Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 906
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Development ; 148(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34328171

RESUMEN

Since the pioneering work of Ramón y Cajal, scientists have sought to unravel the complexities of axon development underlying neural circuit formation. Micrometer-scale axonal growth cones navigate to targets that are often centimeters away. To reach their targets, growth cones react to dynamic environmental cues that change in the order of seconds to days. Proper axon growth and guidance are essential to circuit formation, and progress in imaging has been integral to studying these processes. In particular, advances in high- and super-resolution microscopy provide the spatial and temporal resolution required for studying developing axons. In this Review, we describe how improved microscopy has revolutionized our understanding of axonal development. We discuss how novel technologies, specifically light-sheet and super-resolution microscopy, led to new discoveries at the cellular scale by imaging axon outgrowth and circuit wiring with extreme precision. We next examine how advanced microscopy broadened our understanding of the subcellular dynamics driving axon growth and guidance. We finally assess the current challenges that the field of axonal biology still faces for imaging axons, and examine how future technology could meet these needs.


Asunto(s)
Axones/fisiología , Axones/ultraestructura , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Animales , Humanos , Microscopía/métodos
2.
PLoS Pathog ; 18(1): e1010264, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073379

RESUMEN

Herpes simplex virus type 1 (HSV-1) has evolved mechanisms to exploit the host cytoskeleton during entry, replication and exit from cells. In this study, we determined the role of actin and the molecular motor proteins, myosin II and myosin V, in the transport and release of HSV-1 from axon termini, or growth cones. Using compartmentalized neuronal devices, we showed that inhibition of actin polymerization, but not actin branching, significantly reduced the release of HSV-1 from axons. Furthermore, we showed that inhibition of myosin V, but not myosin II, also significantly reduced the release of HSV-1 from axons. Using confocal and electron microscopy, we determined that viral components are transported along axons to growth cones, despite actin or myosin inhibition. Overall, our study supports the role of actin in virus release from axonal growth cones and suggests myosin V as a likely candidate involved in this process.


Asunto(s)
Citoesqueleto de Actina/virología , Conos de Crecimiento/virología , Herpes Simple/virología , Liberación del Virus/fisiología , Animales , Transporte Axonal/fisiología , Conos de Crecimiento/ultraestructura , Herpesvirus Humano 1 , Ratas , Ratas Wistar
3.
PLoS Biol ; 13(3): e1002119, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25826604

RESUMEN

During nervous system development, gradients of Sonic Hedgehog (Shh) and Netrin-1 attract growth cones of commissural axons toward the floor plate of the embryonic spinal cord. Mice defective for either Shh or Netrin-1 signaling have commissural axon guidance defects, suggesting that both Shh and Netrin-1 are required for correct axon guidance. However, how Shh and Netrin-1 collaborate to guide axons is not known. We first quantified the steepness of the Shh gradient in the spinal cord and found that it is mostly very shallow. We then developed an in vitro microfluidic guidance assay to simulate these shallow gradients. We found that axons of dissociated commissural neurons respond to steep but not shallow gradients of Shh or Netrin-1. However, when we presented axons with combined Shh and Netrin-1 gradients, they had heightened sensitivity to the guidance cues, turning in response to shallower gradients that were unable to guide axons when only one cue was present. Furthermore, these shallow gradients polarized growth cone Src-family kinase (SFK) activity only when Shh and Netrin-1 were combined, indicating that SFKs can integrate the two guidance cues. Together, our results indicate that Shh and Netrin-1 synergize to enable growth cones to sense shallow gradients in regions of the spinal cord where the steepness of a single guidance cue is insufficient to guide axons, and we identify a novel type of synergy that occurs when the steepness (and not the concentration) of a guidance cue is limiting.


Asunto(s)
Conos de Crecimiento/efectos de los fármacos , Proteínas Hedgehog/farmacología , Factores de Crecimiento Nervioso/farmacología , Médula Espinal/efectos de los fármacos , Proteínas Supresoras de Tumor/farmacología , Familia-src Quinasas/genética , Animales , Quimiotaxis/fisiología , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Conos de Crecimiento/ultraestructura , Proteínas Hedgehog/deficiencia , Proteínas Hedgehog/genética , Dispositivos Laboratorio en un Chip , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Imagen Molecular , Factores de Crecimiento Nervioso/deficiencia , Factores de Crecimiento Nervioso/genética , Netrina-1 , Cultivo Primario de Células , Transducción de Señal , Médula Espinal/crecimiento & desarrollo , Médula Espinal/metabolismo , Médula Espinal/ultraestructura , Proteínas Supresoras de Tumor/deficiencia , Proteínas Supresoras de Tumor/genética , Familia-src Quinasas/metabolismo
4.
Annu Rev Neurosci ; 32: 383-412, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19400716

RESUMEN

The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling.


Asunto(s)
Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transducción de Señal/fisiología , Animales , Tipificación del Cuerpo/genética , Comunicación Celular/fisiología , Diferenciación Celular/fisiología , Señales (Psicología) , Conos de Crecimiento/ultraestructura , Humanos , Sistema Nervioso/citología , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo
5.
J Cell Sci ; 127(Pt 1): 230-9, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24198394

RESUMEN

The polarisation of developing neurons to form axons and dendrites is required for the establishment of neuronal connections leading to proper brain function. The protein kinase AKT and the MAP kinase scaffold protein JNK-interacting protein-1 (JIP1) are important regulators of axon formation. Here we report that JIP1 and AKT colocalise in axonal growth cones of cortical neurons and collaborate to promote axon growth. The loss of AKT protein from the growth cone results in the degradation of JIP1 by the proteasome, and the loss of JIP1 promotes a similar fate for AKT. Reduced protein levels of both JIP1 and AKT in the growth cone can be induced by glutamate and this coincides with reduced axon growth, which can be rescued by a stabilized mutant of JIP1 that rescues AKT protein levels. Taken together, our data reveal a collaborative relationship between JIP1 and AKT that is required for axon growth and can be regulated by changes in neuronal activity.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Corteza Cerebral/metabolismo , Regulación del Desarrollo de la Expresión Génica , Conos de Crecimiento/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Embrión de Mamíferos , Ácido Glutámico/farmacología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal
6.
Hum Mol Genet ; 22(18): 3690-704, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23681068

RESUMEN

Mutations in the RNA binding protein fused in sarcoma/translated in liposarcoma (FUS/TLS) cause amyotrophic lateral sclerosis (ALS). Although ALS-linked mutations in FUS often lead to a cytosolic mislocalization of the protein, the pathogenic mechanisms underlying these mutations remain poorly understood. To gain insight into these mechanisms, we examined the biochemical, cell biological and functional properties of mutant FUS in neurons. Expression of different FUS mutants (R521C, R521H, P525L) in neurons caused axonal defects. A protein interaction screen performed to explain these phenotypes identified numerous FUS interactors including the spinal muscular atrophy (SMA) causing protein survival motor neuron (SMN). Biochemical experiments showed that FUS and SMN interact directly and endogenously, and that this interaction can be regulated by FUS mutations. Immunostaining revealed co-localization of mutant FUS aggregates and SMN in primary neurons. This redistribution of SMN to cytosolic FUS accumulations led to a decrease in axonal SMN. Finally, cell biological experiments showed that overexpression of SMN rescued the axonal defects induced by mutant FUS, suggesting that FUS mutations cause axonal defects through SMN. This study shows that neuronal aggregates formed by mutant FUS protein may aberrantly sequester SMN and concomitantly cause a reduction of SMN levels in the axon, leading to axonal defects. These data provide a functional link between ALS-linked FUS mutations, SMN and neuronal connectivity and support the idea that different motor neuron disorders such as SMA and ALS may be caused, in part, by defects in shared molecular pathways.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Axones/ultraestructura , Línea Celular Tumoral , Expresión Génica , Conos de Crecimiento/ultraestructura , Humanos , Ratones , Ratones Endogámicos C57BL , Neuronas Motoras/ultraestructura , Mutación , Fenotipo , Proteína FUS de Unión a ARN/química , Proteína 1 para la Supervivencia de la Neurona Motora/química , Transfección
7.
PLoS Genet ; 8(2): e1002513, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22383893

RESUMEN

The Eph receptor tyrosine kinases (RTKs) are regulators of cell migration and axon guidance. However, our understanding of the molecular mechanisms by which Eph RTKs regulate these processes is still incomplete. To understand how Eph receptors regulate axon guidance in Caenorhabditis elegans, we screened for suppressors of axon guidance defects caused by a hyperactive VAB-1/Eph RTK. We identified NCK-1 and WSP-1/N-WASP as downstream effectors of VAB-1. Furthermore, VAB-1, NCK-1, and WSP-1 can form a complex in vitro. We also report that NCK-1 can physically bind UNC-34/Enabled (Ena), and suggest that VAB-1 inhibits the NCK-1/UNC-34 complex and negatively regulates UNC-34. Our results provide a model of the molecular events that allow the VAB-1 RTK to regulate actin dynamics for axon guidance. We suggest that VAB-1/Eph RTK can stop axonal outgrowth by inhibiting filopodia formation at the growth cone by activating Arp2/3 through a VAB-1/NCK-1/WSP-1 complex and by inhibiting UNC-34/Ena activity.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/fisiología , Conos de Crecimiento/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Actinas/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/citología , Proteínas de Caenorhabditis elegans/genética , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Proteínas de Ciclo Celular/genética , Conos de Crecimiento/ultraestructura , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Proteínas Oncogénicas/genética , Proteínas Oncogénicas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Tirosina Quinasas Receptoras/genética
8.
J Neurosci ; 33(10): 4514-26, 2013 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-23467367

RESUMEN

Dynamin GTPase, a key molecule in endocytosis, mechanically severs the invaginated membrane upon GTP hydrolysis. Dynamin functions also in regulating actin cytoskeleton, but the mechanisms are yet to be defined. Here we show that dynamin 1, a neuronal isoform of dynamin, and cortactin form ring complexes, which twine around F-actin bundles and stabilize them. By negative-staining EM, dynamin 1-cortactin complexes appeared as "open" or "closed" rings depending on guanine nucleotide conditions. By pyrene actin assembly assay, dynamin 1 stimulated actin assembly in mouse brain cytosol. In vitro incubation of F-actin with both dynamin 1 and cortactin led to the formation of long and thick actin bundles, on which dynamin 1 and cortactin were periodically colocalized in puncta. A depolymerization assay revealed that dynamin 1 and cortactin increased the stability of actin bundles, most prominently in the presence of GTP. In rat cortical neurons and human neuroblastoma cell line, SH-SY5Y, both dynamin 1 and cortactin localized on actin filaments and the bundles at growth cone filopodia as revealed by immunoelectron microscopy. In SH-SY5Y cell, acute inhibition of dynamin 1 by application of dynamin inhibitor led to growth cone collapse. Cortactin knockdown also reduced growth cone filopodia. Together, our results strongly suggest that dynamin 1 and cortactin ring complex mechanically stabilizes F-actin bundles in growth cone filopodia. Thus, the GTPase-dependent mechanochemical enzyme property of dynamin is commonly used both in endocytosis and regulation of F-actin bundles by a dynamin 1-cortactin complex.


Asunto(s)
Actinas/metabolismo , Cortactina/metabolismo , Dinamina I/metabolismo , Conos de Crecimiento/fisiología , Neuronas/citología , Seudópodos/fisiología , Adenosina Trifosfato/farmacología , Análisis de Varianza , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Encéfalo/citología , Células Cultivadas , Cortactina/genética , Cortactina/ultraestructura , Citosol/metabolismo , Dinamina I/genética , Dinamina I/inmunología , Dinamina I/ultraestructura , Femenino , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/farmacología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Guanosina 5'-O-(3-Tiotrifosfato)/farmacología , Humanos , Hidrazonas/farmacología , Inmunoprecipitación , Masculino , Ratones , Microscopía Inmunoelectrónica , Mutación/fisiología , Neuroblastoma/patología , Neuronas/ultraestructura , Unión Proteica/fisiología , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Transfección
9.
J Neurochem ; 128(2): 267-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117969

RESUMEN

EphrinA/EphA-dependent axon repulsion is crucial for synaptic targeting in developing neurons but downstream molecular mechanisms remain obscure. Here, it is shown that ephrinA5/EphA3 triggers proteolysis of the neural cell adhesion molecule (NCAM) by the metalloprotease a disintegrin and metalloprotease (ADAM)10 to promote growth cone collapse in neurons from mouse neocortex. EphrinA5 induced ADAM10 activity to promote ectodomain shedding of polysialic acid-NCAM in cortical neuron cultures, releasing a ~ 250 kDa soluble fragment consisting of most of its extracellular region. NCAM shedding was dependent on ADAM10 and EphA3 kinase activity as shown in HEK293T cells transfected with dominant negative ADAM10 and kinase-inactive EphA3 (K653R) mutants. Purified ADAM10 cleaved NCAM at a sequence within the E-F loop of the second fibronectin type III domain (Leu(671) -Lys(672) /Ser(673) -Leu(674) ) identified by mass spectrometry. Mutations of NCAM within the ADAM10 cleavage sequence prevented EphA3-induced shedding of NCAM in HEK293T cells. EphrinA5-induced growth cone collapse was dependent on ADAM10 activity, was inhibited in cortical cultures from NCAM null mice, and was rescued by WT but not ADAM10 cleavage site mutants of NCAM. Regulated proteolysis of NCAM through the ephrin5/EphA3/ADAM10 mechanism likely impacts synapse development, and may lead to excess NCAM shedding when disrupted, as implicated in neurodevelopmental disorders such as schizophrenia. PSA-NCAM and ephrinA/EphA3 coordinately regulate inhibitory synapse development. Here, we have found that ephrinA5 stimulates EphA3 kinase and ADAM10 activity to promote PSA-NCAM cleavage at a site in its second FNIII repeat, which regulates ephrinA5-induced growth cone collapse in GABAergic and non-GABAergic neurons. These findings identify a new regulatory mechanism which may contribute to inhibitory connectivity.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Conos de Crecimiento/fisiología , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptor EphA3/metabolismo , Receptor EphA5/metabolismo , Proteína ADAM10 , Animales , Células Cultivadas , Corteza Cerebral/citología , Fibronectinas/metabolismo , Conos de Crecimiento/ultraestructura , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Moléculas de Adhesión de Célula Nerviosa/genética , Estructura Terciaria de Proteína
10.
J Neurochem ; 129(4): 649-62, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24350810

RESUMEN

Cholinergic signaling plays an important role in regulating the growth and regeneration of axons in the nervous system. The α7 nicotinic receptor (α7) can drive synaptic development and plasticity in the hippocampus. Here, we show that activation of α7 significantly reduces axon growth in hippocampal neurons by coupling to G protein-regulated inducer of neurite outgrowth 1 (Gprin1), which targets it to the growth cone. Knockdown of Gprin1 expression using RNAi is found sufficient to abolish the localization and calcium signaling of α7 at the growth cone. In addition, an α7/Gprin1 interaction appears intimately linked to a Gαo, growth-associated protein 43, and CDC42 cytoskeletal regulatory pathway within the developing axon. These findings demonstrate that α7 regulates axon growth in hippocampal neurons, thereby likely contributing to synaptic formation in the developing brain.


Asunto(s)
Acetilcolina/fisiología , Región CA3 Hipocampal/citología , Conos de Crecimiento/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Receptor Nicotínico de Acetilcolina alfa 7/fisiología , Animales , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Bungarotoxinas/farmacología , Región CA3 Hipocampal/efectos de los fármacos , Región CA3 Hipocampal/embriología , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Colina/farmacología , Femenino , Proteína GAP-43/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Conos de Crecimiento/ultraestructura , Péptidos y Proteínas de Señalización Intercelular , Masculino , Proteínas del Tejido Nervioso/metabolismo , Péptidos/farmacología , Toxina del Pertussis/farmacología , Mapeo de Interacción de Proteínas , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Venenos de Avispas/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/biosíntesis , Receptor Nicotínico de Acetilcolina alfa 7/genética , Proteína de Unión al GTP cdc42/fisiología
11.
Nat Rev Neurosci ; 10(3): 235-41, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19229242

RESUMEN

Following CNS injury, in an apparently counterintuitive response, scar tissue formation inhibits axonal growth, imposing a major barrier to regeneration. Accordingly, scar-modulating treatments have become a leading therapeutic goal in the field of spinal cord injury. However, increasing evidence suggests a beneficial role for this scar tissue as part of the endogenous local immune regulation and repair process. How can these opposing effects be reconciled? Perhaps it is all a matter of timing.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Cicatriz/fisiopatología , Gliosis/fisiopatología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Lesiones Encefálicas/terapia , Cicatriz/prevención & control , Cicatriz/terapia , Proteínas de la Matriz Extracelular/metabolismo , Gliosis/prevención & control , Gliosis/terapia , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Humanos , Neurogénesis/fisiología , Neuroglía/fisiología , Neuroglía/ultraestructura , Traumatismos de la Médula Espinal/terapia
12.
Morfologiia ; 145(1): 7-12, 2014.
Artículo en Ruso | MEDLINE | ID: mdl-25051793

RESUMEN

The reactions of forming synapses in rat neocortex to the effect of hypoxia in the early postnatal period (day 2) were studied. Using immunocytochemistry for synaptophysin demonstratoion and electron microscopic methods, the sensorimotor cortex was studied in rats at days 3, 4 and 10 of postnatal development (6 to 10 animals of each age) in both experimental and control groups (intact animals). Immunocytochemical study of the control animals demonstrated significant differences in the quantitative distribution of synaptophysin-positive structures in the different layers of the neocortex in the early postnatal period of development (day 5). It is shown that after exposure to perinatal hypoxia, more than 2-fold decrease of the optical density of the immunocytochemical reaction product took place together with the reduction of synaptophysin-positive granules distribution density in all cortical layers of. At the same time, electron-dense terminals demonstrating early degenerative processes were found. In the neuropil of the neocortex, a sharp decline in the number of growth cones, small processes and forming synapses was accompanied by significant changes of the electron density of synaptic, especially post-synaptic, membranes and densities. In the experimental animals, the number of growth cones and emerging synaptic structures were shown to increase only by postnatal day 10. Thus, the effects of hypoxia in the early postnatal period, causing disturbances of synaptogenesis, persist throughout the whole neonatal period examined.


Asunto(s)
Hipoxia/patología , Interneuronas/ultraestructura , Neocórtex/patología , Animales , Conos de Crecimiento/ultraestructura , Hipoxia/metabolismo , Interneuronas/metabolismo , Neocórtex/crecimiento & desarrollo , Neocórtex/metabolismo , Ratas , Sinapsis/ultraestructura , Sinaptofisina/genética , Sinaptofisina/metabolismo
13.
J Neurosci ; 32(2): 411-6, 2012 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-22238077

RESUMEN

Down syndrome cell adhesion molecule (DSCAM) has mainly been characterized for its function as an adhesion molecule in axon growth and in self-recognition between dendrites of the same neuron. Recently, it has been shown that DSCAM can bind to Netrin-1 and that downregulation of DSCAM expression by siRNAs in chick and rodent spinal cords leads to impaired growth and turning response of commissural axons to Netrin-1. To investigate the effect of complete genetic ablation of DSCAM on Netrin-1-induced axon guidance, we analyzed spinal commissural neurons in DSCAM-null mice and found that they extend axons that reach and cross the floor plate and express apparently normal levels of the Netrin receptors DCC (deleted in colorectal carcinoma) and Neogenin. In vitro, commissural neurons in dorsal spinal cord explants of DSCAM-null embryos show normal outgrowth in response to Netrin-1. We therefore conclude that DSCAM is not required for Netrin-induced commissural axon outgrowth and guidance in mice.


Asunto(s)
Moléculas de Adhesión Celular/genética , Conos de Crecimiento/metabolismo , Factores de Crecimiento Nervioso/fisiología , Vías Nerviosas/embriología , Médula Espinal/embriología , Proteínas Supresoras de Tumor/fisiología , Animales , Moléculas de Adhesión Celular/deficiencia , Diferenciación Celular/genética , Femenino , Conos de Crecimiento/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Netrina-1 , Vías Nerviosas/fisiología , Neurogénesis/genética , Médula Espinal/fisiología
14.
J Neurosci ; 32(1): 264-74, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219288

RESUMEN

Dock3, a new member of the guanine nucleotide exchange factors, causes cellular morphological changes by activating the small GTPase Rac1. Overexpression of Dock3 in neural cells promotes axonal outgrowth downstream of brain-derived neurotrophic factor (BDNF) signaling. We previously showed that Dock3 forms a complex with Fyn and WASP (Wiskott-Aldrich syndrome protein) family verprolin-homologous (WAVE) proteins at the plasma membrane, and subsequent Rac1 activation promotes actin polymerization. Here we show that Dock3 binds to and inactivates glycogen synthase kinase-3ß (GSK-3ß) at the plasma membrane, thereby increasing the nonphosphorylated active form of collapsin response mediator protein-2 (CRMP-2), which promotes axon branching and microtubule assembly. Exogenously applied BDNF induced the phosphorylation of GSK-3ß and dephosphorylation of CRMP-2 in hippocampal neurons. Moreover, increased phosphorylation of GSK-3ß was detected in the regenerating axons of transgenic mice overexpressing Dock3 after optic nerve injury. These results suggest that Dock3 plays important roles downstream of BDNF signaling in the CNS, where it regulates cell polarity and promotes axonal outgrowth by stimulating dual pathways: actin polymerization and microtubule assembly.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Proteínas Portadoras/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Conos de Crecimiento/metabolismo , Hipocampo/metabolismo , Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células COS , Chlorocebus aethiops , Glucógeno Sintasa Quinasa 3 beta , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Factores de Intercambio de Guanina Nucleótido , Células HEK293 , Hipocampo/citología , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microtúbulos/efectos de los fármacos , Microtúbulos/ultraestructura
15.
J Neurosci ; 32(40): 13906-16, 2012 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-23035100

RESUMEN

Microtubule organization and dynamics are essential during axon and dendrite formation and maintenance in neurons. However, little is known about the regulation of microtubule dynamics during synaptic development and function in mammalian neurons. Here, we present evidence that the microtubule plus-end tracking protein CLASP2 (cytoplasmic linker associated protein 2) is a key regulator of axon and dendrite outgrowth that leads to functional alterations in synaptic activity and formation. We found that CLASP2 protein levels steadily increase throughout neuronal development in the mouse brain and are specifically enriched at the growth cones of extending neurites. The short-hairpin RNA-mediated knockdown of CLASP2 in primary mouse neurons decreased axon and dendritic length, whereas overexpression of human CLASP2 caused the formation of multiple axons, enhanced dendritic branching, and Golgi condensation, implicating CLASP2 in neuronal morphogenesis. In addition, the CLASP2-induced morphological changes led to significant functional alterations in synaptic transmission. CLASP2 overexpression produced a large increase in spontaneous miniature event frequency that was specific to excitatory neurotransmitter release. The changes in presynaptic activity produced by CLASP2 overexpression were accompanied by increases in presynaptic terminal circumference, total synapse number, and a selective increase in presynaptic proteins that are involved in neurotransmitter release. Also, we found a smaller increase in miniature event amplitude that was accompanied by an increase in postsynaptic surface expression of GluA1 receptor localization. Together, these results provide evidence for involvement of the microtubule plus-end tracking protein CLASP2 in cytoskeleton-related mechanisms underlying neuronal polarity and interplay between microtubule stabilization and synapse formation and activity.


Asunto(s)
Polaridad Celular/fisiología , Citoesqueleto/fisiología , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuronas/ultraestructura , Transmisión Sináptica/fisiología , Animales , Axones/ultraestructura , Células Cultivadas/ultraestructura , Citoesqueleto/ultraestructura , Dendritas/ultraestructura , Femenino , Aparato de Golgi/ultraestructura , Conos de Crecimiento/ultraestructura , Humanos , Masculino , Ratones , Proteínas Asociadas a Microtúbulos/antagonistas & inhibidores , Proteínas Asociadas a Microtúbulos/genética , Morfogénesis/fisiología , Neurogénesis/fisiología , Neurotransmisores/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Terminales Presinápticos/fisiología , Interferencia de ARN , ARN Interferente Pequeño/farmacología , Proteínas Recombinantes de Fusión/fisiología
16.
J Neurosci ; 32(1): 282-96, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219290

RESUMEN

The development of a functioning neural network relies on responses of axonal growth cones to molecular guidance cues that are encountered en route to their target tissue. Nerve growth factor (NGF) and neurotrophin-3 serve as attractive cues for chick embryo sensory growth cones in vitro and in vivo, but little is known about the actin-binding proteins necessary to mediate this response. The evolutionarily conserved ezrin/radixin/moesin (ERM) family of proteins can tether actin filaments to the cell membrane when phosphorylated at a conserved threonine residue. Here we show that acute neurotrophin stimulation rapidly increases active phospho-ERM levels in chick sensory neuron growth cone filopodia, coincident with an increase in filopodial L1 and ß-integrin. Disrupting ERM function with a dominant-negative construct (DN-ERM) results in smaller and less motile growth cones with disorganized actin filaments. Previously, we found that NGF treatment increases actin-depolymerizing factor (ADF)/cofilin activity and growth cone F-actin (Marsick et al., 2010). Here, we show this F-actin increase, as well as attractive turning to NGF, is blocked when ERM function is disrupted despite normal activation of ADF/cofilin. We further show that DN-ERM expression disrupts leading edge localization of active ADF/cofilin and free F-actin barbed ends. Moreover, filopodial phospho-ERM levels are increased by incorporation of active ADF/cofilin and reduced by knockdown of L1CAM.Together, these data suggest that ERM proteins organize actin filaments in sensory neuron growth cones and are crucial for neurotrophin-induced remodeling of F-actin and redistribution of adhesion receptors.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Microfilamentos/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Embrión de Pollo , Pollos , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Femenino , Ganglios Espinales/citología , Ganglios Espinales/embriología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de Microfilamentos/antagonistas & inhibidores , Proteínas de Microfilamentos/genética , Cultivo Primario de Células , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos
17.
J Neurochem ; 124(4): 514-22, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23035659

RESUMEN

The association of gangliosides with specific proteins in the central nervous system was examined by coimmunoprecipitation with an anti-ganglioside antibody. The monoclonal antibody to the ganglioside GD3 (R24) immunoprecipitated the Csk (C-terminal src kinase)-binding protein (Cbp). Sucrose density gradient analysis showed that Cbp of rat cerebellum was detected in detergent-resistant membrane (DRM) raft fractions. R24 treatment of the rat primary cerebellar cultures induced Lyn activation and tyrosine phosphorylation of Cbp. Treatment with anti-ganglioside GD1b antibody also induced tyrosine phosphorylation. Furthermore, over-expressions of Lyn and Cbp in Chinese hamster ovary (CHO) cells resulted in tyrosine 314 phosphorylation of Cbp, which indicates that Cbp is a substrate for Lyn. Immunoblotting analysis showed that the active form of Lyn and the Tyr314-phosphorylated form of Cbp were highly accumulated in the DRM raft fraction prepared from the developing cerebellum compared with the DRM raft fraction of the adult one. In addition, Lyn and the Tyr314-phosphorylated Cbp were highly concentrated in the growth cone fraction prepared from the developing cerebellum. Immunoelectron microscopy showed that Cbp and GAP-43, a growth cone marker, are localized in the same vesicles of the growth cone fraction. These results suggest that Cbp functionally associates with gangliosides on growth cone rafts in developing cerebella.


Asunto(s)
Cerebelo/citología , Cerebelo/crecimiento & desarrollo , Gangliósidos/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de la Membrana/metabolismo , Neuronas/citología , Fosfoproteínas/metabolismo , Familia-src Quinasas/metabolismo , Animales , Animales Recién Nacidos , Anticuerpos/farmacología , Células Cultivadas , Cricetinae , Gangliósidos/inmunología , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Microdominios de Membrana/metabolismo , Microscopía Inmunoelectrónica , Neuronas/efectos de los fármacos , Fosforilación , Ratas , Tirosina/metabolismo
18.
Nat Rev Neurosci ; 9(2): 136-47, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18209731

RESUMEN

Higher-order actin-based networks (actin superstructures) are important for growth-cone motility and guidance. Principles for generating, organizing and remodelling actin superstructures have emerged from recent findings in cell-free systems, non-neuronal cells and growth cones. This Review examines how actin superstructures are initiated de novo at the leading-edge membrane and how the spontaneous organization of actin superstructures is driven by ensembles of actin-binding proteins. How the regulation of actin-binding proteins can affect growth-cone turning and axonal regeneration is also discussed.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Diferenciación Celular/fisiología , Sistema Nervioso Central/embriología , Sistema Nervioso Central/metabolismo , Conos de Crecimiento/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/ultraestructura , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Movimiento Celular/fisiología , Sistema Nervioso Central/citología , Conos de Crecimiento/ultraestructura , Humanos , Vías Nerviosas/citología , Vías Nerviosas/embriología , Vías Nerviosas/metabolismo , Plasticidad Neuronal/fisiología
19.
Adv Anat Embryol Cell Biol ; 213: 1-105, vii, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23322155

RESUMEN

Recovery of mimic function after facial nerve transection is poor: the successful regrowth of axotomized motoneurons to their targets is compromised by (1) poor axonal navigation and excessive collateral branching, (2) abnormal exchange of nerve impulses between adjacent regrowing axons, and (3) insufficient synaptic input to facial motoneurons. As a result, axotomized motoneurons get hyperexcitable and unable to discharge. Since improvement of growth cone navigation and reduction of the ephaptic cross talk between axons turn out be very difficult, we concentrated our efforts on the third detrimental component and proposed that an intensification of the trigeminal input to axotomized electrophysiologically silent facial motoneurons might improve specificity of reinnervation. To test our hypothesis we compared behavioral, electrophysiological, and morphological parameters after single reconstructive surgery on the facial nerve (or its buccal branch) with those obtained after identical facial nerve surgery but combined with direct or indirect stimulation of the ipsilateral infraorbital (ION) nerve. We found that in all cases, trigeminal stimulation was beneficial for the outcome by improving the quality of target reinnervation and recovery of vibrissa! motor performance.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Traumatismos del Nervio Facial/fisiopatología , Traumatismos del Nervio Facial/terapia , Regeneración Nerviosa/fisiología , Recuperación de la Función/fisiología , Nervio Trigémino/fisiología , Vías Aferentes/anatomía & histología , Vías Aferentes/fisiología , Animales , Axotomía/métodos , Modelos Animales de Enfermedad , Músculos Faciales/inervación , Nervio Facial/citología , Nervio Facial/fisiología , Femenino , Conos de Crecimiento/fisiología , Conos de Crecimiento/ultraestructura , Neuronas Motoras/citología , Neuronas Motoras/fisiología , Ratas , Ratas Wistar , Nervio Trigémino/anatomía & histología , Vibrisas/inervación
20.
Mol Cell Neurosci ; 49(1): 13-22, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21903164

RESUMEN

Children with the neurofibromatosis-1 (NF1) cancer predisposition syndrome exhibit numerous clinical problems that reflect defective central nervous system (CNS) neuronal function, including learning disabilities, attention deficit disorder, and seizures. These clinical features result from reduced NF1 protein (neurofibromin) expression in NF1+/- (NF1 heterozygosity) brain neurons. Previous studies have shown that mouse CNS neurons are sensitive to the effects of reduced Nf1 expression and exhibit shorter neurite lengths, smaller growth cone areas, and attenuated survival, reflecting attenuated neurofibromin cAMP regulation. In striking contrast, Nf1+/- peripheral nervous system (PNS) neurons are nearly indistinguishable from their wild-type counterparts, and complete neurofibromin loss leads to increased neurite lengths and survival in a RAS/Akt-dependent fashion. To gain insights into the differential responses of CNS and PNS neurons to reduced neurofibromin function, we designed a series of experiments to define the molecular mechanism(s) underlying the unique CNS neuronal sensitivity to Nf1 heterozygosity. First, Nf1 heterozygosity decreases cAMP levels in CNS, but not in PNS, neurons. Second, CNS neurons exhibit Nf1 gene-dependent increases in RAS pathway signaling, but no further decreases in cAMP levels were observed in Nf1-/- CNS neurons relative to their Nf1+/- counterparts. Third, neurofibromin regulates CNS neurite length and growth cone areas in a cAMP/PKA/Rho/ROCK-dependent manner in vitro and in vivo. Collectively, these findings establish cAMP/PKA/Rho/ROCK signaling as the responsible axis underlying abnormal Nf1+/- CNS neuronal morphology with important implications for future preclinical and clinical studies aimed at improving cognitive and behavioral deficits in mice and children with reduced brain neuronal NF1 gene expression.


Asunto(s)
Sistema Nervioso Central/ultraestructura , AMP Cíclico/metabolismo , Heterocigoto , Neurofibromina 1/genética , Neuronas/ultraestructura , Transducción de Señal/fisiología , Animales , Células Cultivadas , Sistema Nervioso Central/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Genes de Neurofibromatosis 1 , Conos de Crecimiento/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuritas/metabolismo , Neuritas/ultraestructura , Neurofibromatosis 1/genética , Neurofibromatosis 1/metabolismo , Neurofibromina 1/metabolismo , Neuronas/citología , Neuronas/metabolismo , Quinasas Asociadas a rho/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA