserts into a cryptic binding pocket on hCdc34 distant from the catalytic site, causing subtle but wholesale displacement of E2 secondary structural elements. CC0651 analogs inhibited proliferation of human cancer cell lines and caused accumulation of the SCF(Skp2) substrate p27(Kip1). CC0651 does not affect hCdc34 interactions with E1 or E3 enzymes or the formation of the ubiquitin thioester but instead interferes with the discharge of ubiquitin to acceptor lysine residues. E2 enzymes are thus susceptible to noncatalytic site inhibition and may represent a viable class of drug target in the UPS.


Asunto(s)
Aminoácidos/farmacología , Compuestos de Bifenilo/farmacología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Sitio Alostérico , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Análisis Mutacional de ADN , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Alineación de Secuencia , Enzimas Ubiquitina-Conjugadoras , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/genética
2.
Mol Cell ; 68(2): 456-470.e10, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-29053960

RESUMEN

RING and U-box E3 ubiquitin ligases regulate diverse eukaryotic processes and have been implicated in numerous diseases, but targeting these enzymes remains a major challenge. We report the development of three ubiquitin variants (UbVs), each binding selectively to the RING or U-box domain of a distinct E3 ligase: monomeric UBE4B, phosphorylated active CBL, or dimeric XIAP. Structural and biochemical analyses revealed that UbVs specifically inhibited the activity of UBE4B or phosphorylated CBL by blocking the E2∼Ub binding site. Surprisingly, the UbV selective for dimeric XIAP formed a dimer to stimulate E3 activity by stabilizing the closed E2∼Ub conformation. We further verified the inhibitory and stimulatory functions of UbVs in cells. Our work provides a general strategy to inhibit or activate RING/U-box E3 ligases and provides a resource for the research community to modulate these enzymes.


Asunto(s)
Descubrimiento de Drogas/métodos , Activadores de Enzimas , Inhibidores Enzimáticos , Multimerización de Proteína/efectos de los fármacos , Proteínas Supresoras de Tumor , Complejos de Ubiquitina-Proteína Ligasa , Proteína Inhibidora de la Apoptosis Ligada a X , Activadores de Enzimas/química , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Proteínas Supresoras de Tumor/agonistas , Proteínas Supresoras de Tumor/antagonistas & inhibidores , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas , Proteína Inhibidora de la Apoptosis Ligada a X/agonistas , Proteína Inhibidora de la Apoptosis Ligada a X/antagonistas & inhibidores , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
3.
J Am Chem Soc ; 144(2): 701-708, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34994556

RESUMEN

Proteolysis-targeting chimeras (PROTACs), heterobifunctional compounds that consist of protein-targeting ligands linked to an E3 ligase recruiter, have arisen as a powerful therapeutic modality for targeted protein degradation (TPD). Despite the popularity of TPD approaches in drug discovery, only a small number of E3 ligase recruiters are available for the >600 E3 ligases that exist in human cells. Here, we have discovered a cysteine-reactive covalent ligand, EN106, that targets FEM1B, an E3 ligase recently discovered as the critical component of the cellular response to reductive stress. By targeting C186 in FEM1B, EN106 disrupts recognition of the key reductive stress substrate of FEM1B, FNIP1. We further establish that EN106 can be used as a covalent recruiter for FEM1B in TPD applications by demonstrating that a PROTAC linking EN106 to the BET bromodomain inhibitor JQ1 or the kinase inhibitor dasatinib leads to the degradation of BRD4 and BCR-ABL, respectively. Our study showcases a covalent ligand that targets a natural E3 ligase-substrate binding site and highlights the utility of covalent ligand screening in expanding the arsenal of E3 ligase recruiters suitable for TPD applications.


Asunto(s)
Acetamidas/química , Proteínas de Ciclo Celular/metabolismo , Proteolisis , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Animales , Azepinas/química , Sitios de Unión , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Línea Celular , Cisteína/química , Dasatinib/química , Proteínas de Fusión bcr-abl/antagonistas & inhibidores , Proteínas de Fusión bcr-abl/metabolismo , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Triazoles/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética
4.
Nature ; 484(7393): 208-13, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22437499

RESUMEN

In mitosis, the spindle assembly checkpoint (SAC) ensures genome stability by delaying chromosome segregation until all sister chromatids have achieved bipolar attachment to the mitotic spindle. The SAC is imposed by the mitotic checkpoint complex (MCC), whose assembly is catalysed by unattached chromosomes and which binds and inhibits the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome segregation. Here, using the crystal structure of Schizosaccharomyces pombe MCC (a complex of mitotic spindle assembly checkpoint proteins Mad2, Mad3 and APC/C co-activator protein Cdc20), we reveal the molecular basis of MCC-mediated APC/C inhibition and the regulation of MCC assembly. The MCC inhibits the APC/C by obstructing degron recognition sites on Cdc20 (the substrate recruitment subunit of the APC/C) and displacing Cdc20 to disrupt formation of a bipartite D-box receptor with the APC/C subunit Apc10. Mad2, in the closed conformation (C-Mad2), stabilizes the complex by optimally positioning the Mad3 KEN-box degron to bind Cdc20. Mad3 and p31(comet) (also known as MAD2L1-binding protein) compete for the same C-Mad2 interface, which explains how p31(comet) disrupts MCC assembly to antagonize the SAC. This study shows how APC/C inhibition is coupled to degron recognition by co-activators.


Asunto(s)
Proteínas de Ciclo Celular/química , Puntos de Control de la Fase M del Ciclo Celular , Complejos Multiproteicos/química , Proteínas Nucleares/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Secuencias de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , Humanos , Proteínas Mad2 , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Huso Acromático , Relación Estructura-Actividad , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/química , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/ultraestructura
5.
PLoS Pathog ; 11(5): e1004890, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25996949

RESUMEN

The Epstein-Barr virus (EBV) encoded oncoprotein Latent Membrane Protein 1 (LMP1) signals through two C-terminal tail domains to drive cell growth, survival and transformation. The LMP1 membrane-proximal TES1/CTAR1 domain recruits TRAFs to activate MAP kinase, non-canonical and canonical NF-kB pathways, and is critical for EBV-mediated B-cell transformation. TRAF1 is amongst the most highly TES1-induced target genes and is abundantly expressed in EBV-associated lymphoproliferative disorders. We found that TRAF1 expression enhanced LMP1 TES1 domain-mediated activation of the p38, JNK, ERK and canonical NF-kB pathways, but not non-canonical NF-kB pathway activity. To gain insights into how TRAF1 amplifies LMP1 TES1 MAP kinase and canonical NF-kB pathways, we performed proteomic analysis of TRAF1 complexes immuno-purified from cells uninduced or induced for LMP1 TES1 signaling. Unexpectedly, we found that LMP1 TES1 domain signaling induced an association between TRAF1 and the linear ubiquitin chain assembly complex (LUBAC), and stimulated linear (M1)-linked polyubiquitin chain attachment to TRAF1 complexes. LMP1 or TRAF1 complexes isolated from EBV-transformed lymphoblastoid B cell lines (LCLs) were highly modified by M1-linked polyubiqutin chains. The M1-ubiquitin binding proteins IKK-gamma/NEMO, A20 and ABIN1 each associate with TRAF1 in cells that express LMP1. TRAF2, but not the cIAP1 or cIAP2 ubiquitin ligases, plays a key role in LUBAC recruitment and M1-chain attachment to TRAF1 complexes, implicating the TRAF1:TRAF2 heterotrimer in LMP1 TES1-dependent LUBAC activation. Depletion of either TRAF1, or the LUBAC ubiquitin E3 ligase subunit HOIP, markedly impaired LCL growth. Likewise, LMP1 or TRAF1 complexes purified from LCLs were decorated by lysine 63 (K63)-linked polyubiqutin chains. LMP1 TES1 signaling induced K63-polyubiquitin chain attachment to TRAF1 complexes, and TRAF2 was identified as K63-Ub chain target. Co-localization of M1- and K63-linked polyubiquitin chains on LMP1 complexes may facilitate downstream canonical NF-kB pathway activation. Our results highlight LUBAC as a novel potential therapeutic target in EBV-associated lymphoproliferative disorders.


Asunto(s)
Linfocitos B/metabolismo , Transformación Celular Viral , Infecciones por Virus de Epstein-Barr/inmunología , Herpesvirus Humano 4/metabolismo , Factor 1 Asociado a Receptor de TNF/metabolismo , Ubiquitinación , Proteínas de la Matriz Viral/metabolismo , Linfocitos B/inmunología , Linfocitos B/virología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Infecciones por Virus de Epstein-Barr/metabolismo , Infecciones por Virus de Epstein-Barr/virología , Células HEK293 , Herpesvirus Humano 4/inmunología , Humanos , Lisina/metabolismo , Mutación , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Dominios y Motivos de Interacción de Proteínas , Interferencia de ARN , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Transducción de Señal , Factor 1 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/antagonistas & inhibidores , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/genética
6.
Mol Cell ; 30(5): 543-4, 2008 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-18538651

RESUMEN

In a recent issue of Molecular Cell, Enquist-Newman et al. (2008) demonstrate that Acm1 is ubiquitinated by APC(Cdc20). By contrast, the high-affinity interaction between Acm1 and APC(Cdh1) renders it a poor substrate, but a specific inhibitor, of the APC(Cdh1) complex.


Asunto(s)
Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas Cdh1 , Proteínas de Ciclo Celular/metabolismo , Mitosis , Especificidad por Sustrato , Ubiquitinación
7.
Mol Cell ; 30(4): 437-46, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18498748

RESUMEN

The completion of mitosis depends on protein ubiquitination by the anaphase-promoting complex (APC). The APC is activated by association with Cdc20 in midmitosis and Cdh1 in late mitosis and G1. Here, we show that in budding yeast the activation of APC(Cdh1) is controlled in part by destruction of the Cdh1 inhibitor Acm1. We find that Acm1 uses pseudosubstrate and other sequence motifs to bind and inhibit Cdh1, but not Cdc20. Acm1 also contains a destruction sequence that promotes its ubiquitination by APC(Cdc20), resulting in the disappearance of Acm1 in early anaphase. Later in mitosis, Acm1 destruction is also promoted by APC(Cdh1). Finally, Cdk1-dependent phosphorylation of Acm1 modulates its localization and destruction. We conclude that ubiquitination of a Cdh1 inhibitor by APC(Cdc20) helps establish the order of activation of the two APC isoforms. We also speculate that the ability of APC(Cdh1) to target its own inhibitor enhances the bistability of the late mitotic regulatory system.


Asunto(s)
Mitosis/fisiología , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Mutación , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Securina , Complejos de Ubiquitina-Proteína Ligasa/genética
8.
Mol Cell ; 31(4): 544-556, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18722180

RESUMEN

In vitro, the anaphase-promoting complex (APC) E3 ligase functions with E2 ubiquitin-conjugating enzymes of the E2-C and Ubc4/5 families to ubiquitinate substrates. However, only the use of the E2-C family, notably UbcH10, is genetically well validated. Here, we biochemically demonstrate preferential use of UbcH10 by the APC, specified by the E2 core domain. Importantly, an additional E2-E3 interaction mediated by the N-terminal extension of UbcH10 regulates APC activity. Mutating the highly conserved N terminus increases substrate ubiquitination and the number of substrate lysines targeted, allows ubiquitination of APC substrates lacking their destruction boxes, increases resistance to the APC inhibitors Emi1 and BubR1 in vitro, and bypasses the spindle checkpoint in vivo. Fusion of the UbcH10 N terminus to UbcH5 restricts ubiquitination activity but does not direct specific interactions with the APC. Thus, UbcH10 combines a specific E2-E3 interface and regulation via its N-terminal extension to limit APC activity for substrate selection and checkpoint control.


Asunto(s)
Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Lisina/metabolismo , Espectroscopía de Resonancia Magnética , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Especificidad por Sustrato/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Ubiquitinación/efectos de los fármacos
9.
PLoS Genet ; 8(7): e1002865, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22844260

RESUMEN

Cell cycle control is modified at meiosis compared to mitosis, because two divisions follow a single DNA replication event. Cyclin-dependent kinases (CDKs) promote progression through both meiosis and mitosis, and a central regulator of their activity is the APC/C (Anaphase Promoting Complex/Cyclosome) that is especially required for exit from mitosis. We have shown previously that OSD1 is involved in entry into both meiosis I and meiosis II in Arabidopsis thaliana; however, the molecular mechanism by which OSD1 controls these transitions has remained unclear. Here we show that OSD1 promotes meiotic progression through APC/C inhibition. Next, we explored the functional relationships between OSD1 and the genes known to control meiotic cell cycle transitions in Arabidopsis. Like osd1, cyca1;2/tam mutation leads to a premature exit from meiosis after the first division, while tdm mutants perform an aberrant third meiotic division after normal meiosis I and II. Remarkably, while tdm is epistatic to tam, osd1 is epistatic to tdm. We further show that the expression of a non-destructible CYCA1;2/TAM provokes, like tdm, the entry into a third meiotic division. Finally, we show that CYCA1;2/TAM forms an active complex with CDKA;1 that can phosphorylate OSD1 in vitro. We thus propose that a functional network composed of OSD1, CYCA1;2/TAM, and TDM controls three key steps of meiotic progression, in which OSD1 is a meiotic APC/C inhibitor.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis , Ciclina A1/genética , Ciclinas/genética , Meiosis/genética , Complejos de Ubiquitina-Proteína Ligasa/genética , Ciclosoma-Complejo Promotor de la Anafase , Animales , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Puntos de Control del Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Ciclina A1/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Epistasis Genética , Gametogénesis/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Ratones , Mitosis/genética , Mutación , Oocitos/metabolismo , Fosforilación , Plantas Modificadas Genéticamente , Transducción de Señal , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores
10.
J Virol ; 87(16): 8818-25, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760246

RESUMEN

Viruses commonly manipulate cell cycle progression to create cellular conditions that are most beneficial to their replication. To accomplish this feat, viruses often target critical cell cycle regulators in order to have maximal effect with minimal input. One such master regulator is the large, multisubunit E3 ubiquitin ligase anaphase-promoting complex (APC) that targets effector proteins for ubiquitination and proteasome degradation. The APC is essential for cells to progress through anaphase, exit from mitosis, and prevent a premature entry into S phase. These far-reaching effects of the APC on the cell cycle are through its ability to target a number of substrates, including securin, cyclin A, cyclin B, thymidine kinase, geminin, and many others. Recent studies have identified several proteins from a number of viruses that can modulate APC activity by different mechanisms, highlighting the potential of the APC in driving viral replication or pathogenesis. Most notably, human cytomegalovirus (HCMV) protein pUL21a was recently identified to disable the APC via a novel mechanism by targeting APC subunits for degradation, both during virus infection and in isolation. Importantly, HCMV lacking both viral APC regulators is significantly attenuated, demonstrating the impact of the APC on a virus infection. Work in this field will likely lead to novel insights into viral replication and pathogenesis and APC function and identify novel antiviral and anticancer targets. Here we review viral mechanisms to regulate the APC, speculate on their roles during infection, and identify questions to be addressed in future studies.


Asunto(s)
Puntos de Control del Ciclo Celular , Interacciones Huésped-Patógeno , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Proteínas Virales/metabolismo , Replicación Viral , Virus/patogenicidad , Ciclosoma-Complejo Promotor de la Anafase , Humanos
11.
Nat Chem Biol ; 8(4): 383-92, 2012 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-22366722

RESUMEN

The anaphase-promoting complex/cyclosome (APC) is a ubiquitin ligase that is required for exit from mitosis. We previously showed that tosyl arginine methyl ester (TAME) inhibits APC-dependent proteolysis by competing with the C-terminal isoleucine-arginine tail of the APC activator cell division cycle 20 (Cdc20) for APC binding. Here we show that in the absence of APC substrates, TAME ejects Cdc20 from the APC by promoting Cdc20 autoubiquitination in its N-terminal region. Cyclin B1 antagonizes TAME's effect by promoting binding of free Cdc20 to the APC and by suppressing Cdc20 autoubiquitination. Nevertheless, TAME stabilizes cyclin B1 in Xenopus extracts by two mechanisms. First, it reduces the k(cat) of the APC-Cdc20-cyclin B1 complex without affecting the K(m), slowing the initial ubiquitination of unmodified cyclin B1. Second, as cyclin B1 becomes ubiquitinated, it loses its ability to promote Cdc20 binding to the APC in the presence of TAME. As a result, cyclin B1 ubiquitination terminates before reaching the threshold necessary for proteolysis.


Asunto(s)
Arginina/análogos & derivados , Ciclina B1/metabolismo , Ciclina D1/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Arginina/farmacología , Secuencia de Bases , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Extractos Celulares , Ciclina B1/genética , Ciclina B1/farmacología , Ciclina D1/genética , Femenino , Mitosis/efectos de los fármacos , Datos de Secuencia Molecular , Enzimas Ubiquitina-Conjugadoras/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación/efectos de los fármacos , Xenopus , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo
12.
Proc Natl Acad Sci U S A ; 108(8): 3187-92, 2011 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-21300909

RESUMEN

Accurate segregation of chromosomes in mitosis is ensured by a surveillance mechanism called the mitotic (or spindle assembly) checkpoint. It prevents sister chromatid separation until all chromosomes are correctly attached to the mitotic spindle through their kinetochores. The checkpoint acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets for degradation securin, an inhibitor of anaphase initiation. The activity of APC/C is inhibited by a mitotic checkpoint complex (MCC), composed of the APC/C activator Cdc20 bound to the checkpoint proteins MAD2, BubR1, and Bub3. When all kinetochores acquire bipolar attachment the checkpoint is inactivated, but the mechanisms of checkpoint inactivation are not understood. We have previously observed that hydrolyzable ATP is required for exit from checkpoint-arrested state. In this investigation we examined the possibility that ATP hydrolysis in exit from checkpoint is linked to the action of the Mad2-binding protein p31(comet) in this process. It is known that p31(comet) prevents the formation of a Mad2 dimer that it thought to be important for turning on the mitotic checkpoint. This explains how p31(comet) blocks the activation of the checkpoint but not how it promotes its inactivation. Using extracts from checkpoint-arrested cells and MCC isolated from such extracts, we now show that p31(comet) causes the disassembly of MCC and that this process requires ß,γ-hydrolyzable ATP. Although p31(comet) binds to Mad2, it promotes the dissociation of Cdc20 from BubR1 in MCC.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/fisiología , Adenosina Trifosfato/metabolismo , Proteínas de Ciclo Celular/metabolismo , Mitosis , Proteínas Nucleares/fisiología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Proteínas de Ciclo Celular/fisiología , Humanos , Cinetocoros/metabolismo , Proteínas Mad2 , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas/metabolismo
13.
Angew Chem Int Ed Engl ; 53(9): 2312-30, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24459094

RESUMEN

Traditionally, biological probes and drugs have targeted the activities of proteins (such as enzymes and receptors) that can be readily controlled by small molecules. The remaining majority of the proteome has been deemed "undruggable". By using small-molecule modulators of the ubiquitin proteasome, protein levels, rather than protein activity, can be targeted instead, thus increasing the number of druggable targets. Whereas targeting of the proteasome itself can lead to a global increase in protein levels, the targeting of other components of the UPS (e.g., the E3 ubiquitin ligases) can lead to an increase in protein levels in a more targeted fashion. Alternatively, multiple strategies for inducing protein degradation with small-molecule probes are emerging. With the ability to induce and inhibit the degradation of targeted proteins, small-molecule modulators of the UPS have the potential to significantly expand the druggable portion of the proteome beyond traditional targets, such as enzymes and receptors.


Asunto(s)
Diseño de Fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/farmacología , Proteínas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Ubiquitina/metabolismo , Animales , Humanos , Inhibidores de Proteasoma/química , Proteínas/análisis , Proteolisis/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
14.
EMBO Rep ; 12(5): 436-43, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21399619

RESUMEN

Mature Xenopus oocytes are arrested in meiosis by the activity of XErp1/Emi2, an inhibitor of the ubiquitin-ligase anaphase-promoting complex/cyclosome (APC/C). On fertilization, XErp1 is degraded, resulting in APC/C activation and the consequent degradation of cell-cycle regulators and exit from meiosis. In this study, we show that a modest increase in the activity of the ubiquitin-conjugating enzyme UbcX overrides the meiotic arrest in an APC/C-dependent reaction. Intriguingly, XErp1 remains stable in these conditions. We found that UbcX causes the ubiquitylation of XErp1, followed by its dissociation from the APC/C. Our data support the idea that ubiquitylation regulates the APC/C-inhibitory activity of XErp1.


Asunto(s)
Proteínas F-Box/metabolismo , Meiosis/fisiología , Oocitos/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Western Blotting , Plásmidos/genética , Ubiquitinación , Xenopus/fisiología
15.
J Biol Chem ; 286(44): 38000-38017, 2011 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21903591

RESUMEN

CARP-1/CCAR1, a perinuclear phosphoprotein, is a regulator of cell growth and apoptosis signaling. Although CARP-1 is a regulator of chemotherapy-dependent apoptosis, it is also a part of the NF-κB proteome and a co-activator of steroid/thyroid nuclear receptors as well as ß-catenin signaling. Our yeast two-hybrid screen revealed CARP-1 binding with the anaphase-promoting complex/cyclosome E3 ubiquitin ligase component APC-2 protein. CARP-1 also binds with anaphase-promoting complex/cyclosome co-activators Cdc20 and Cdh1. Following mapping of the minimal epitopes involved in CARP-1 binding with APC-2, a fluorescence polarization assay was established that indicated a dissociation constant (K(d)) of 480 nm for CARP-1/APC-2 binding. Fluorescence polarization assay-based high throughput screening of a chemical library yielded several small molecule antagonists of CARP-1/APC-2 binding, termed CARP-1 functional mimetics. CFM-4 (1(2-chlorobenzyl)-5'-phenyl-3'H-spiro[indoline-3,2'-[1,3,4]thiadiazol]-2-one), a lead compound, binds with and stimulates CARP-1 expression. CFM-4 prevents CARP-1 binding with APC-2, causes G(2)M cell cycle arrest, and induces apoptosis with an IC(50) range of 10-15 µm. Apoptosis signaling by CFM-4 involves activation of caspase-8 and -9 and caspase-mediated ubiquitin-proteasome pathway-independent loss of cyclin B1 and Cdc20 proteins. Depletion of CARP-1, however, interferes with CFM-4-dependent cell growth inhibition, activation of caspases, and apoptosis. Because CFM-4 also suppresses growth of drug-resistant human breast cancer cells without affecting the growth of human breast epithelial MCF-10A cells, elevating CARP-1 by CFM-4 and consequent apoptosis could in principle be exploited to further elucidate, and perhaps effectively target, often deregulated cell cycle pathways in pathological conditions, including cancer.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Apoptosis , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Regulación de la Expresión Génica , Compuestos de Espiro/química , Tiadiazoles/química , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/antagonistas & inhibidores , Ubiquitina-Proteína Ligasas/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Células COS , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular , Chlorocebus aethiops , Ciclina B1/metabolismo , Células HeLa , Humanos , Cinética , Ratones , Mapeo de Interacción de Proteínas/métodos , Transducción de Señal
16.
J Cell Biol ; 178(3): 371-85, 2007 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-17664332

RESUMEN

Overexpression of cyclin E, an activator of cyclin-dependent kinase 2, has been linked to human cancer. In cell culture models, the forced expression of cyclin E leads to aneuploidy and polyploidy, which is consistent with a direct role of cyclin E overexpression in tumorigenesis. In this study, we show that the overexpression of cyclin E has a direct effect on progression through the latter stages of mitotic prometaphase before the complete alignment of chromosomes at the metaphase plate. In some cases, such cells fail to divide chromosomes, resulting in polyploidy. In others, cells proceed to anaphase without the complete alignment of chromosomes. These phenotypes can be explained by an ability of overexpressed cyclin E to inhibit residual anaphase-promoting complex (APC(Cdh1)) activity that persists as cells progress up to and through the early stages of mitosis, resulting in the abnormal accumulation of APC(Cdh1) substrates as cells enter mitosis. We further show that the accumulation of securin and cyclin B1 can account for the cyclin E-mediated mitotic phenotype.


Asunto(s)
Ciclo Celular/fisiología , Ciclina E/metabolismo , Mitosis/fisiología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Línea Celular , Ciclina A/metabolismo , Ciclina B/genética , Ciclina B/metabolismo , Ciclina B1 , Ciclina E/genética , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Humanos , Microscopía Fluorescente/métodos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Securina , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitina-Proteína Ligasas/metabolismo
17.
Nature ; 437(7061): 1048-52, 2005 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-16127448

RESUMEN

Vertebrate eggs awaiting fertilization are arrested at metaphase of meiosis II by a biochemical activity termed cytostatic factor (CSF). This activity inhibits the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that triggers anaphase onset and mitotic/meiotic exit by targeting securin and M-phase cyclins for destruction. On fertilization a transient rise in free intracellular calcium causes release from CSF arrest and thus APC/C activation. Although it has previously been shown that calcium induces the release of APC/C from CSF inhibition through calmodulin-dependent protein kinase II (CaMKII), the relevant substrates of this kinase have not been identified. Recently, we characterized XErp1 (Emi2), an inhibitor of the APC/C and key component of CSF activity in Xenopus egg extract. Here we show that calcium-activated CaMKII triggers exit from meiosis II by sensitizing the APC/C inhibitor XErp1 for polo-like kinase 1 (Plx1)-dependent degradation. Phosphorylation of XErp1 by CaMKII leads to the recruitment of Plx1 that in turn triggers the destruction of XErp1 by phosphorylating a site known to serve as a phosphorylation-dependent degradation signal. These results provide a molecular explanation for how the fertilization-induced calcium increase triggers exit from meiosis II.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Calcio/farmacología , Proteínas F-Box/metabolismo , Meiosis/efectos de los fármacos , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Proteínas de Xenopus/metabolismo , Ciclosoma-Complejo Promotor de la Anafase , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas de Ciclo Celular/metabolismo , Fertilización/fisiología , Modelos Biológicos , Óvulo/citología , Óvulo/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-mos/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-mos/metabolismo , Proteínas Proto-Oncogénicas c-mos/farmacología , Especificidad por Sustrato , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Xenopus
18.
Proc Natl Acad Sci U S A ; 105(27): 9181-5, 2008 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-18591651

RESUMEN

The mitotic checkpoint system ensures the fidelity of chromosome segregation by preventing the completion of mitosis in the presence of any misaligned chromosome. When activated, it blocks the initiation of anaphase by inhibiting the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). Little is known about the biochemical mechanisms by which this system inhibits APC/C, except for the existence of a mitotic checkpoint complex (MCC) inhibitor of APC/C composed of the APC/C activator Cdc20 associated with the checkpoint proteins Mad2, BubR1, and Bub3. We have been studying the mechanisms of the mitotic checkpoint system in extracts that reproduce its downstream events. We found that inhibitory factors are associated with APC/C in the checkpoint-arrested state, which can be recovered from immunoprecipitates. Only a part of the inhibitory activity was caused by MCC [Braunstein I, Miniowitz S, Moshe Y, Hershko A (2007) Proc Natl Acad Sci USA 104:4870-4875]. Here, we show that during exit from checkpoint, rapid disassembly of MCC takes place while APC/C is still inactive. This observation suggested the possible involvement of multiple factors in the regulation of APC/C by the mitotic checkpoint. We have separated a previously unknown inhibitor of APC/C from MCC. This inhibitor, called mitotic checkpoint factor 2 (MCF2), is associated with APC/C only in the checkpoint-arrested state. The inhibition of APC/C by both MCF2 and MCC was decreased at high concentrations of Cdc20. We propose that both MCF2 and MCC inhibit APC/C by antagonizing Cdc20, possibly by interaction with the Cdc20-binding site of APC/C.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Ciclosoma-Complejo Promotor de la Anafase , Proteínas Cdc20 , Células HeLa , Humanos , Factores de Tiempo
19.
Front Immunol ; 12: 635475, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33815386

RESUMEN

Nuclear dot protein 52 kDa (NDP52, also known as CALCOCO2) functions as a selective autophagy receptor. The linear ubiquitin chain assembly complex (LUBAC) specifically generates the N-terminal Met1-linked linear ubiquitin chain, and regulates innate immune responses, such as nuclear factor-κB (NF-κB), interferon (IFN) antiviral, and apoptotic pathways. Although NDP52 and LUBAC cooperatively regulate bacterial invasion-induced xenophagy, their functional crosstalk remains enigmatic. Here we show that NDP52 suppresses canonical NF-κB signaling through the broad specificity of ubiquitin-binding at the C-terminal UBZ domain. Upon TNF-α-stimulation, NDP52 associates with LUBAC through the HOIP subunit, but does not disturb its ubiquitin ligase activity, and has a modest suppressive effect on NF-κB activation by functioning as a component of TNF-α receptor signaling complex I. NDP52 also regulates the TNF-α-induced apoptotic pathway, but not doxorubicin-induced intrinsic apoptosis. A chemical inhibitor of LUBAC (HOIPIN-8) cancelled the increased activation of the NF-κB and IFN antiviral pathways, and enhanced apoptosis in NDP52-knockout and -knockdown HeLa cells. Upon Salmonella-infection, colocalization of Salmonella, LC3, and linear ubiquitin was detected in parental HeLa cells to induce xenophagy. Treatment with HOIPIN-8 disturbed the colocalization and facilitated Salmonella expansion. In contrast, HOIPIN-8 showed little effect on the colocalization of LC3 and Salmonella in NDP52-knockout cells, suggesting that NDP52 is a weak regulator in LUBAC-mediated xenophagy. These results indicate that the crosstalk between NDP52 and LUBAC regulates innate immune responses, apoptosis, and xenophagy.


Asunto(s)
Apoptosis , Inmunidad Innata , Macroautofagia , Proteínas Nucleares/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina/metabolismo , Células A549 , Apoptosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Células HEK293 , Células HeLa , Humanos , Hidrocarburos Aromáticos/farmacología , Inmunidad Innata/efectos de los fármacos , Macroautofagia/efectos de los fármacos , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Nucleares/genética , Unión Proteica , Salmonella enterica , Transducción de Señal , Factor de Necrosis Tumoral alfa/farmacología , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Complejos de Ubiquitina-Proteína Ligasa/genética , Ubiquitinación
20.
Trends Cell Biol ; 15(5): 231-3, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866025

RESUMEN

To ensure the accuracy of chromosome segregation in mitosis, the spindle checkpoint blocks the activity of the anaphase-promoting complex APC/C until all chromosomes are properly bi-orientated on the metaphase spindle. How the checkpoint machinery actually inhibits the APC/C is still unclear. A new paper by Tang and coworkers helps further our understanding of this complex and fundamental process.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Mitosis/fisiología , Proteínas Quinasas/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Ciclosoma-Complejo Promotor de la Anafase , Animales , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Humanos , Mitosis/genética , Datos de Secuencia Molecular , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA